首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Proposed is a method of forecasting the monthly mean air temperature anomalies for three months of the moving season based on the statistical analysis of the array of analogous processes of temperature variations specially selected for the initial season using the operational forecast for the first ten-day period of prognostic period being available by the beginning of the forecast. The array of analogous processes is used for revealing the most frequently observed values of temperature anomalies in the future. The overall station-by-station analysis gives a field of anomaly forecast for the CIS territory for three forthcoming months and for a season. Presented is the assessment of forecasts issued from January 2007 to December 2010 using the real ten-day period forecasts. The estimates of forecasts based on the model using the normals for 1979?C2007 are also considered.  相似文献   

2.
The South Pacific Ocean is a key driver of climate variability within the Southern Hemisphere at different time scales. Previous studies have characterized the main mode of interannual sea surface temperature (SST) variability in that region as a dipolar pattern of SST anomalies that cover subtropical and extratropical latitudes (the South Pacific Ocean Dipole, or SPOD), which is related to precipitation and temperature anomalies over several regions throughout the Southern Hemisphere. Using that relationship and the reported low predictive skill of precipitation anomalies over the Southern Hemisphere, this work explores the predictability and prediction skill of the SPOD in near-term climate hindcasts using a set of state-of-the-art forecast systems. Results show that predictability greatly benefits from initializing the hindcasts beyond the prescribed radiative forcing, and is modulated by known modes of climate variability, namely El Niño-Southern Oscillation and the Interdecadal Pacific Oscillation. Furthermore, the models are capable of simulating the spatial pattern of the observed SPOD even without initialization, which suggests that the key dynamical processes are properly represented. However, the hindcast of the actual phase of the mode is only achieved when the forecast systems are initialized, pointing at SPOD variability to not be radiatively forced but probably internally generated. The comparison with the performance of an empirical prediction based on persistence suggests that initialization may provide skillful information for SST anomalies, outperforming damping processes, up to 2–3 years into the future.  相似文献   

3.
利用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG)新一代耦合气候模式(FGOALS)进行了气候异常季节后报试验,通过对1982—2005年7个个例的分析,探讨了厄尔尼诺衰减年夏季东亚大气环流和降水异常发生的物理机制。分析结果表明:FGOALS可以模拟出厄尔尼诺衰减年夏季相关气候场的异常态特征,表现为在西北太平洋为负海温异常,在热带印度洋为正海温异常,从而导致西北太平洋地区大气中低层异常反气旋环流的维持,其反气旋的西南部及西部的偏南及西南气流造成中国长江中下游地区降水的异常增多。在提前3—9个月的预测模拟中,模式可以模拟出气候场的异常演变,随着预测时间的延长,产生局地耦合的西北太平洋海表温度异常信号变弱,使得模拟出的西北太平洋反气旋异常偏弱、中心东移,从而导致影响东亚降水的气候场的异常变弱,降水异常区偏东。模拟结果也揭示出,西北太平洋海表温度负异常是厄尔尼诺异常信号的转换模态,并且,由于局地海-气相互作用,热带海温异常信号可以持续到第2年夏季,从而引起东亚大气环流和降水异常。对于东亚降水的季节预测出现误差可能是模式对ENSO的模拟偏差造成的,随着预测时间延长,模式模拟的厄尔尼诺信号偏弱,这将使得海表温度异常偏弱,同时相关物理场的异常响应也减弱。  相似文献   

