首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predicted climate change and the associated sea level rise poses an increased threat of flooding due to wave overtopping events at sea and river dikes. To safeguard the land from flooding it is important to keep the soil erosion resistance at the dikes high. As plant roots can be very effective in reducing soil erosion rates by concentrated flow, the main goal of this study is to explore the variability in root system characteristics of five dike vegetation communities along the Scheldt River (Belgium) and to assess their effectiveness in controlling soil erosion rates during concentrated flow. This study is the first one to investigate systematically the erosion‐reducing potential of the root properties of representative dike vegetation communities in a temperate humid climate. Results show that the presence of Urtica dioica resulted in large differences in root length density (RLD) among dike vegetation communities. Observed RLD values in the topsoil ranged from 129 to 235 km m‐3 for dike vegetation communities without U. dioica, while smaller values ranging from 22 to 58 km m?3 were found for vegetation communities with U. dioica. The erosion‐reducing effect of the dike vegetation communities was estimated based on a global Hill curve model, linking the RLD to the soil detachment ratio (SDR; i.e. the ratio of the soil detachment rate for root‐permeated topsoils to the soil detachment rate for root‐free topsoils). Concentrated flow erosion rates are likely to be reduced to 13–16% of the erosion rates for root‐free topsoils if U. dioica is absent compared to 22–30% for vegetation communities with U. dioica. Hence, to maintain a high resistance of the soil against concentrated flow erosion it is important to avoid the overgrowth of grassland by U. dioica through an effective vegetation management. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Spur dikes are river training structures that have been extensively used worldwide for towards enhancing flood control and the stability of embankments and riverbanks.However,scour around spur dikes can be a major problem affecting their stability and hydraulic performance.The precise computation of temporal scour depth at spur dikes is very important for the design of economical and safe spur dikes.This study focuses on experimentally assessing the temporal variation of scour depth around a vertical wall spur dike and identifying the parameters,which mostly influence spur dike performance for a channel bed surface comprised of sand-gravel mixtures.In the current study,the authors did physical experiments in a flume based study to obtain new data,aimed at deriving a new predictive model for spur dike scour and comparing its performance to others found in the literature.It was found that the dimensionless temporal scour depth variation increases with an increase in(i)the threshold velocity ratio,(ii)the densimetric Froude number of the bed surface sediment mixture,(iii)the flow shallowness(defined as the ratio of the approach flow depth,y,to the spur dike’s transverse length,l),and(iv)the flow depth-particle size ratio.It is also concluded that the temporal scour depth variation in the sediment mixture is influenced by the non-uniformity of sediment and decreases with an increase in the non-uniformity of the sediment mixture.A new mathematical model is derived for the estimation of temporal scour depths in sand-gravel sediment mixtures.The proposed equation has been calibrated and validated with the experimental data,demonstrating a good predictive capacity for the estimation of temporal scour depth evolution.  相似文献   

3.
Backward erosion piping involves the gradual removal of granular material under the action of water flow from the foundation of a dam or levee, whereby shallow pipes are formed that grow in the direction opposite to the flow. This pipe-forming process can ultimately lead to failure of a water-retaining structure and is considered one of the most important failure mechanisms for dikes and levees in the Netherlands and the United States. Modeling of this mechanism requires the assessment of hydraulic conditions in the pipe, which are controlled by the particle equilibrium at the pipe wall. Since the pipe's dimensions are controlled by the inflow to the pipe from the porous medium, the flow through the pipe is thought to be laminar for fine- to medium-grained sands. The literature provides data for incipient motion in laminar flow, which is reviewed here and complemented with data from backward erosion experiments. The experiments illustrate the applicability of the laminar incipient motion data to determine the erosion pipe dimensions and corresponding pipe hydraulics for fine- to medium-grained sands, for the purpose of backward erosion piping modeling.  相似文献   

