首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究近断层地震动对曲线连续梁桥地震响应及碰撞效应的影响,采用非线性时程分析法,分别研究脉冲效应、上盘效应及方向性效应对某三跨曲线连续梁桥支座位移、桥墩内力及邻梁间碰撞力的影响;通过支座隔震率的对比分析,探究不同类型近断层地震动下地震响应产生差异的原因。研究结果表明:脉冲效应、上盘效应和方向性效应均会增大曲线连续梁桥地震响应,脉冲效应的影响尤为显著;脉冲效应和方向性效应削弱了高阻尼橡胶支座的隔震特性,而上盘效应对桥梁响应的影响仅与上盘地震动自身特性有关;综合来看,脉冲效应对曲线梁碰撞响应影响最明显,上盘效应影响不大。  相似文献   

2.
In this study the seismic pounding response of adjacent multi-degree-of-freedom(MDOF) buildings with bilinear inter-story resistance characteristics is investigated through dimensional analysis. The application of dimensional analysis leads to a condensed presentation of the response, and the remarkable self-similarity property for bilinear MDOF buildings with inelastic collision is uncovered. It is shown that when the response is expressed in the appropriate dimensionless form, response spectra for any intensity of the excitation collapse to a single master curve. The reduced Π set explicitly describes the interaction between the colliding structures. The effect of pounding on the MDOF building's response is illustrated using three well-divided spectral regions(amplifi ed, de-amplifi ed and unaffected regions). Parametric studies are conducted to investigate the effects of the story stiffness of structures, the story stiffness ratio and mass ratio of adjacent buildings, the structural inelastic characteristics and the gap size values. Results show that(i) the infl uence of system stiffness ratio to the lighter and more fl exible building is more signifi cant in the fi rst spectral region, where the maximum response of the building is amplifi ed because of pounding; and(ii) the velocity and pounding force of the heavier and stiffer building is unexpectedly sensitive to the mass ratio of adjacent buildings.  相似文献   

3.
地震作用下隔震简支梁桥碰撞反应的振动台试验   总被引:2,自引:0,他引:2  
由地震引发的碰撞是影响桥梁地震反应以及造成桥梁破坏的重要因素。本文对地震作用下隔震简支梁桥的碰撞反应进行了振动台试验。设计制作1个两跨简支的隔震梁桥模型,试验研究了梁间隙、邻梁质量比、隔震支座类型等参数对桥梁碰撞反应的影响。试验结果表明邻梁间隙、邻梁质量比、隔震支座类型等参数对桥梁的碰撞反应有着显著的影响。邻梁间隙越大,碰撞次数越少;邻梁质量比越大,撞击力越大。铅芯橡胶支座比板式橡胶支座耗能能力更强,可以有效降低邻梁之间的撞击力甚至避免碰撞发生。从而为桥梁防碰撞设计提供了可靠的试验依据。  相似文献   

4.
基于动力学基本原理,建立非规则桥梁的多自由度动力简化模型,根据拉格朗日方程推导简化模型的动力方程,结合龙格—库塔方法,采用自编程序研究行波激励下非规则桥梁综合考虑支座摩擦滑移、结构碰撞等非线性因素作用时的抗震性能。结果表明,行波效应和碰撞效应的共同作用可使矮墩的弯矩需求增大;行波激励可使板式橡胶支座位移增大,地震波最后到达的桥墩其上方支座位移峰值增加最为明显;相比高墩,地震作用下矮墩上部的板式橡胶支座易发生滑动。因此非规则桥梁进行防碰撞设计时应考虑行波激励及支座摩擦,找出相邻结构的最大碰撞力,以指导设计。  相似文献   

5.
为了准确分析FPS隔震桥梁的纵向地震碰撞反应,针对一典型3跨FPS隔震简支梁桥,建立了考虑FPS双向耦合效应和梁缝处三维碰撞效应的非线性动力计算模型,分析双向地震作用下FPS隔震简支梁桥纵向地震碰撞反应;研究支座半径和摩擦系数对简支梁桥纵向地震碰撞反应的影响规律。研究结果表明:横向地震作用会增大简支梁邻梁间纵向地震碰撞次数和碰撞力,降低墩底纵向剪力;为减小地震碰撞反应,设计时可适当增大支座半径和支座摩擦系数。  相似文献   