4.
梁萍  杨子凡  谢潇  钱琦雯  常越 《气象科技》2020,48(5):685-694
提高汛期降水过程的延伸期预报能力是目前天气预报和气候预测发展的重要方向。本文以上海梅汛期降水为例,利用非传统滤波方法提取多变量季节内分量,分析了梅汛期季节内候降水异常及其相联系的延伸期关键低频信号,进一步综合多变量低频信号建立了梅汛期候降水异常延伸期预报方法,并开展了多年的回报和试报检验。结果表明:①梅汛期候降水异常季节内分量具有显著的40~60d低频振荡周期,与降水异常实况具有显著的正相关和较高的符号一致率;②梅汛期季节内候降水异常与超前10~35d的热带及中高纬低频信号有关,主要包括:热带MJO(Madden Julian Oscillation)自阿拉伯海的向东传播、西太平洋副热带高压季节内活动的西北向传播、PNA(Pacific-North American)遥相关型的季节内位相转换以及东北亚冷空气的持续性异常影响;③综合上述多变量低频信号建立了延伸期候降水异常预报模型,对提前10~35d的延伸期候降水异常的季节内分量具有预报技巧,也能较好地预报实际的候降水异常趋势。  相似文献   

5.
The extended-range forecast skill of the ECMWF operational forecast model is evaluated during tropical intraseasonal oscillation (ISO) events in the Indo-West Pacific warm pool. The experiment consists of ensemble extended serial forecasts including winter and summer ISO cases. The forecasts are compared with the ERA-40 analyses. The analysis focuses on understanding the origin of forecast errors by studying the vertical structure of relevant dynamical and moist convective features associated with the ISO. The useful forecast time scale for circulation anomalies is in average 13 days during winter compared to 7–8 days during summer. The forecast skill is not stationary and presents evidence of a flow-dependent nature, with states of the coupled system corresponding to long-lived convective envelopes associated with the ISO for which the skill is always low regardless of the starting date of the forecast. The model is not able to forecast skillfully the generation of specific humidity anomalies and results indicate that the convective processes in the model are associated with the erosion of the ISO forecast skill in the model. Circulation-associated anomalies are forecast better than moist convective associated anomalies. The model tends to generate a more stable atmosphere, limiting the model’s capability to reproduce deep convective events, resulting in smaller humidity and circulation anomalies in the forecasts compared to those in ERA-40.  相似文献   

6.
最优气候相似法及其在降水预报中的应用   总被引:2,自引:0,他引:2  
刘兵 《气象》2004,30(5):7-11
介绍了一种短期气候预测方法———最优气候相似法 ,并应用于张家界地区 1 999~ 2 0 0 2年 5~ 7月总降水预报中 ,结果显示最优气候相似法能够有效地提高短期气候的预测能力 ,特别对气候异常具有良好的反应能力 ,适合于短期气候业务预报。  相似文献   

7.
Summary Estimates of the predictability of New Zealand monthly and seasonal temperature and rainfall anomalies are calculated using a cross-validated linear regression procedure. Predictors are indices of the large scale circulation, sea-surface temperatures, the Southern Oscillation Index and persistence. Statistical significance is estimated through a series of Monte Carlo trials. No significant forecast relationships are found for rainfall anomalies at either the monthly or seasonal time scale. Temperature forecasts are however considered to exhibit significant skill, with variance reductions of the order of 10–20% in independent trials. Temperature anomalies are most skilfully predicted over the North Island, and skill is greatest in Spring and Summer in most areas. At the monthly time scale, predictors local to the New Zealand region account for most of the forecast skill, while at the seasonal time scale, skill depends strongly upon “remote” predictors defined over regions of the southern hemisphere distant from New Zealand. Indices of meridional flow over the Tasman Sea/New Zealand region are found to be useful predictors, especially for monthly forecasts, perhaps as a proxy for atmospherically-forced sea surface temperature anomalies. Sea surface temperature anomalies to the west of New Zealand and in the tropical Indian Ocean are also useful, especially for seasonal predictions. Forecast skill is more reliably estimated at the monthly time scale than at the seasonal time scale, as a result of the larger sample size of monthly mean data. While long-term mean levels of skill may be estimated reliably over the whole data set, statistically significant decadal-scale variations are found in the predictability of temperature anomalies. Therefore, even if long-term forecast skill levels are reliably estimated, it may be impossible to predict the short-term skill of operational seasonal climate forecasts. Implications for operational climate predictions in mid-latitudes are discussed. Received July 18, 1997 Revised April 2, 1998  相似文献   