4.
The Subvolcanic structure of the central dike swarm associated with the Miocene Otoge ring complex and the Shitara igneous complex, central Japan, has been reconstructed. The central dike swarm was supplied from several aligned magma reservoirs. Flow lineations observed at the margin of the dikes converge towards a region that is regarded as a magma reservoir about 1–2 km below present sea level. The minimum diameter of the magma reservoir corresponds to the width of the central dike swarm, estimated to be about 3–4 km. The inferred magma reservoir of the Otoge ring complex, may have a zoned structure, as suggested by the flow lineations of dikes and the arrangement of cone sheets. Felsic magma occupied the upper part, about 1–2 km below present sea level, and basic magma the lower part, deeper than 2 km. The centre of the Shitara igneous complex is interpreted to be composed of several other shallow magma reservoirs. The distribution pattern in plan view of the central dike swarm is summarized from the frequency of dikes (defined by the number of dikes per kilometre in the direction normal to the trend of the dike swarm) and the variations of the different properties of individual dikes along the dike swarm. It has a plane of symmetry normal to the dike swarm above the magma reservoir. The patterns critical to a general understanding of the dike formation are:
1.  A region of low dike frequency is present above the magma reservoir and a radial dike pattern occurs around the magma reservoir.
2.  From both sides of the magma reservoir, the axes of high dike frequency extend symmetrically along the central zone of the dike swarm.
3.  The number as well as the individual and total thickness of felsic dikes increases towards the magma reservoir.
4.  The number of basic dikes increases towards both sides of the magma reservoir, while the individual thicknesses of basic dikes increase with distance from the magma reservoir.
  相似文献   

5.
Spur dike is an important element in fiver training that creates rapid variations in flow field, sediment transport and bed topography. The mechanism of flow and sediment transport in a channel bend is very complex, especially when a spur dike is constructed in a bend. Most of previous investigations on flow behavior and scour around spur dike were carried out in straight channels. In this paper results of experiments on flow field and scour around a spur dike in a 90 degree channel bend are presented, Sand with uniform grain size was used as the bed material, Experiments were conducted for different locations and different lengths of spur dikes at the bend with different values of discharge, The three dimensional flow fields around a spur dike were investigated, The maximum depth of scour was correlated to the Froude numbers, lengths and the locations of spur dike in the bend.  相似文献   

6.
Scour and flow field around a spur dike in a 90° bend   总被引:2,自引:1,他引:1  
Spur dike is an important element in river training that creates rapid variations in flow field, sediment transport and bed topography. The mechanism of flow and sediment transport in a channel bend is very complex, especially when a spur dike is constructed in a bend. Most of previous investigations on flow behavior and scour around spur dike were carried out in straight channels. In this paper results of experiments on flow field and scour around a spur dike in a 90 degree channel bend are presented. Sand with uniform grain size was used as the bed material. Experiments were conducted for different locations and different lengths of spur dikes at the bend with different values of discharge. The three dimensional flow fields around a spur dike were investigated. The maximum depth of scour was correlated to the Froude numbers, lengths and the locations of spur dike in the bend.  相似文献   

7.
The interaction of vegetation and flow in channels is important for understanding the influences of forces in channels and effects on erosion, sediment flux and deposition; it has implications for channel habitats, channel instability and restoration schemes. Methods are needed for calculating forces on plants and data are required on thresholds for plant destruction and survival. A simple method of calculating the effect of hydraulics on vegetation and its zonation within ephemeral channels is described. Detailed cross section surveys of channel morphology, vegetation and estimates of Manning's n are input into the software program WinXSPRO to calculate the hydraulics of flows across the channel for a given event or flow level, incorporating subdivision into zones of differing morphology and vegetation across the section. This was applied to a number of cross sections on ephemeral channels in SE Spain and typical roughness values for Mediterranean vegetation types in channels were assessed. The method is demonstrated with reference to two well‐documented floods in SE Spain, in September 1997 on the Torrealvilla and in October 2003 along the Salada. These flows led to the mortality of herbs, reed and smaller shrub species. Some damage to larger shrubs and trees occurred, but trees such as Tamarisk (Tamarix canariensis) were shown to withstand high forces. Some grasses were highly resistant to removal and induced sedimentation. Significant erosion was limited to areas with little vegetation covering the channel floor. Further quantification of resistance of vegetation to flows and upper threshold values for removal is continuing by relating calculated hydraulic conditions using the methods outlined to measurements of vegetation responses in events at monitoring sites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Numerical models show that maximum dike width at oceanic spreading centers should scale with axial lithospheric thickness if the pre-diking horizontal stress is close to the Andersonian normal faulting stress and the stress is fully released in one dike intrusion. Dikes at slow-spreading ridges could be over 5 m wide and maximum dike width should decrease with increasing plate spreading rate. However, data from ophiolites and tectonic windows into recently active spreading ridges show that mean dike width ranges from 0.5 m to 1.5 m, and does not clearly correlate with plate spreading rate. Dike width is reduced if either the pre-diking horizontal stress difference is lower than the faulting stress or the stress is not fully released by a dike. Partial stress release during a dike intrusion is the more plausible explanation, and is also consistent with the fact that dikes intrude in episodes at Iceland and Afar. Partial stress release can result from limited magma supply when a crustal magma chamber acts as a closed source during dike intrusions. Limited magma supply sets the upper limit on the width of dikes, and multiple dike intrusions in an episode may be required to fully release the axial lithospheric tectonic stress. The observation of dikes that are wider than a few meters (such as the recent event in Afar) indicates that large tectonic stress and large magma supply sometimes exist.  相似文献   

