首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review published evidence that rocks can develop, sustain and record significant pressure deviations from lithostatic values. Spectroscopic studies at room pressure and temperature (P-T) reveal that in situ pressure variations in minerals can reach GPa levels. Rise of confined pressure leads to higher amplitude of these variations documented by the preservation of α-quartz incipiently amorphized under pressure (IAUP quartz), which requires over 12 GPa pressure variations at the grain scale. Formation of coesite in rock-deformation experiments at lower than expected confined pressures confirmed the presence of GPa-level pressure variations at elevated temperatures and pressures within deforming and reacting multi-mineral and polycrystalline rock samples. Whiteschists containing garnet porphyroblasts formed during prograde metamorphism that host quartz inclusions in their cores and coesite inclusions in their rims imply preservation of large differences in pressure at elevated pressure and temperature. Formation and preservation of coherent cryptoperthite exsolution lamellae in natural alkali feldspar provides direct evidence for grain-scale, GPa-level stress variations at 680°C at geologic time scales from peak to ambient P-T conditions. Similarly, but in a more indirect way, the universally accepted’ pressure-vessel’ model to explain preservation of coesite, diamond and other ultra-high-pressure indicators requires GPa-level pressure differences between the inclusion and the host during decompression at temperatures sufficiently high for these minerals to transform into their lower pressure polymorphs even at laboratory time scales. A variety of mechanisms can explain the formation and preservation of pressure variations at various length scales. These mechanisms may double the pressure value compared to the lithostatic in compressional settings, and pressures up to two times the lithostatic value were estimated under special mechanical conditions. We conclude, based on these considerations, that geodynamic scenarios involving very deep subduction processes with subsequent very rapid exhumation from a great depth must be viewed with due caution when one seeks to explain the presence of microscopic ultrahigh-pressure mineralogical indicators in rocks. Non-lithostatic interpretation of high-pressure indicators may potentially resolve long-lasting geological conundrums.  相似文献   

2.
Infrared spectra of C-O-H micro-inclusions were collected from a micro-inclusion bearing diamond during step-heating and freezing experiments to examine fluid speciation as a function of pressure and temperature. The inclusions contain H2O, CO2, carbonate, apatite, quartz and mica, which together represent the oxidising remnant mantle fluid composition after diamond crystallisation. The internal pressure of the inclusions, measured from calibrated shifts of the quartz peaks, increases from 1.3 GPa at ambient temperature, to approximately 4-5 GPa at 737 °C, close to the conditions of crystallisation of the host diamond in the mantle.  相似文献   

3.
The results of the study of diamonds with inclusions of high-pressure modification of SiO2 (coesite) by Raman spectroscopy are reported. It is established that the octahedral crystal from the Zapolyarnaya pipe is characterized by the highest residual pressure (2.7 ± 0.07 GPa). An intermediate value of this parameter (2.1 ± 0.07 GPa) was obtained for a crystal of transitional habit from the Maiskaya pipe. The minimal Raman shift was registered for coesite in diamond from the Komsomol’skaya–Magnitnaya pipe and provided a calculated residual pressure of 1.8 ± 0.03 GPa. The residual pressures for crystals from the placer deposits of the Kuoika and Bol’shaya Kuonamka rivers are 2.7 ± 0.07 and 3.1 ± 0.1 GPa, respectively. Octahedral crystals were formed in the mantle at a higher pressure than rhombododecahedral diamonds.  相似文献   

4.
Diamonds and their mineral inclusions are valuable for studying the genesis of diamonds, the characteristics and processes of ancient lithospheric mantle and deeper mantle. This has been paid lots of attentions by geologists both at home and abroad. Most diamonds come from lithospheric mantle. According to their formation preceded, accompanied or followed crystallization of their host diamonds, mineral inclusions in diamonds are divided into three groups: protogenetic, syngenetic and epigenetic. To determine which group the mineral inclusions belong to is very important because it is vital for understanding the data’s meaning. According to the type of mantle source rocks, mineral inclusions in diamonds are usually divided into peridotitic (or ultramafic) suite and eclogitic suite. The mineral species of each suite are described and mineralogical characteristics of most common inclusions in diamonds, such as olivine, clinopyroxene, orthopyroxene, garnet, chromite and sulfide are reviewed in detail. In this paper, the main research fields and findings of diamonds and their inclusions were described: ①getting knowledge of mineralogical and petrologic characteristics of diamond source areas, characteristics of mantle fluids and mantle dynamics processes by studying the major element and trace element compositions of mineral inclusions; ②discussing deep carbon cycle by studying carbon isotopic composition of diamonds; ③determining forming temperature and pressure of diamonds by using appropriate assemblages of mineral inclusions or single mineral inclusion as geothermobarometry, by using the abundance and aggregation of nitrogen impurities in diamonds and by measuring the residual stress that an inclusion remains under within a diamond ; ④estimating the crystallization ages of diamonds by using the aggregation of nitrogen impurities in diamonds and by determine the radiometric ages of syngenetic mineral inclusions in diamonds. Genetic model of craton lithospheric diamonds and their mineral inclusion were also introduced. In the end, the research progress on diamonds and their inclusions in China and the gap between domestic and international research are discussed.  相似文献   