8.
A. M. Grimm 《Climate Dynamics》2004,22(2-3):123-138
The rainy season in most of Brazil is associated with the summer monsoon regime in South America. The quality of this season is important because it rains little during the rest of the year over most of the country. In this study, the influence of La Niña events on the summer monsoon circulation, rainfall and temperature is analyzed with seasonal and monthly resolution, using data from a dense network of stations, giving a comprehensive view of the impact of these events. The expected precipitation percentiles during the monsoon season of La Niña events are calculated, as well as anomalies of surface temperature and thermodynamic parameters. This information is analyzed jointly with anomaly composites of several circulation parameters. The analysis shows that some anomalies, which are consistent and important during part of the season, are smoothed out in a seasonal analysis. There are abrupt changes of anomalies within the summer monsoon season, suggesting the prevalence of regional processes over remote influences during part of the season. In spring there are positive precipitation anomalies in north and central-east Brazil and negative ones in south Brazil. These precipitation anomalies are favored by the perturbation in the Walker and Hadley circulation over the eastern Pacific and South America, and by perturbations in the rotational circulation over southern South America. Northerly moisture inflow from the Atlantic into northern South America is emphasized and diverted towards the mouth of the Amazon by the low-level cyclonic anomaly north of the equator. In December and January, probably triggered by anomalous surface cooling during the spring, there is an anomalous low-level divergence and an anticyclonic anomaly over southeast Brazil. This anomalous circulation directs moisture flux towards south Brazil, causing moisture convergence in part of this region and part of central-west Brazil. The thermodynamic structure in central-east Brazil does not favor precipitation over this region, and the wet anomalies in north Brazil are displaced northward. The dry anomalies in south Brazil almost disappear and even turn positive. In February, after the strongly below normal precipitation of January, the surface temperature anomalies turn positive over southeast Brazil. The low-level anticyclonic anomaly is much weaker than in January. There are positive rainfall anomalies in north Brazil and in the South Atlantic Convergence Zone, and negative ones return to south Brazil.  相似文献   

9.
T639模式预报系统误差统计和订正方法研究   总被引:4,自引:2,他引:2  
邱学兴  王东勇  陈宝峰 《气象》2012,38(5):526-532
通过统计2009—2010年T639模式500 hPa高度、850 hPa温度和2 m温度的1~10天预报场的平均误差发现,T639模式的这些气象要素预报都存在明显系统误差,且系统误差随着预报时效的增加而增加。利用"递减平均法"尝试订正其预报系统误差,订正结果表明:该订正方法总体表现为正的订正技巧,但订正能力随着预报时效的增加而下降;东亚地区的系统误差小于整个北半球,"递减平均法"的订正能力总体小于整个北半球。对比夏、冬半年订正效果发现:对于500 hPa位势高度和850 hPa温度的预报场,冬半年和夏半年订正技巧相当;对于地面2 m温度预报场,冬半年订正能力明显高于夏半年。不同权重系数试验表明:对于500 hPa高度场,权重系数约取0.06时,订正效果较好,而对于850 hPa和2 m温度场,权重系数约取0.1时,订正效果最佳。  相似文献   

10.
Summary Separate predictive models are created for the Caribbean early wet season (May–June–July) and late wet season (August–September–October). Simple correlations are used to select predictors for a Caribbean rainfall index and predictive equations are formulated using multiple linear regression. The process is repeated after long term trends are removed from the Caribbean rainfall index and the models validated using a number of statistical methods. Four variables are confirmed as predictors for the early season: Caribbean sea surface temperature anomalies, tropical North Atlantic sea level pressure anomalies, vertical shear anomalies in the equatorial Atlantic, and the size of the Atlantic portion of the Western Hemisphere Warm Pool. Only the first two are retained in the late season model. On the interannual time-scale, equatorial Pacific sea surface temperature anomalies become significant in both seasons. The NINO3 index is retained among the predictors for the early season, and zonal gradients of sea surface temperature between the equatorial Pacific and tropical Atlantic are retained for the late season. The results also indicate spatial variation in the importance of the seasonal predictors.  相似文献   