9.
Subparallel dikes are exposed on a new road-cut along the foot of the southeastern caldera wall of Hakone Volcano. The dikes are concentrated within a zone 1,915 m wide. Altogether 96 dikes trending generally from NW to SE are seen within a total length of the actual outcrops of 855 m measured at right angles to the trend of the dikes. This implies that there are 215 dikes within the zone of the dike swarm. As the average thickness of the dikes is 2.85 m, the zone was stretched for about 650 m in NE-SW direction owing to the intrusion of the dikes. The dikes tend to converge to a small area near the center of the caldera, and also tend to dip steeply toward the central axis of the zone. It is concluded that the dikes intruded along originally vertical fissures radiating from the central vent of the pre-caldera cone, but the zone of the dike swarm was subjected to bulging with the maximum elevation along its central axis owing to successive intrusion of the dikes from below. Stretching and bulging of the flank of a volcanic cone owing to rise of magma along one of radial fissures were observed during the 1940 eruption of Miyake-zima, Izu Islands, Japan.  相似文献   

10.
Shallow plumbing systems for small-volume basaltic volcanoes   总被引:3,自引:3,他引:0  
Eruptive dynamics in basaltic volcanoes are controlled, in part, by the conduit geometry. However, uncertainties in conduit shape and dike-to-conduit transition geometry have limited our predictive capability for hazards assessments. We characterize the subvolcanic geometry of small-volume basaltic volcanoes (magmatic volatile-driven eruptions, 0.1 to 0.5 km3) based on a synthesis of field studies of five basaltic volcanoes exposed to varying degrees by erosion and exhibiting feeder dikes, conduits, and vent areas ≤250 m depth. Study areas include East Grants Ridge (New Mexico, USA), Basalt Ridge, East Basalt Ridge, Paiute Ridge, and Southeast Crater Flat (Nevada, USA). Basaltic feeder dikes 250 to 100 m deep have typical widths of 4–12 m, with smooth host-rock contacts (rhyolite tuff). At depths less than 100 m, heterogeneities in the host rock form preferential pathways for small dike splays and sills, resulting in a 30-m effective width at 50 m depth. The development of a complex conduit at depths less than 70 m is reflected in bifurcating dikes and brecciation and incorporation of the country rock. The overall zone of effect at depths less than 50 m is ≤110 m wide (220 m elongated along the feeder dike). Based on comparisons with theoretical conduit flow models, the width of the feeder dike at depths from 250 to 500 m is expected to range from 1 to 10 m and is expected to decrease to about 1–2 m at depths greater than 500 m. The flaring shape of the observed feeder systems is similar to results of theoretical modeling using lithostatic pressure-balanced flow conditions. Sizes of observed conduits differ from modeled dimensions by up to a factor of 10 in the shallow subsurface (<50 m depth), but at depths greater than 100 m the difference is a factor of 2 to 4. This difference is primarily due to the fact that observed eroded conduits record the superimposed effects of multiple eruptive events, while theoretical model results define dimensions necessary for a single, steady eruption phase. The complex details of magma-host rock interactions observed at the study areas (contact welding, brecciation, bifurcating dikes and sills, and stoping) represent the mechanisms by which the lithostatic pressure-balanced geometry is attained. The similarity in the normalized shapes of theoretical and observed conduits demonstrates the appropriateness of the pressure-balanced modeling approach, consistent with the conclusions of Wilson and Head (J Geophys Res 86:2971–3001, 1981) for this type of volcano.  相似文献   

11.
1 INTRODUCTION In alluvial streams bed scour often occurs if the sediment load is less than the transport capacity of the flow. Two types of scour are identified, namely local scour and channel bed scour. Channel bed scour can be further classified accord…  相似文献   