5.
D. Phillips  J.W. Harris  K.S. Viljoen 《Lithos》2004,77(1-4):155-179
Silicate and oxide mineral inclusions in diamonds from the geologically and historically important De Beers Pool kimberlites in Kimberley, South Africa, are characterised by harzburgitic compositions (>90%), with lesser abundances from eclogitic and websteritic parageneses. The De Beers Pool diamonds contain unusually high numbers of inclusion intergrowths, with garnet+orthopyroxene±chromite±olivine and chromite+olivine assemblages dominant. More unusual intergrowths include garnet+olivine+magnesite and an eclogitic assemblage comprising garnet+clinopyroxene+rutile. The mineral chemistry of the De Beers Pool inclusions overlaps that of most worldwide localities. Peridotitic garnet inclusions exhibit variable CaO (<5.8 wt.%) and Cr2O3 contents (3.0–15.0 wt.%), although the majority are harzburgitic with very low calcium concentrations (<2 wt.% CaO). Eclogitic garnet inclusions are characterised by a wide range in CaO (3.3–21.1 wt.%) with low Cr2O3 (<1 wt.%). Websteritic garnets exhibit intermediate compositions. Most chromite inclusions contain 63–67 wt.% Cr2O3 and <0.5 wt.% TiO2. Olivine and orthopyroxene inclusions are magnesium-rich with Mg-numbers of 93–97. Olivine inclusions in chromite exhibit the highest Mg-numbers and also contain elevated Cr2O3 contents up to 1.0 wt.%. Peridotitic clinopyroxene inclusions are Cr-diopsides with up to 0.8 wt.% K2O. Eclogitic and websteritic clinopyroxene inclusions exhibit overlapping compositions with a wide range in Mg-numbers (66–86).

Calculated temperatures for non-touching inclusion pairs from individual diamonds range from 1082 to 1320 °C (average=1197 °C), whereas pressures vary from 4.6 to 7.7 GPa (average=6.3 GPa). Touching inclusion assemblages are characterised by equilibration temperatures of 995 to 1182 °C (average=1079 °C) and pressures of 4.2–6.8 GPa (average=5.4 GPa). Provided that the non-touching inclusions represent equilibrium assemblages, it is suggested that these inclusions record the conditions at the time of diamond crystallisation (1200 °C; 3.0 Ga). The lower average temperatures for touching inclusions are attributed to re-equilibration in a cooling mantle (1050 °C) prior to kimberlite eruption at 85 Ma. Pressure estimates for touching garnet–orthopyroxene inclusions are also skewed towards lower values than most non-touching inclusions. This apparent difference may be an artefact of the Al-exchange geobarometer and/or the result of sampling bias, due to limited numbers of non-touching garnet–orthopyroxene inclusions. Alternatively pressure differences could be caused by differential uplift in the mantle or possibly variations in thermal compressibility between diamond and silicate inclusions. However, thermodynamic modelling suggests that thermal compressibility differences would cause only minor changes in internal inclusion pressures (<0.2 GPa/100 °C).  相似文献   


6.
A diagram of the syngenesis of diamond, silicate, carbonate, and sulfide minerals and melts is compiled based on experimental data on phase relations in the heterogeneous eclogite-carbonate-sulfidediamond system at P = 7 GPa. Evidence is provided that silicate and carbonate minerals are paragenetic, whereas sulfides are xenogenic with respect to diamond. Diamond and paragenetic phases are formed in completely miscible carbonate-silicate growth melts with dissolved elemental carbon. Coherent data of physicochemical experiment and mineralogy of primary inclusions in natural diamonds allows us to prove the mantle-carbonatite theory of diamond origin. The genetic classification of primary inclusions in natural diamonds is based on this theory. The phase diagrams of syngenesis are applicable to interpretation of diamond and syngenetic minerals formation in natural magma sources. They ascertain physicochemical mechanism of natural diamond formation and conditions of entrapment of paragenetic and xenogenic mineral phases by growing diamonds.  相似文献   

