首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We attempt here to correlate the melting phase of major snowball Earth events in the planet with the processes associated with extreme crustal metamorphism and formation of ultrahigh-temperature (UHT) granulite facies rocks. While the dry mineral assemblages that characterize UHT granulites can result from different mechanisms, the direct evidence for the involvement of CO2-rich fluids in generating diagnostic UHT assemblages has been recorded from the common occurrence of pure CO2 fluid inclusions in several terranes. Here we evaluate the tectonic settings under which UHT rocks are generated using modern analogues and show that divergent tectonics—both post-collisional extension and rifting—play a crucial role. In an attempt to speculate the link among CO2 liberation from the carbonated tectosphere, UHT metamorphism and major earth processes, we address some of the important issues such as: (a) how the subcontinental mantle i.e., the tectosphere, had become carbonated; (b) how and when the tectosphere degassed; and (c) what is the difference between Proterozoic orogens and those of the present day. The fate of the Earth as a habitable planet was possibly dictated by a reversal of the fundamental process of formation of oceans through the selective removal of CO2 into mantle in the Hadean times, carbonation of the Archean mantle wedge, and subsequent decarbonation of the carbonated mantle through divergent metamorphism and water infiltration since the Late Proterozoic.The abundant CO2 liberated by subsolidus decarbonation along consuming plate boundaries was probably one of the factors that contributed to the greenhouse effect thereby triggering the deglaciation of snowball Earth. Based on an evaluation of the distribution of carbonated subcontinental mantle in global reconstructions of the Proterozoic supercontinent assembly, and their link with crustal domains that have undergone CO2-aided dry metamorphism at extreme conditions, we speculate that the UHT rocks might represent windows for the transfer of CO2 from the mantle into the mid crust and ultimately to the atmosphere.  相似文献   

2.
We have reinvestigated the mid-Cretaceous plume pulse in relation to paleo-oceanic plateaus from accretionary prisms in the circum-Pacific region, and we have correlated the Pacific superplume activity with catastrophic environmental changes since the Neoproterozoic. The Paleo-oceanic plateaus are dated at 75–150 Ma; they were generated in the Pacific superplume region and are preserved in accretionary prisms. The volcanic edifice composed of both modern and paleo-oceanic plateaus is up to 10.7 × 106 km2 in area and 19.1 × 107 km3 in volume. The degassing rate of CO2 (0.82 − 1.1 × 1018 mol/m.y.) suggests a significant impact on Cretaceous global warming. The synchronous occurrence of paleo-oceanic plateaus in accretionary complexes indicates that Pacific superplume pulse activities roughly coincided at the Permo-Triassic boundary and the Vendian–Cambrian boundary interval. The CO2 expelled by the Pacific superplume probably contributed to environmental catastrophes. The initiation of the Pacific superplume contributed to the snowball Earth event near the Vendian–Cambrian boundary; this was one of the most dramatic events in Earth's history. The scale of the Pacific superplume activity roughly corresponds to the scale of drastic environmental change.  相似文献   

3.
Twenty-eight samples of peat, peaty lignites and lignites (of both matrix and xylite-rich lithotypes) and subbituminous coals have been physically activated by pyrolysis. The results show that the surface area of the activated coal samples increases substantially and the higher the carbon content of the samples the higher the surface area.The adsorption capacity of the activated coals for NO, SO2, C3H6 and a mixture of light hydrocarbons (CH4, C2H6, C3H8 and C4H10) at various temperatures was measured on selected samples. The result shows a positive correlation between the surface area and the gas adsorption. In contrast, the gas adsorption is inversely correlated with the temperature. The maximum recorded adsorption values are: NO = 8.22 × 10− 5 mol/g at 35 °C; SO2 = 38.65 × 10− 5 mol/g at 60 °C; C3H6 = 38.9 × 10− 5 mol/g at 35 °C; and light hydrocarbons = 19.24 × 10− 5 mol/g at 35 °C. Adsorption of C3H6 cannot be correlated with either NO or SO2. However, there is a significant positive correlation between NO and SO2 adsorptions. The long chain hydrocarbons are preferentially adsorbed on activated lignites as compared to the short chain hydrocarbons.The results also suggest a positive correlation between surface area and the content of telohuminite maceral sub-group above the level of 45%.  相似文献   