12.
This study aims to analyse the combined impacts of future discharges and sea levels on erosion–sedimentation potential, and its seasonal changes, in a ~43‐km‐long coastal river reach of South‐west Finland. To our knowledge, this kind of combined study has not been performed before. In addition to surveying the present erosion–sedimentation conditions, the daily erosion–sedimentation potential is simulated with a one‐dimensional hydrodynamic model for the 1971–2000 and 2070–2099 periods by applying four discharge scenarios. Different sea level stages are also employed in the simulations. All scenarios forecast increasing autumn and winter discharges, but diminishing summer discharges. This indicates increasing river channel erosion, particularly during winters and autumns. Although discharge changes have altogether a greater influence on erosion–sedimentation potential, the importance of sea level changes on sedimentation is noticeable in the estuary. The rising sea level scenarios increase the sedimentation potential. In total, by 2070–2099, the erosion potential may increase in most parts of the study area. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
I.INTRODUCTIONTheclosureoperationofThreeGorgesprojectisfamousintheworldforitslargedischarge,deepwater,lowvelocityinclosuregaps,largequantitiesandhighintensityforfillingmaterials.Thus,thedikeconstT'Uctionintheclosureoperationprocessisverydifficult.Sothedesign,researchandconstrUctiongroupshavepaidmuchenergyinthedesignprinciplesandoptimalitymeasuresofthegrandriverclosureoperation.FromtheexperimentsofhydraulicsanddikeslumpinthesecondperiodofclosureoperationattheResearchinstitUteofYangtZeR…  相似文献   

14.
Stream power can be an extremely useful index of fluvial sediment transport, channel pattern, river channel erosion and riparian habitat development. However, most previous studies of downstream changes in stream power have relied on field measurements at selected cross‐sections, which are time consuming, and typically based on limited data, which cannot fully represent important spatial variations in stream power. We present here, therefore, a novel methodology we call CAFES (combined automated flood, elevation and stream power), to quantify downstream change in river flood power, based on integrating in a GIS framework Flood Estimation Handbook systems with the 5 m grid NEXTMap Britain digital elevation model derived from IFSAR (interferometric synthetic aperture radar). This provides a useful modelling platform to quantify at unprecedented resolution longitudinal distributions of flood discharge, elevation, floodplain slope and flood power at reach and basin scales. Values can be resolved to a 50 m grid. CAFES approaches have distinct advantages over current methodologies for reach‐ and basin‐scale stream power assessments and therefore for the interpretation and prediction of fluvial processes. The methodology has significant international applicability for understanding basin‐scale hydraulics, sediment transport, erosion and sedimentation processes and river basin management. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Various parameters such as bed and bank materials, shape and irregularity of the section, vegetation, river meanders, plan of the river path etc. affect the flow hydraulic resistance. In open channel hydraulics the effects of all these parameters are generally considered as the roughness coefficient. The Manning’s equation is one of the most practical equations to flow resistance analysis, in which the surface roughness is defined by Manning coefficient. Since many parameters are effective on the value of this coefficient, in this research study it was tried to define the roughness coefficient somehow that it be able to dynamically change with different river and hydraulic conditions. The collected data in Karun River (Iran) for two periods were used as the case study. It is shown that the accuracy of model predictions for water surface elevations were improved more than 13% in error estimation in comparison with the corresponding results obtained for a constant roughness coefficient. The roughness coefficient (n) for Karun River was also estimated using the empirical method proposed by Cowan for two different dry and wet periods. These values were then successfully compared with the average corresponding roughness coefficients calculated by the numerical model for those periods.  相似文献   

16.
River channel sedimentation in the lower reaches of the Yangtze River can be affected by both changes in sea level and changes in solid discharge from the upper river. To evaluate dynamic changes of sedimentation and erosion in the Jiangsu reach of the Yangtze River (about 330 km in length) from 1959 to 2003, databases were designed and constructed using a digital elevation model (DEM) of channel topography based on the Jiangsu River Relief Map for 1959, 1970, 1985, 1992, and 2003. The results indicated that the main course of the Yangtze River in Jiangsu Province had experienced an obvious switch from sedimentation to erosion status around 1985 because of the decreasing amount of solid load from the upper parts of the river channel after that year. The sedimentation process in the main course of the Jiangsu reach of the Yangtze River demonstrated the propulsive process of ‘downstream‐ward aggradations.’ Between 1985 and 2003, the erosion rate of the lower segment was greater than those of the middle and upper segments; this is probably because both channel flow and tide current had influenced the lower segment. When channel flow combines with tide current in the same direction, channel erosion can be intensified, especially if there is a solid load shortage in the channel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Concentrated flow is often the dominant source of water erosion following disturbance on rangelands. Because of the lack of studies that explain the hydraulics of concentrated flow on rangelands, cropland‐based equations have typically been used for rangeland hydrology and erosion modeling, leading to less accurate predictions due to different soil and vegetation cover characteristics. This study investigates the hydraulics of concentrated flow using unconfined field experimental data over diverse rangeland landscapes within the Great Basin Region, United States. The results imply that the overall hydraulics of concentrated flow on rangelands differ significantly from those of cropland rills. Concentrated flow hydraulics on rangelands are largely controlled by the amount of cover or bare soil and hillslope angle. New predictive equations for concentrated flow velocity (R2 = 0·47), hydraulic friction (R2 = 0·52), and width (R2 = 0·4) representing a diverse set of rangeland environments were developed. The resulting equations are applicable across a wide span of ecological sites, soils, slopes, and vegetation and ground cover conditions and can be used by physically‐based rangeland hydrology and erosion models to estimate rangeland concentrated flow hydraulic parameters. Published in 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   