11.
This study examines the forecast performance of tropical intraseasonal oscillation (ISO) in recent dynamical extended range forecast (DERF) experiments conducted with the National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) model. The present study extends earlier work by comparing prediction skill of the northern winter ISO (Madden-Julian Oscillation) between the current and earlier experiments. Prediction skill for the northern summer ISO is also investigated. Since the boreal summer ISO exhibits northward propagation as well as eastward propagation along the equator, forecast skill for both components is computed. For the 5-year period from 1 January, 1998 through 31 December, 2002, 30-day forecasts were made once a day. Compared to the previous DERF experiment, the current model has shown some improvements in forecasting the ISO during winter season so that the skillful forecasts (anomaly correlation>0.6) for upper-level zonal wind anomaly extend from the previous shorter-than 5 days out to 7 days lead-time. A similar level of skill is seen for both northward and eastward propagation components during the summer season as in the winter case. Results also show that forecasts from extreme initial states are more skillful than those from null phases for both seasons, extending the skillful range by 3–6 days. For strong ISO convection phases, the GFS model performs better during the summer season than during the winter season. In summer forecasts, large-scale circulation and convection anomalies exhibit northward propagation during the peak phase. In contrast, the GFS model still has difficulties in sustaining ISO variability during the northern winter as in the previous DERF run. That is, the forecast does not maintain the observed eastward propagating signals associated with large-scale circulation; rather the forecast anomalies appear to be stationary at their initial location and decay with time. The NCEP Coupled Forecast System produces daily operational forecasts and its predication skill of the MJO will be reported in the future.  相似文献   

12.
神威中期集合数值预报产品的业务应用   总被引:2,自引:0,他引:2       下载免费PDF全文
目前神威中期集合数值预报产品包括 500 hPa 集合平均预报图、850 hPa 温度距平概率分布图、不同降水级别的降水概率分布图。 其中 500 hPa 集合平均预报场对欧亚大型环流形势演变趋势、春季风沙天气、降水天气过程以及夏季副热带高压变化趋势等的预报中得到应用, 850 hPa 温度距平概率分布图对未来气温变化趋势以及冷空气过程的预报有很好的使用价值, 而降水概率分布图可供预报员在做降水预报时参考。  相似文献   

13.
在不同季节背景下,对比分析多元变量相关的背景误差协方差特征,了解其在天气过程中的作用,可以改进同化系统性能,提高降水数值预报水平。对比分析汛期和非汛期江西及其临近区域多元变量相关的背景误差协方差特征,分别选取2019年汛期和非汛期的2次降水过程,设计2组循环同化试验,探讨多元变量相关的背景误差协方差对江西降水预报效果的影响。结果表明,相较于非汛期,汛期分析变量对风场、温度场和水汽场的贡献值整体上要更大,且汛期各个控制变量的背景场误差更为显著。多元变量试验的降水预报评估效果整体上更好,其汛期预报效果改善更显著。汛期与非汛期的多元变量试验降水预报结果更接近实况,且相对非汛期降水而言,汛期多元变量试验模拟效果更好,模拟的降水分布及强度与实况更为接近。  相似文献   

14.
华北夏季降水异常的客观分区及时间变化特征   总被引:1,自引:0,他引:1       下载免费PDF全文
应用1981—2007年华北地区703个站逐日加密站降水资料,运用旋转经验正交函数分解方法,对华北地区夏季降水进行了客观分区研究,并在此基础上应用Mann-Kendall和统计t检验方法分析了华北夏季降水不同区域的时间变化特征。结果表明:华北地区夏季降水区域性较强,华北地区夏季降水可分为7个典型天气区,7个典型天气区集中降水的起止时间不同,各分区的降水季节有别于自然季节,其中华北中部汛期开始迟,南、北部汛期开始早;华北东南部汛期结束最早,京津、河北东北部结束最晚。所分区域和所确定的各区域降水集中时间可应用到建立客观降水预报区域模型中,改善实际业务中客观降水的预报效果。  相似文献   