4.
Multi-equilibrium thermobarometry shows that low-grade metapelites (Cubito-Moura schists) from the Ossa–Morena Zone underwent HP–LT metamorphism from 340–370 °C at 1.0–0.9 GPa to 400–450 °C at 0.8–0.7 GPa. These HP–LT equilibriums were reached by parageneses including white K mica, chlorite and chloritoid, which define the earliest schistosity (S1) in these rocks. The main foliation in the schists is a crenulation cleavage (S2), which developed during decompression from 0.8–0.7 to 0.4–0.3 GPa at increasing temperatures from 400–450 °C to 440–465 °C. Fe3+ in chlorite decreased greatly during prograde metamorphism from molar fractions of 0.4 determined in syn-S1 chlorites down to 0.1 in syn-S2 chlorites. These new data add to previous findings of eclogites in the Moura schists indicating that a pile of allochtonous rocks situated next to the Beja-Acebuches oceanic amphibolites underwent HP–LT metamorphism during the Variscan orogeny. To cite this article: G. Booth-Rea et al., C. R. Geoscience 338 (2006).  相似文献   

5.
Cantilever torque magnetometry is utilized widely in physics and material science for the determination of magnetic properties of thin films and semiconductors. Here, we report on its first application in rock magnetism, namely the determination of K1 and K2 of single crystal octahedra of natural magnetite. The design of cantilever magnetometers allows optimization for the specific research question at hand. For the present study, a cantilever magnetometer was used that enables measurement of samples with a volume up to 64 mm3. It can be inserted into an electromagnet with a maximum field of 2 T. The cantilever spring is suitable for torque values ranging from 7.5 × 10− 7 N·m to 5 × 10− 6 N·m. The torque is detected capacitively; the measured capacitance is converted into torque by using a calibrated feedback coil. The magnetometer allows in-situ rotation of the sample in both directions and is, therefore, also suitable to analyze rotational hysteresis effects.The evaluation of the magnetite anisotropy constants involved Fourier analysis of the torque signal on the magnetite crystals' (001) and (110) planes. The absolute anisotropy constant has been computed using the extrapolation-to-infinite-field method. The value of K1 at room temperature is determined at − 1.28 × 104 [J m− 3] (± 0.13, i.e. 10%) and that of K2 at − 2.8 × 103 [J m− 3] (± 0.1, i.e. 2%). These values concur with earlier determinations that could not provide an instrumental error, in contrast with this work.The cantilever magnetometer performs four times faster than other torque magnetometers used for rock magnetic studies. This makes the instrument also suitable for magnetic fabric analysis.  相似文献   

6.
Supercritical gas sorption on moist coals   总被引:2,自引:1,他引:1  
The effect of moisture on the CO2 and CH4 sorption capacity of three bituminous coals from Australia and China was investigated at 55 °C and at pressures up to 20 MPa. A gravimetric apparatus was used to measure the gas adsorption isotherms of coal with moisture contents ranging from 0 to about 8%. A modified Dubinin–Radushkevich (DR) adsorption model was found to fit the experimental data under all conditions. Moisture adsorption isotherms of these coals were measured at 21 °C. The Guggenheim–Anderson–de Boer (GAB) model was capable of accurately representing the moisture isotherms over the full range of relative pressures.Moist coal had a significantly lower maximum sorption capacity for both CO2 and CH4 than dry coal. However, the extent to which the capacity was reduced was dependent upon the rank of the coal. Higher rank coals were less affected by the presence of moisture than low rank coals. All coals exhibited a certain moisture content beyond which further moisture did not affect the sorption capacity. This limiting moisture content was dependent on the rank of the coal and the sorbate gas and, for these coals, corresponded approximately to the equilibrium moisture content that would be attained by exposing the coal to about 40–80% relative humidity. The experimental results indicate that the loss of sorption capacity by the coal in the presence of water can be simply explained by volumetric displacement of the CO2 and CH4 by the water. Below the limiting moisture content, the CO2 sorption capacity reduced by about 7.3 kg t− 1 for each 1% increase in moisture. For CH4, sorption capacity was reduced by about 1.8 kg t− 1 for each 1% increase in moisture.The heat of sorption calculated from the DR model decreased slightly on addition of moisture. One explanation is that water is preferentially attracted to high energy adsorption sites (that have high energy by virtue of their electrostatic nature), expelling CO2 and CH4 molecules.  相似文献   