6.
7.
Post-earthquake damages investigation in past and recent earthquakes has illustrated that the building structures are vulnerable to severe damage and/or collapse during moderate to strong ground motion. Among the possible structural damages, seismic induced pounding has been commonly observed in several earthquakes. A parametric study on buildings pounding response as well as proper seismic hazard mitigation practice for adjacent buildings is carried out. Three categories of recorded earthquake excitation are used for input excitations. The effect of impact is studied using linear and nonlinear contact force model for different separation distances and compared with nominal model without pounding consideration. The severity of the impact depends on the dynamic characteristics of the adjacent buildings in combination with the earthquake characteristics. Pounding produces acceleration and shear forces/stresses at various story levels that are greater than those obtained from the no pounding case, while the peak drift depends on the input excitation characteristics. Also, increasing gap width is likely to be effective when the separation is sufficiently wide to eliminate contact. Furthermore, it is effective to provide a shock absorber device system for the mitigation of impact effects between adjacent buildings with relatively narrow seismic gaps, where the sudden changes of stiffness during poundings can be smoothed. This prevents, to some extent, the acceleration peaks due to impact. The pounding forces exerted on the adjacent buildings can be satisfactorily reduced.  相似文献   

8.
A new formulation is proposed to model pounding between two adjacent structures, with natural periods T1 and T2 and damping ratios ζ1 and ζ2 under harmonic earthquake excitation, as non‐linear Hertzian impact between two single‐degree‐of‐freedom oscillators. For the case of rigid impacts, a special case of our analytical solution has been given by Davis (‘Pounding of buildings modelled by an impact oscillator’ Earthquake Engineering and Structural Dynamics, 1992; 21 :253–274) for an oscillator pounding on a stationary barrier. Our analytical predictions for rigid impacts agree qualitatively with our numerical simulations for non‐rigid impacts. When the difference in natural periods between the two oscillators increases, the impact velocity also increases drastically. The impact velocity spectrum is, however, relatively insensitive to the standoff distance. The maximum relative impact velocity of the coupled system can occur at an excitation period Tn* which is either between those of the two oscillators or less than both of them, depending on the ratios T1/T2 and ζ1/ζ2. Although the pounding force between two oscillators has been primarily modelled by the Hertz contact law, parametric studies show that the maximum relative impact velocity is not very sensitive to changes in the contact parameters. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Shaking table tests have been carried out to investigate the pounding phenomenon between two steel towers of different natural frequencies and damping ratios, subject to different combinations of stand‐off distance and seismic excitations. Both harmonic waves and ground motions of the 1940 El Centro earthquake are used as input. Subjected to sinusoidal excitations, poundings between the two towers could appear as either periodic or chaotic. For periodic poundings, impact normally occurs once within each excitation cycle or within every other excitation cycle. A type of periodic group poundings was also observed for the first time (i.e. a group of non‐periodic poundings repeating themselves periodically). Chaotic motions develop when the difference of the natural frequency of the two towers become larger. Under sinusoidal excitations, the maximum relative impact velocity always develops at an excitation frequency between the natural frequencies of the two towers. Both analytical and numerical predictions of the relative impact velocity, the maximum stand‐off distance, and the excitation frequency range for pounding occurrences were made and found to be comparable with the experimental observations in most of the cases. The stand‐off distance attains a maximum when the excitation frequency is close to that of the more flexible tower. Pounding appears to amplify the response of the stiffer structure but suppress that of the more flexible structure; and this agrees qualitatively with previous shaking table tests and theoretical studies. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
基于随机振动理论确定桥梁地震碰撞的临界间隙   总被引:3,自引:1,他引:2  
确定梁桥邻跨间避免地震碰撞的最小间隙,对于梁桥地震碰撞危险性预测及防地震碰撞措施的设计有着显著意义。本文基于随机振动理论建立梁桥地震碰撞邻跨临界间隙的计算方法,分析模型采用跨径不等的两跨简支梁桥,且考虑隔震支座非线性恢复力的影响。文中首先建立了系统的非线性运动方程;随后运用随机等效线性化理论将其线性化;最后在复模态空间推导了临界碰撞间隙的均值与方差的计算方法。人工地震动的非线性时程分析结果验证了本文算法的正确性。参数分析表明,临界间隙随邻跨长度比增大而增大,随支座屈服力与上部结构重量比值减小而增大,随隔震支座屈服位移增大而增大,随桥墩振动周期增大而增大。隔震支座屈服前后刚度比值对临界间隙大小影响很小。  相似文献   

11.
This paper presents the results of an experimental and analytical study of the performance of granular material dampers with tungsten powder, as an impacting mass, under wide-band random excitation. The influence of some of the major system parameters such as the total auxiliary mass ratio, container dimensions and intensity of the excitation are investigated using a small building model under base excitation. An approximate analytical solution based on the concept of an equivalent single-unit impact damper is presented. Comparison between the experimental and analytical results shows that, with the proper use of the equivalent single-particle impact damper approach, reasonably accurate estimates of the rms response of a primary system under stationary random excitation can be obtained.  相似文献   