7.
The Shuanghe garnet-bearing paragneiss from the Dabie ultra-high–pressure (UHP) orogen occurs as an interlayer within partially retrogressed eclogite. A first UHP metamorphic stage at 680°C, 3.8–4.1 GPa is documented by Zr-in-rutile temperatures coupled with phengite inclusions (Si = 3.55) in clinozoisite and grossular-rich garnet. Relic matrix phengite and phengite inclusions in zircon rims display lower Si of 3.42. Combined with garnet compositions and Ti-in-zircon temperatures, they provide evidence for a second UHP metamorphic stage at 800–850°C, ~3.8 GPa. Such isobaric heating at UHP conditions has not been documented so far from the adjacent eclogites and other rock types in the Dabie orogen and indicates proximity to the hot, convecting mantle wedge. The dominant mineral assemblage consisting of plagioclase, epidote, biotite, and amphibole provides evidence for widespread retrogression during the exhumation of the UHP paragneiss. Several types of polyphase mineral inclusions were identified. Phengite inclusions hosted by clinozoisite are partially replaced by kyanite and K-feldspar, whereas inclusions in host garnet consist of relic phengite, K-feldspar, and garnet, indicating limited sub-solidus dehydration of phengite by the reaction Ph→Kfs+Ky±Grt+fluid. Tightly intergrown K-feldspar and quartz are preserved as inclusions with sharp boundaries and radial cracks in garnet. Analyses of whole inclusions also show small enrichments in light rare earth elements. These inclusions are interpreted to be derived from melting of an inclusion assemblage consisting of Ph+Coe±Czo. A third type of polyphase inclusion consists of typical nanogranite (Ab+Kfs+Qz±Ep) inclusions in recrystallized metamorphic zircon. Ti-in-zircon thermometry and the Si content of phengite included in these zircon domains indicate that melting occurred at 800–850°C and 3.8–4.0 GPa during isobaric heating at UHP conditions. The partial melting event led to an equilibration of trace elements in garnet, phengite, and apatite. Using published partition coefficients between these minerals and hydrous granitic melt, the trace element composition of the UHP anatectic melt can be constrained. The melts are characterized by high LILE contents and pronounced relative enrichments of U over Th and Ta over Nb. The REE are below primitive mantle values, likely due to the presence of residual clinozoisite and garnet during partial melting. So far, no major granitic bodies have been found that share the same trace element pattern as the partial melts from the UHP anatexis of the Shuanghe paragneiss.  相似文献   

8.
The prograde metamorphic history of the Sulu ultrahigh‐pressure metamorphic terrane has been revealed using Raman‐based barometry of the SiO2 phases and other mineral inclusions in garnet porphyroblasts of a coesite eclogite from Yangzhuang, Junan region, eastern China. Garnet porphyroblasts have inner and outer segments with the boundary being marked by discontinuous changes in the grossular content. In the inner segment, the SiO2 phase inclusions are α‐quartz with no coesite or relict features such as radial cracks. The residual pressures retained by the quartz inclusions systematically increase from the crystal centre to the margin of the inner segment. The metamorphic conditions estimated by calculation from the residual pressure and conventional thermodynamic calculation range from 500 to 630 °C and 1.3 to 2.3 GPa for the stage of the inner segment. Coesite and its pseudomorph occur as inclusions in the outer segment of the garnet and matrix omphacite. This occurrence of coesite is consistent with the pressure and temperature conditions of 660–725 °C and 3.1 GPa estimated by conventional geothermobarometry. Our results suggest that the quartz inclusions in the inner segment were trapped by garnet under α‐quartz‐stable conditions and survived phase transition to coesite at the peak metamorphic stage. The SiO2 phases and other inclusions in the garnet have retained evidence of the pre‐eclogite prograde stage even during exhumation stage. The combined Raman spectroscopic and petrological approaches used here offers a powerful means for obtaining more robust constraints prograde stages involving garnet growth where different SiO2 phases are present as inclusions.  相似文献   

9.
Samples of poikoblastic garnets from the Escambray (Cuba), Maksyutov (Russia), and Sambagawa (Japan) eclogite complexes were heated to 700–1100 ºC at 3 to 4 GPa (30–40 kbar). Epidote, amphibole, and chlorite inclusions in the garnets underwent dehydration melting over the entire experimental PT range, which is typical of ultrahigh-pressure (UHP) metamorphic complexes. In the presence of aqueous fluids, carbonate minerals in the inclusions began to melt at 800 ºC and 3 GPa. Melting gave rise to new garnet, with the composition controlled by the chemistry of the primary inclusions and by PT run conditions. Garnet either grew directly from the melt or formed by replacement of host garnet walls leaving residual melt at the substitution front in the latter case. Partial melting of inclusions decreased the mechanical strength of the garnet host and led to local shearing. The experimental results were used to interpret observed features in two samples of a diamond-bearing and a diamond-free carbonate-silicate rocks from the Kumdy-Kol deposit in the Kokchetav Massif. Multiphase inclusions in both samples contain newly formed garnet with morphologies and compositions consistent with those produced experimentally under the given PT conditions. Minerals in the inclusions are compositionally similar to those in matrix, thus suggesting that melting may have occurred on a large scale.  相似文献   