7.
Torsion experiments were performed on the Al2SiO5 polymorphs in the sillimanite stability field to determine basic rheological characteristics and the effect of deformation on polymorphic transformation. The experiments resulted in extensive transformation of andalusite and kyanite to sillimanite. No transformation occurred during the hot-press (no deformation) stage of sample preparation, which was carried out at similar PT conditions and duration as the torsion experiments. Experiments were conducted on fine-grained (< 15 µm) aggregates of natural andalusite, kyanite and sillimanite at 1250 °C, 300 MPa, and a constant shear strain rate of 2 × 10− 4/s to a maximum shear strain of 400%. Electron back-scattered diffraction (EBSD) analysis of the experiments revealed development of lattice-preferred orientations, with alignment of sillimanite and andalusite [001] slightly oblique to the shear plane. The kyanite experiment could not be analyzed using EBSD because of near complete transformation to sillimanite. Very little strain ( 30%) is required to produce widespread transformation in kyanite and andalusite. Polymorphic transformation in andalusite and kyanite experiments occurred primarily along 500 µm wide shear bands oriented slightly oblique and antithetic to the shear plane and dominated by sub-µm (100–150 nm) fibrolitic sillimanite. Shear bands are observed across the entire strain field preserved in the torsion samples. Scanning transmission electron microscope imaging shows evidence for transformation away from shear bands; e.g. fibrolitic rims on relict andalusite or kyanite. Relict grains typically have an asymmetry that is consistent with shear direction. These experimental results show that sillimanite is by far the weakest of the polymorphs, but no distinction can yet be made on the relative strengths of kyanite and andalusite. These observations also suggest that attaining high bulk strain energy in strong materials such as the Al2SiO5 polymorphs is not necessary for triggering transformation. Strain energy is concentrated along grain boundaries, and transformation occurs by a dynamic recrystallization type process. These experiments also illustrate the importance of grain-size sensitive creep at high strains in a system with simultaneous reaction and deformation.  相似文献   

8.
A novel one-step hydrothermal synthesis of 11 Å tobermorite, a cation exchanger, from a unique combination of waste materials is reported. 11 Å tobermorite was prepared from stoicheiometric quantities of cement bypass dust and waste container glass at 100 °C in water. The product also comprised 10 wt.% calcite and trace quartz as residual parent phases from the cement bypass dust. In a batch sorption study at 20 °C the uptakes of Cd2+ and Pb2+ by the waste-derived tobermorite product were found to be 171 mg g− 1 and 467 mg g− 1, respectively, and in both cases the removal process could be described using a simple pseudo-second-order rate model (k2 = 2.30 × 10− 5 g mg− 1 min− 1 and 5.09 × 10− 5 g mg− 1 min− 1, respectively). The sorption characteristics of the 11 Å tobermorite are compared with those of other waste-derived sorbents and potential applications are discussed.  相似文献   

9.
The 1.27 Ga old Ivigtut (Ivittuut) intrusion in South Greenland is world-famous for its hydrothermal cryolite deposit [Na3AlF6] situated within a strongly metasomatised A-type granite stock. This detailed fluid inclusion study characterises the fluid present during the formation of the cryolite deposit and thermodynamic modelling allows to constrain its formation conditions.Microthermometry revealed three different types of inclusions: (1) pure CO2, (2) aqueous-carbonic and (3) saline-aqueous inclusions. Melting temperatures range between − 23 and − 15 °C for type 2 and from − 15 to − 10 °C for type 3 inclusions. Most inclusions homogenise between 110 and 150 °C into the liquid.Stable isotope compositions of CO2 and H2O were measured from crushed inclusions in quartz, cryolite, fluorite and siderite. The δ13C values of about − 5‰ PDB are typical of mantle-derived magmas. The differences between δ18O of CO2 (+ 21 to + 42‰ VSMOW) and δ18O of H2O (− 1 to − 21.7‰ VSMOW) suggest low-temperature isotope exchange. δD (H2O) ranges from − 19 to − 144‰ VSMOW. The isotopic composition of inclusion water closely follows the meteoric water line and is comparable to Canadian Shield brines. Ion chromatography revealed the fluid's predominance in Na, Cl and F. Cl/Br ratios range between 56 and 110 and may imply intensive fluid–rock interaction with the host granite.Isochores deduced from microthermometry in conjunction with estimates for the solidification of the Ivigtut granite suggest a formation pressure of approximately 1–1.5 kbar for the fluid inclusions. Formation temperatures of different types of fluid inclusions vary between 100 and 400 °C. Thermodynamic modelling of phase assemblages and the extraordinary high concentration in F (and Na) may indicate that the cryolite body and its associated fluid inclusions could have formed during the continuous transition from a volatile-rich melt to a solute-rich fluid.  相似文献   