12.
The dynamic response of tall civil structures due to earthquakes is very important to civil engineers. Structures exposed to earthquakes experience vibrations that are detrimental to their structural components. Structural pounding is an additional problem that occurs when buildings experience earthquake excitation. This phenomena occurs when adjacent structures collide from their out‐of‐phase vibrations. Many energy dissipation devices are presently being used to reduce the system response. Tuned mass dampers (TMD) are commonly used to improve the response of structures. The stiffness and damping properties of the TMD are designed to be a function of the natural frequency of the building to which it is connected. This research involves attaching adjacent structures with a shared tuned mass damper (STMD) to reduce both the structures vibration and probability of pounding. Because the STMD is connected to both buildings, the problem of tuning the STMD stiffness and damping parameters becomes an issue. A design procedure utilizing a performance function is used to obtain the STMD parameters to result in the best overall system response. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
A versatile, simulation‐based framework for risk assessment and probabilistic sensitivity analysis of base‐isolated structures is discussed in this work. A probabilistic foundation is used to address the various sources of uncertainties, either excitation or structural, and to characterize seismic risk. This risk is given, in this stochastic setting, by some statistics of the system response over the adopted probability models and stochastic simulation is implemented for its evaluation. An efficient, sampling‐based approach is also introduced for establishing a probabilistic sensitivity analysis to identify the importance of each of the uncertain model parameters in affecting the overall risk. This framework facilitates use of complex models for the structural system and the excitation. The adopted structural model explicitly addresses nonlinear characteristics of the isolators and of any supplemental dampers, and the effect of seismic pounding of the base to the surrounding retaining walls. An efficient stochastic ground motion model is also discussed for characterizing future near‐fault ground motions and relating them to the seismic hazard for the structural site. An illustrative example is presented that emphasizes the results from the novel probabilistic sensitivity analysis and their dependence on seismic pounding occurrences and on addition of supplemental dampers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
针对非规则人字形桥梁在地震作用下灾变严重的问题,以一座非规则人字形桥梁为研究对象,建立其空间分析模型,研究综合考虑支座摩擦滑移、结构碰撞对非规则人字形桥梁地震响应的影响。结果表明:邻梁间的碰撞作用可使得桥梁墩顶位移及内力相比不考虑时有所减小,但同时也使梁体产生了较大的加速度脉冲效应;当考虑支座摩擦滑移和结构碰撞时,固定墩墩顶位移和邻梁相对位移峰值有一定程度增大,然而对梁体加速度脉冲效应结果影响并无统一规律;纵向地震波作用下,非规则人字形桥梁不仅存在顺桥向的碰撞,横桥向的碰撞响应也不容忽视。非规则人字形桥梁进行抗震设计计算时应选取符合实际情况的计算模型,考虑支座摩擦滑移及结构间的碰撞。  相似文献   

15.
In this paper the dynamic response of two and three pounding oscillators subjected to pulse‐type excitations is revisited with dimensional analysis. Using Buckingham's Π‐theorem the number of variables that govern the response of the system is reduced by three. When the response is presented in the dimensionless Π‐terms remarkable order emerges. It is shown that regardless of the acceleration level and duration of the pulse all response spectra become self‐similar and follow a single master curve. This is true despite the realization of finite duration contacts with increasing durations as the excitation level increases. All physically realizable contacts (impacts, continuous contacts, and detachments) are captured via a linear complementarity approach. The study confirms the existence of three spectral regions. The response of the most flexible among the two oscillators amplifies in the low range of the frequency spectrum (flexible structures); whereas, the response of the most stiff among the two oscillators amplifies at the upper range of the frequency spectrum (stiff structures). Most importantly, the study shows that pounding structures such as colliding buildings or interacting bridge segments may be most vulnerable for excitations with frequencies very different from their natural eigenfrequencies. Finally, by applying the concept of intermediate asymptotics, the study unveils that the dimensionless response of two pounding oscillators follows a scaling law with respect to the mass ratio, or in mathematical terms, that the response exhibits an incomplete self‐similarity or self‐similarity of the second kind with respect to the mass ratio. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The effects of diaphragm mass distribution are investigated for building pounding. Elastic diaphragm‐to‐diaphragm collisions are explained by considering the total momentum over the length of each diaphragm at three critical instants during collision. Expressions for collision force and collision duration are produced, providing additional information about the collision process. Equations for the post collision velocity of each diaphragm are produced and are found to appreciably differ from conventional impact—momentum equations under certain conditions. The change in post collision velocity is found to be dependent on the ratio of the axial periods of free vibration of the two diaphragms and the ratio of their masses. An equivalent lumped mass model is proposed and assessed against simplified distributed mass models with numerical modelling of two two‐storey buildings. Finally, a new parameter is introduced to represent the plasticity of an inelastic collision between the two distributed masses. This paper highlights the significant influence that diaphragm mass distribution may have on the analysis of pounding structures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The present paper investigates the coupled effect of the supporting soil flexibility and pounding between neighbouring, insufficiently separated equal height buildings under earthquake excitation. Two adjacent three-storey structures, modelled as inelastic lumped mass systems with different structural characteristics, have been considered in the study. The models have been excited using a suit of ground motions with different peak ground accelerations and recorded at different soil types. A nonlinear viscoelastic pounding force model has been employed in order to effectively capture impact forces during collisions. Spring-dashpot elements have been incorporated to simulate the horizontal and rotational movements of the supporting soil. The results of the numerical simulations, in the form of the structural nonlinear responses as well as the time-histories of energy dissipated during pounding-involved vibrations, are presented in the paper. In addition, the variation in storeys peak responses and peak dissipated energies for different gap sizes are also shown and comparisons are made with the results obtained for colliding buildings with fixed-base supports. Observations regarding the incorporation of the soil-structure interaction and its effect on the responses obtained are discussed. The results of the study indicate that the soil-structure interaction significantly influences the pounding-involved responses of equal height buildings during earthquakes, especially the response of the lighter and more flexible structure. It has been found that the soil flexibility decreases storey peak displacements, peak impact forces and peak energies dissipated during vibrations, whereas it usually leads to the increases in the peak accelerations at each storey level.  相似文献   