15.
Forecasting summer monsoon rainfall with precision becomes crucial for the farmers to plan for harvesting in a country like India where the national economy is mostly based on regional agriculture. The forecast of monsoon rainfall based on artificial neural network is a well-researched problem. In the present study, the meta-heuristic ant colony optimization (ACO) technique is implemented to forecast the amount of summer monsoon rainfall for the next day over Kolkata (22.6°N, 88.4°E), India. The ACO technique belongs to swarm intelligence and simulates the decision-making processes of ant colony similar to other adaptive learning techniques. ACO technique takes inspiration from the foraging behaviour of some ant species. The ants deposit pheromone on the ground in order to mark a favourable path that should be followed by other members of the colony. A range of rainfall amount replicating the pheromone concentration is evaluated during the summer monsoon season. The maximum amount of rainfall during summer monsoon season (June—September) is observed to be within the range of 7.5–35 mm during the period from 1998 to 2007, which is in the range 4 category set by the India Meteorological Department (IMD). The result reveals that the accuracy in forecasting the amount of rainfall for the next day during the summer monsoon season using ACO technique is 95 % where as the forecast accuracy is 83 % with Markov chain model (MCM). The forecast through ACO and MCM are compared with other existing models and validated with IMD observations from 2008 to 2012.  相似文献   

16.
GRAPES_Meso V3.0模式预报效果检验   总被引:4,自引:1,他引:3       下载免费PDF全文
王雨  李莉 《应用气象学报》2010,21(5):524-534
应用国家气象中心模式检验方法对GRAPES_Meso V3.0模式2008年2月-2009年3月的试验预报产品,如降水、中低层高度、温度和风场预报进行统计检验。检验结果表明:V3.0模式降水预报性能得到明显改善,年及四季平均的各级降水TS评分显著提高,除了秋、冬季的48h中雨和暴雨预报外,TS评分明显高于V2.5模式,但V3.0模式的预报偏差偏大,中雨以上偏大更明显。从预报的季节平均降水率分布来看,对秋、冬季我国东部24h降水预报偏小改进明显,对春、夏季强降水中心位置及强度预报也好于V2.5模式,但是48h降水预报明显偏大,逐日降水率演变图也印证了这一点。此外,V3.0模式对500hPa高度和风场及48h预报的850hPa风场和温度场改进显著,对于850hPa高度和温度的24h预报,除夏季外,其他季节预报效果优于业务模式。  相似文献   

17.
Vasubandhu Misra  H. Li 《Climate Dynamics》2014,42(9-10):2491-2507
An extensive set of boreal summer seasonal hindcasts from a two tier system is compared with corresponding seasonal hindcasts from two other coupled ocean–atmosphere models for their seasonal prediction skill (for precipitation and surface temperature) of the Asian summer monsoon. The unique aspect of the two-tier system is that it is at relatively high resolution and the SST forcing is uniquely bias corrected from the multi-model averaged forecasted SST from the two coupled ocean–atmosphere models. Our analysis reveals: (a) The two-tier forecast system has seasonal prediction skill for precipitation that is comparable (over the Southeast Asian monsoon) or even higher (over the South Asian monsoon) than the coupled ocean–atmosphere. For seasonal anomalies of the surface temperature the results are more comparable across models, with all of them showing higher skill than that for precipitation. (b) Despite the improvement from the uncoupled AGCM all models in this study display a deterministic skill for seasonal precipitation anomalies over the Asian summer monsoon region to be weak. But there is useful probabilistic skill for tercile anomalies of precipitation and surface temperature that could be harvested from both the coupled and the uncoupled climate models. (c) Seasonal predictability of the South Asian summer monsoon (rainfall and temperature) does seem to stem from the remote ENSO forcing especially over the Indian monsoon region and the relatively weaker seasonal predictability in the Southeast Asian summer monsoon could be related to the comparatively weaker teleconnection with ENSO. The uncoupled AGCM with the bias corrected SST is able to leverage this teleconnection for improved seasonal prediction skill of the South Asian monsoon relative to the coupled models which display large systematic errors of the tropical SST’s.  相似文献   