10.
Between 1996 and 2001 an experimental set up in a chaparral community near San Diego, CA, examined various plant and ecosystem responses to CO2 concentrations ranging from 250 to 750 μl l− 1. These experiments indicated a significant increase in soil C sequestration as CO2 rose above the ambient levels. In 2003, two years after the cessation of the CO2 treatments, we returned to this site to examine soil C dynamics with a particular emphasis on stability of specific pools of C. We found that in as little as two years, C content in the surface soils (0–15 cm) of previously CO2 enriched plots had dropped to levels below those of the ambient and pretreatment soils. In contrast, C retained in response to CO2 enrichment was more durable in the deeper soil layers (> 25 cm deep) where both organic and inorganic C were on average 26% and 55% greater, respectively, than C content of ambient plots. Using stable isotope tracers, we found that treatment C represented 25% of total soil C and contributed to 55% of soil CO2 efflux, suggesting that most of treatment C is readily accessible to decomposers. We also found that, C present before CO2 fumigation was decomposed at a faster rate in the plots that were exposed to elevated CO2 than in those exposed to ambient CO2 levels. To our knowledge, this is the first report that allows for a detail accounting of soil C after ceasing CO2 treatments. Our study provides a unique insight to how stable the accrued soil C is as CO2 increases in the atmosphere.  相似文献   

11.
Numerical models on thermal structure, convective flow of solid, generation and transportation of H2O-rich fluid in subduction zones are consolidated to have a comprehensive view of the subduction zone processes: heat balance, circulation of H2O magmatism–metamorphism, growth of arcs and continental margins. A large scale convection model with steady subduction of a cold old slab (130 Myr old) predicts rapid ( 100 Myr) cooling of subduction zones, resulting in cessation of magmatism. The model also predicts that the mantle temperature beneath arcs and continental margins is greatly affected by the effective temperature of the subducting slab, i.e., the age of the subducting slab. If subduction of a young hot slab, including ridge subduction, occurs every 60 to 120 Myr as is suggested for eastern Asia, the average temperature beneath arcs is increased by about 300 °C, which may explain the long-lasting magmatism in eastern Asia. Associated with subduction of young slabs and ridges, thermal structure and circulation of H2O are greatly modified to cause a transition from (1) normal arc magmatism, (2) forearc mantle melting, to (3) slab melting to produce a significant amount (100 km3) of granitic melts, associated with both high-P/T and low-P/T type metamorphism. The last stage of (3) can result in formation of a granitic batholith belt and a paired metamorphic belts. Synthesis of the numerical models and observations suggest that episodic subduction of young slabs and ridges can explain heat source for generating a large amount of granitic magmas of batholiths, synchronous formation of batholith and regional metamorphic belts, and PT conditions of the paired metamorphism. Even the high-P/T metamorphism requires an elevated geothermal structure in the forearc region, associated with ridge subduction. Although the emplacement of the batholiths and the regional metamorphic belts, and the mass balance in subduction zones are not well constrained at present, the episodic event associated with ridge subduction is thought to be essential for net growth of arcs and continental margins, as well as for the long-term heat balance in subduction zones.  相似文献   

12.
To investigate the strength of frictional sliding and stability of mafic lower crust, we conducted experiments on oven-dried gabbro gouge of 1 mm thick sandwiched between country rock pieces (with gouge inclined 35° to the sample axis) at slip rates of 1.22 × 10− 3 mm/s and 1.22 × 10− 4 mm/s and elevated temperatures up to 615 °C. Special attention has been paid to whether transition from velocity weakening to velocity strengthening occurs due to the elevation of temperature.Two series of experiments were conducted with normal stresses of 200 MPa and 300 MPa, respectively. For both normal stresses, the friction strengths are comparable at least up to 510 °C, with no significant weakening effect of increasing temperature. Comparison of our results with Byerlee's rule on a strike slip fault with a specific temperature profile in the Zhangbei region of North China shows that the strength given by experiments are around that given by Byerlee's rule and a little greater in the high temperature range.At 200 MPa normal stress, the steady-state rate dependence a − b shows only positive values, probably still in the “run-in” process where velocity strengthening is a common feature. With a normal stress of 300 MPa, the values of steady-state rate dependence decreases systematically with increasing temperature, and stick-slip occurred at 615 °C. Considering the limited displacement, limited normal stress applied and the effect of normal stress for the temperatures above 420 °C, it is inferred here that velocity weakening may be the typical behaviour at higher normal stress for temperature above 420 °C and at least up to 615 °C, which covers most of the temperature range in the lower crust of geologically stable continental interior. For a dry mafic lower crust in cool continental interiors where frictional sliding prevails over plastic flow, unstable slip nucleation may occur to generate earthquakes.  相似文献   