18.
As a component of arid ecosystems, groundwater plays an important role in plant growth; therefore, it is essential to use deterministic models to reconstruct the process of groundwater level change. Typically, the linearized solution of the one-dimensional (1-D) Boussinesq equation yields acceptable performance in simulating transient conditions over short recharge periods in ephemeral stream systems, but the ability of this solution to simulate multiyear changes in groundwater levels is limited. In this study, an improved groundwater hydraulics (GH-D2) model is built based on the groundwater hydraulics (GH) solution of the 1-D Boussinesq equation to simulate multiyear changes in the groundwater level in ephemeral stream systems. The model is validated in the lower reaches of the Tarim River to simulate groundwater level fluctuations within the scope of influence of the river (300, 500, 750, 1050 m) over a 16-year period (2000 to 2015). To evaluate the performance of the models, the bias, mean absolute error, root mean squared error, Nash-Sutcliffe efficiency (NSE), and coefficient of determination (R2) are calculated. The results show that the improved GH-D2 model, which considers ephemeral streamflow, unsteady flow theory and the delayed response effect of groundwater level changes, performs well in simulating multiyear changes in the groundwater level in the ephemeral stream system. The observed and simulated values of the groundwater level at different river distances are consistent, and the model provides a new basis for multiyear simulations of groundwater level fluctuations in ephemeral stream systems.  相似文献   

19.
The main break-in-slope on the northern submarine flank of Molokai at −1500 to −1250 m is a shoreline feature that has been only modestly modified by the Wailau landslide. Submarine canyons above the break-in-slope, including one meandering stream, were subaerially carved. Where such canyons cross the break-in-slope, plunge pools may form by erosion from bedload sediment carried down the canyons. West Molokai Volcano continued infrequent volcanic activity that formed a series of small coastal sea cliffs, now submerged, as the island subsided. Lavas exposed at the break-in-slope are subaerially erupted and emplaced tholeiitic shield lavas. Submarine rejuvenated-stage volcanic cones formed after the landslide took place and following at least 400–500 m of subsidence after the main break-in-slope had formed. The sea cliff on east Molokai is not the headwall of the landslide, nor did it form entirely by erosion. It may mark the location of a listric fault similar to the Hilina faults on present-day Kilauea Volcano. The Wailau landslide occurred about 1.5 Ma and the Kalaupapa Peninsula most likely formed 330±5 ka. Molokai is presently stable relative to sea level and has subsided no more than 30 m in the last 330 ka. At their peak, West and East Molokai stood 1.6 and 3 km above sea level. High rainfall causes high surface runoff and formation of canyons, and increases groundwater pressure that during dike intrusions may lead to flank failure. Active shield or postshield volcanism (with dikes injected along rift zones) and high rainfall appear to be two components needed to trigger the deep-seated giant Hawaiian landslides.  相似文献   

20.
Multiple‐layered tsunami deposits have been frequently reported from coastal stratigraphic sequences, but the formation processes of these layers remain uncertain. A terrestrial sandy deposit formed by the 2004 Indian Ocean Tsunami was investigated at Ban Nam Kem, southern Thailand. Four internal layers induced by two tsunami waves were identified in the tsunami deposit. Sedimentary structures indicated that two units were formed by run‐up currents caused by the tsunami and the other two units were deposited by the backwash flows. Graded bedding was common in the layers, but inverse grading was observed at limited intervals on the surveyed transects. The characteristics of the multiple‐layered tsunami deposit vary remarkably over a very short distance (<1 m) in response to the local topography. Remarkable asymmetries in thickness and grain‐size distribution are recognized between the run‐up and backwash flow deposits. On the basis of the interpretation of sedimentary structures, the formation process of the multiple‐layered tsunami deposit observed in this study can be explained in a schematic model as the modification of the ideal tsunami sequence by local erosion and the asymmetric hydraulic properties of tsunami waves, such as the maximum shear velocity and the heterogeneity of the flow velocity field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号