18.
The tuned mass damper inerter (TMDI) couples the classical tuned mass damper (TMD) with an inerter, a mechanical device whose generated force is proportional to the relative acceleration between its terminals, thus providing beneficial mass‐amplification effects. This paper deals with a dynamic layout in which the TMDI is installed below the isolation floor of base‐isolated structures in order to enhance the earthquake resilience and reduce the displacement demand. Unlike most of the literature studies that assumed a linearized behavior of the isolators, the aim of this paper is to investigate the effectiveness of the TMDI while accounting for the nonlinearity of the isolators. Two nonlinear constitutive behaviors are considered, a Coulomb friction model and a Bouc‐Wen hysteretic model, representative of friction pendulum and of lead‐rubber‐bearing isolators, respectively. Optimal design is based on the stochastic dynamic analysis of the system, by modeling the base acceleration as a Kanai‐Tajimi filtered stationary random process and resorting to the stochastic linearization technique to handle the nonlinear terms. Different tuning criteria based on displacement, acceleration, and energy‐based performance indices are defined, and their implications in a design process are discussed. It is proven that the improved robustness of the TMDI reduces its performance sensitivity to the tuning frequency and to the earthquake frequency content, which are well‐known shortcomings of TMD‐like systems. This important feature makes the TMDI particularly suitable for nonlinear base‐isolated structures that are affected by unavoidable uncertainties in the isolators' properties and that may experience changes of isolators effective stiffness depending on the excitation level.  相似文献   

19.
Pounding between adjacent structures during earthquakes may significantly modify their response in terms of forces and displacements. In addition, it has a considerable influence on acceleration and thus on floor response spectra. Therefore, pounding may be unfavorable to the response of equipment. Despite extensive research in this field, the effects of pounding on structures are difficult to quantify accurately. This article presents results of shake table tests carried out on two representative scale adjacent structures subject to pounding. Besides investigating the effects of the gap between structures and the excitation signal, this study examines also the effect of tying the two structures together by means of rigid links to suppress pounding. The results of the experimental campaign are then compared with those of numerical simulations. Analyses and experimental results show good agreement regarding both impact forces and interstorey drifts.  相似文献   

20.
A generalized pushover analysis (GPA) procedure is developed for estimating the inelastic seismic response of structures under earthquake ground excitations. The procedure comprises applying different generalized force vectors separately to the structure in an incremental form with increasing amplitude until a prescribed seismic demand is attained for each generalized force vector. A generalized force vector is expressed as a combination of modal forces, and simulates the instantaneous force distribution acting on the system when a given response parameter reaches its maximum value during dynamic response to a seismic excitation. While any response parameter can be selected arbitrarily, generalized force vectors in the presented study are derived for maximum interstory drift parameters. The maximum value of any other response parameter is then obtained from the envelope of GPAs results. Each nonlinear static analysis under a generalized force vector activates the entire multi‐degree of freedom effects simultaneously. Accordingly, inelastic actions develop in members with the contribution of all ‘instantaneous modes’ in the nonlinear response range. Target seismic demands for interstory drifts at the selected stories are calculated from the associated drift expressions. The implementation of the proposed GPA is simpler compared with nonlinear response history analysis, whereas it is less demanding in computational effort when compared with several multi‐mode adaptive nonlinear static procedures. Moreover, it does not suffer from the statistical combination of inelastic modal responses obtained separately. The results obtained from building frames have demonstrated that GPA is successful in estimating maximum member deformations and member forces with reference to the response history analysis. When the response is linear elastic, GPA and response spectrum analysis produce identical results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号