13.
The quaternary travertine deposits of Europe and Asia Minor   总被引:7,自引:0,他引:7  
A summary is provided of the published information relating to all aspects of Quaternary travertine formation in Europe west of the Ural Mountains. The deposits have been divided into two broad groups, the meteogene travertines, which result primarily from the degassing of soil-borne aqueous CO2, and thermogene deposits resulting from the degassing of thermally generated CO2. Meteogene deposits are rare above latitude 58°N, and in regions where the mean annual air temperature is below 5°C. A significant positive correlation exists between mean air temperature and travertine deposit thickness. The combined effects of temperature and rainfall are used to provide a zoned map showing the travertine-forming potential of limestones within the region. Information from 14C dating indicates that deposition reached a maximum in the period 5–10 ka BP) and is currently limited by land and water management practices in the populated areas. Thermogene deposits occur in regions of high CO2 discharge resulting from tectonic activity, such as Italy and Turkey where there is much vulcanism. These travertines are frequently more massive and less readily weathered than meteogene deposits. Fully referenced information is provided for 320 important, mostly well studied sites (227 meteogene, 93 thermogene), of which 156 are currently active.  相似文献   

14.
Aggregates composed of olivine and magnesiowüstite have been deformed to large strains at high pressure and temperature to investigate stress and strain partitioning, phase segregation and possible localization of deformation in a polyphase material. Samples with 20 vol.% of natural olivine and 80 vol.% of (Mg0.7Fe0.3)O were synthesized and deformed in a gas-medium torsion apparatus at temperatures of 1127 °C and 1250 °C, a confining pressure of 300 MPa and constant angular displacement rates equivalent to constant shear strain rates of 1–3.3 × 10− 4 s− 1. The samples deformed homogeneously to total shear strains of up to γ  15. During constant strain rate measurements the flow stress remained approximately stable at 1250 °C while it progressively decreased after the initial yield stress at the lower temperature. Mechanical data, microstructures and textures indicate that both phases were deforming in the dislocation creep regime. The weaker component, magnesiowüstite, controlled the rheological behavior of the bulk material and accommodated most of the strain. Deformation and dynamic recrystallization lead to grain refinement and to textures that were not previously observed in pure magnesiowüstite and may have developed due to the presence of the second phase. At 1127 °C, olivine grains behaved as semi-rigid inclusions rotating in a viscous matrix. At 1250 °C, some olivine grains remained largely undeformed while deformation and recrystallization of other grains oriented for a-slip on (010) resulted in a weak foliation and a texture typical for pure dry olivine aggregates. Both a-slip and c-slip on (010) were activated in olivine even though the nominal stresses were up to 2 orders of magnitude lower than those needed to activate these slip systems in pure olivine at the same conditions.  相似文献   

15.
Ultrahigh-temperature (UHT) metamorphism represents an extreme crustal thermal event with peak conditions exceeding 900 °C at 7–13 kbar. In the modern-style plate tectonic system, records of the UHT metamorphism are relatively rare due to the secular cooling of Earth. In the Palu region of Western Sulawesi, we newly discovered a series of HT-UHT metamorphic rocks including amphibolite, granulite, eclogites and gneiss. Of them, two granulite samples (18CS14-2, 18CS14-4) with high garnet content (>50 mol%) are chosen for petrographic observation, phase equilibrium modelling, and zircon U-Pb dating. These rocks are characterized by a relic M1 assemblage of Grt + Ky + Bt + Rt and a M2 assemblage of Grt + Sil + Pl + Spl + Crd ± Qtz + Ilm + melt. Phase equilibrium modelling based on effective bulk compositions yields UHT conditions of 7.2–8.5 kbar/940–1080 °C (18CS14-2) and 7.0–7.3 kbar/1000–1040 °C (18CS14-4). U-Pb analysis reveals two generations of metamorphic zircon with evolving REE content that is intimately related to garnet growth and decomposition. Zircon age of 36–5.3 Ma is ascribed to syn- to post-M1 metamorphism, whereas the young zircon age of 5.1–3.8 Ma is linked to syn- and post-M2 stage. The UHT metamorphism was probably the consequence of the upwelling of asthenospheric mantle triggered by post-collisional delamination of lithosphere in the Miocene-Pliocene (ca. 5 Ma). It could represent the youngest known UHT metamorphism on Earth.  相似文献   