18.
对1992年7月10日、19日和1997年7月1日3个个例,进行了实时海温和气候海温的对比数值试验,研究实时海温对月尺度数值预报的影响。个例试验结果表明,实时海温对10天以下的数值预报影响较小,但对月时间尺度的数值预报的影响则十分明显,实时海温对大气的强迫作用同模式大气的初值和预报模式包含的物理过程以及海温异常的强度有关。  相似文献   

19.
Abstract

The impact of cloud representation on the simulation of mid-latitude recurrent large-scale flows and forecast skill of mid-latitude atmospheric teleconnections is evaluated using the Community Climate System Model, version 4 (CCSM4), and the super-parameterized CCSM4 (SP-CCSM4). Patterns of low-level atmospheric circulation anomalies and convection associated with the Madden–Julian oscillation (MJO) are affected by the method used for the representation of cloud processes. The configuration of the model using super-parameterization for the representation of cloud processes produces MJO-related patterns that agree better with observations than the configuration of the model using a conventional cloud parameterization scheme. The recurrent circulation regimes of the mid-latitudes are also sensitive to the representation of cloud processes. In the North Atlantic sector, the inability of CCSM4 to simulate the Scandinavian blocking regime is corrected in the super-parameterized version of the model. In the North Pacific sector, the strength of the clustering (measured by a variance ratio) is too large in CCSM4 compared with observations and SP-CCSM4. The SP-CCSM4 model has better forecast skill for the MJO amplitude and phase than the model with conventional representation of moist convective processes. In turn, the improved forecast skill of the super-parameterized model results in better forecast skill for mid-latitude teleconnections in 500 hPa geopotential height anomalies forced by the MJO convection.  相似文献   

20.
Any initial value forecast of climate will be subject to errors originating from poorly known initial conditions, model imperfections, and by "chaos" in the sense that, even if the initial conditions were perfectly known, infinitesimal errors can amplify and spoil the forecast at some lead time. Here the latter source of error is examined using a "perfect model" approach whereby small perturbations are made to a coupled atmosphere-ocean general circulation model and the spread of nearby model trajectories, on time and space scales appropriate to seasonal-decadal climate variability, is measured to assess the lead time at which the error saturates. The study therefore represents an estimate of the upper limit of the predictability of climate (appropriate to the initial value problem) given a perfect model and near perfect knowledge of the initial conditions. It is found that, on average, surface air temperature anomalies are potentially predictable on seasonal to interannual time scales in the tropical regions and are potentially predictable on decadal time scales over the ocean in the North Atlantic. For mid-latitude surface air temperature anomalies over land, model trajectories rapidly diverge and there is little sign of any potential predictability on time scales greater than a season or so. For mean sea level pressure anomalies, there is potential predictability on seasonal time scales in the tropics, and for some global scale annual-decadal anomalies, although not those associated with the North Atlantic Oscillation. For precipitation, the only potential for predictability is for seasonal time anomalies associated with the El-Niño Southern Oscillation. For the majority of the highly populated regions of the world, climate predictability on interannual to decadal time scales based in the initial value approach is likely to be severely limited by chaotic error growth. It is found however that there can be cases in which the potential predictability can be higher than average indicating that there is perhaps some utility in making initial value forecasts of climate in those regions which show low predictability on average.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号