16.
Cleats and fractures in southwestern Indiana coal seams are often filled with authigenic kaolinite and/or calcite. Carbon- and oxygen-stable isotope ratios of kaolinite, calcite, and coalbed CO2 were evaluated in combination with measured values and published estimates of δ18O of coalbed paleowaters that had been present at the time of mineralization. δ18Omineral and δ18Owater values jointly constrain the paleotemperature of mineralization. The isotopic evidence and the thermal and tectonic history of this part of the Illinois Basin led to the conclusion that maximum burial and heat-sterilization of coal seams approximately 272 Ma ago was followed by advective heat redistribution and concurrent precipitation of kaolinite in cleats at a burial depth of < 1600 m at  78 ± 5 °C. Post-Paleozoic uplift, the development of a second generation of cleats, and subsequent precipitation of calcite occurred at shallower burial depth between  500 to  1300 m at a lower temperature of 43 ± 6 °C. The available paleowater in coalbeds was likely ocean water and/or tropical meteoric water with a δ18Owater  − 1.25‰ versus VSMOW. Inoculation of coalbeds with methanogenic CO2-reducing microbes occurred at an even later time, because modern microbially influenced 13C-enriched coalbed CO2 (i.e., the isotopically fractionated residue of microbial CO2 reduction) is out of isotopic equilibrium with 13C-depleted calcite in cleats.  相似文献   

17.
Characterization of fluid inclusions in graphite-bearing charnockites from the southwestern part of the Madurai Granulite Block in southern India reveals a probable relation with the formation and break down of graphite during the high-grade metamorphism. The first-generation monophase pure CO2 inclusions, the composition of which is confirmed by laser Raman spectroscopy, recorded moderate density (0.77–0.87 g/cc) corresponding to low tapping pressure (around 2 kb) than that of the peak granulite-facies metamorphism. The precipitation of graphite, as inferred from graphite inclusions and δ13C values of the graphite from the outcrops, is interpreted as the cause of this lowering of fluid density. An intermediate generation of pseudosecondary inclusions resulted from the re-equilibration or modification of the first-generation fluids and the CO2 formed is interpreted to be the oxidation product from graphite. The youngest generation of fluids which caused widespread retrogression of the granulites is a low-temperature (350 °C) high-saline (32.4–52.0 wt% NaCl equivalent) brine. Carbon isotope data on the graphite from the charnockites show δ13C values ranging from −11.3 to −19.9‰, suggesting a possibility of mixing of carbon sources, relating to earlier biogenic and later CO2 fluid influx. Combining the information gathered from petrologic, fluid inclusion and carbon stable isotope data, we model the fluid evolution in the massive charnockites of the southwestern Madurai Granulite Block.  相似文献   

18.
Large volumes of CO2 are emitted during volcanic activity at convergent plate boundaries, not only from volcanic centres. Their C isotopic signature indicates that this CO2 is mainly derived from the decarbonation of subducted limestones or carbonated metabasalts, not as often admitted from magma degassing. On the example of Milos (Aegean Sea) it is argued that these fluids originate from intermediate depth in the mantle and carry sufficient heat to account for the generation of subduction-related magmas, as well as for the geothermal manifestations at the surface. The heat that is required for the decarbonation reactions is drawn by conduction from a wide zone surrounding the subducting slab and then rapidly transported upward by convection of the mixed CO2–H2O fluids that originate from the sediments in the slab. The transport takes place in a focused way through ‘chimneys’ in the upper mantle, where magmas are generated by the introduced heat and water. In the crust, the hot fluids cause thermal-dome-type metamorphism. In volcanic areas, magmas are commonly held responsible for the major part of heat transfer from the mantle to the surface. Here it is argued that most of the heat transfer is by hot gases. To cite this article: R.D. Schuiling, C. R. Geoscience 336 (2004).  相似文献   

19.
This contribution addresses contact metamorphism and fluid flow in calcareous rocks of the Neoproterozoic Shaler Supergroup on Victoria Island, Arctic Canada. These processes occurred due to intrusion of gabbroic sills and dykes at c. 720 Ma during the Franklin magmatic event, which was associated with the break‐up of Rodinia. The intrusive sheets (sills and dykes) are a few metres to ~50 m thick. Metasedimentary rocks were examined in three locations with very good exposures of vertical dykes feeding horizontal sills, the Northern Feeder Dyke (NFD) complex, the Southern Feeder Dyke (SFD) complex and the Uhuk Massif. In the NFD and SFD complexes, protoliths were limestones and dolostones with minor silicates, and at the Uhuk Massif, the protoliths were silty dolostones. At the time of magma emplacement, these locations were at depths of 1–4 km. The widths of contact aureoles are only several decametres wide, commensurate with thicknesses of the dykes and sills. Splays of tremolite mark incipient metamorphism. Highest grade rocks in the NFD and SFD complexes contain the prograde assemblage diopside + phlogopite whereas at Uhuk they contain the assemblage vesuvianite + garnet + diopside. The assemblages are successfully modelled with TX(CO2)fluid pseudosections that suggest achievement of CO2‐rich fluid compositions due to early decarbonation reactions, followed by influx of aqueous fluids after peak metamorphism. Rapid heating of host rocks and short near‐peak temperature intervals are demonstrated by the prevalent morphology of diopside as radial splays of acicular crystals that appear to pseudomorph tremolite and by incomplete recrystallization of calcite in marbles. Calcsilicates in the roof of one sill at Uhuk experienced metasomatic influx of Fe that is evidenced by nearly pure andradite rims on grossular garnet. Vesuvianite, which overgrew the grossular portions of garnet, also contains ferric iron. Vesuvianite was partially consumed during retrograde growth of serpentine and andradite. The occurrence of serpentine in high‐grade portions of aureoles is consistent with eventual levelling‐off of temperatures between 350 and 400 °C, an inference that is supported by modelled conductive heat transfer from the cooling magma sheets. Focused fluid flow near intrusion‐wall rock contacts is demonstrated by narrow zones of anomalously low δ13C and δ18O values of carbonate minerals. Although the up to 5‰ decrease of both δ13C and δ18O values from sedimentary values is much smaller than is typical for calcsilicate aureoles around large plutons, it is greater than what could have been achieved by decarbonation alone. The decrease in δ13C is attributed to fluid‐mediated exchange with organic low‐13C carbon that is dispersed through the unmetamorphosed rocks and the decrease in δ18O is attributed to fluid‐mediated isotopic exchange with the gabbroic intrusive sheets. This study shows that when gabbroic sills and dykes intrude a sedimentary basin, (i) contact aureoles are likely to be narrow, only on the scale of several decametres; (ii) short high‐temperature regimes prevent achievement of equilibrium metamorphic textures; and (iii) TX(CO2)fluid paths in calcareous contact aureoles are likely to be complex, reflecting a transition from prograde decarbonation reactions to influx of aqueous fluids during cooling.  相似文献   

20.
Precambrian granulite-facies rocks occur in significant proportion in the East Antarctic Precambrian shield. Ages of metamorphic and deformational events range from 2500 m.y. to about 500 m.y., but some rocks are much older, notably the approximately 3500 m.y. ages for crust formation in Enderby Land. Mineral assemblages over most of the area are typical of the hornblende granulite facies, and sparse temperature pressure estimates indicate metamorphism at 700–800°C and 5–8 kbar at reduced water pressures. A terrane of exceptional interest is the Napier complex of Enderby Land, where sapphirine-quartz ± garnet, sillimanite-orthopyroxene, osumilite, and inverted pigeonite are associated with pyroxene-granulite-facies rocks. Metamorphic conditions are estimated to have reached 900°–980°C, 7–9 kbar, and pH2O < 0.5 kbar. Metamorphism in the Napier complex, and possibly in other parts of East Antarctica, may be associated with large loss of fluid rather than massive influx of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号