10.
Quantifying strain birefringence halos around inclusions in diamond   总被引:1,自引:0,他引:1  
The pressure and temperature conditions of formation of natural diamond can be estimated by measuring the residual stress that an inclusion remains under within a diamond. Raman spectroscopy has been the most commonly used technique for determining this stress by utilising pressure-sensitive peak shifts in the Raman spectrum of both the inclusion and the diamond host. Here, we present a new approach to measure the residual stress using quantitative analysis of the birefringence induced in the diamond. As the analysis of stress-induced birefringence is very different from that of normal birefringence, an analytical model is developed that relates the spherical inclusion size, R i, host diamond thickness, L, and measured value of birefringence at the edge of the inclusion, \Updelta n(R\texti )\textav \Updelta n(R_{\text{i}} )_{\text{av}} , to the peak value of birefringence that has been encountered; to first order \Updelta n\textpk = (3/4)(L/R\texti )  \Updelta n(R\texti )\textav \Updelta n_{\text{pk}} = (3/4)(L/R_{\text{i}} ) \, \Updelta n(R_{\text{i}} )_{\text{av}} . From this birefringence, the remnant pressure (P i) can be calculated using the photoelastic relationship \Updelta n\textpk = - (3/4)n3 q\textiso P\texti \Updelta n_{\text{pk}} = - (3/4)n^{3} q_{\text{iso}} P_{\text{i}} , where q iso is a piezo-optical coefficient, which can be assumed to be independent of crystallographic orientation, and n is the refractive index of the diamond. This model has been used in combination with quantitative birefringence analysis with a MetriPol system and compared to the results from both Raman point and 2D mapping analysis for a garnet inclusion in a diamond from the Udachnaya mine (Russia) and coesite inclusions in a diamond from the Finsch mine (South Africa). The birefringence model and analysis gave a remnant pressure of 0.53 ± 0.01 GPa for the garnet inclusion, from which a source pressure was calculated as 5.7 GPa at 1,175°C (temperature obtained from IR analysis of the diamond host). The Raman techniques could not be applied quantitatively to this sample to support the birefringence model; they were, however, applied to the largest coesite inclusion in the Finsch sample. The remnant pressure values obtained were 2.5 ± 0.1 GPa (birefringence), 2.5 ± 0.3 GPa (2D Raman map), and 2.5–2.6 GPa (Raman point analysis from all four inclusions). However, although the remnant pressures from the three methods were self-consistent, they led to anomalously low source pressure of 2.9 GPa at 1,150°C (temperature obtained from IR analysis) raising serious concerns about the use of the coesite-in-diamond geobarometer.  相似文献   

11.
ABSTRACT

The preservation of metastable diamond in ultrahigh-pressure metamorphic (UHPM) complexes challenges our understanding of the processes taking place during exhumation of these subduction zone complexes. The presence of diamonds in UHPM rocks implies that diamonds remained metastable during exhumation, and within thermodynamic stability of graphite for an extended period. This work studies the influence of pressure on the surface graphitization rate of diamond monocrystals in carbonate systems to understand the preservation of microdiamond during exhumation of UHP subduction complexes. Experiments were performed with 2–3 mm synthetic diamond monocrystals at 2–4 GPa in СаСО3 (1550°С) and К2СО3 (1450°С) melts using a high-pressure multi-anvil apparatus. The highest rate of surface graphitization took place at 2 GPa; diamond crystals were almost completely enveloped by a graphite coating. At 4 GPa, only octahedron-shaped pits formed on flat {111} diamond crystal faces. Our results demonstrate that the surface graphitization rate of diamonds in the presence of carbonate melts at 1450–1550°C increases with decreasing pressure. Decreased pressure alone can graphitize diamond regardless of exhumation rate. Metastable diamond inclusions survive exhumation with little or no graphitization because of excess pressure up to 2 GPa acting on them, and because inclusions are protected from interaction with C-O-H fluid.  相似文献   

12.
《International Geology Review》2012,54(13):1658-1667
The identification of syngenetic inclusions in diamond (i.e. inclusions of minerals that crystallized at the same time and by the same genesis as their host) has long been of paramount importance in diamond studies. However, the widespread assumption that many or most inclusions in diamonds are syngenetic is based on qualitative morphological criteria and few direct measurements. In order to provide statistically significant information on inclusion–host genetic relations for at least one kimberlite, we have determined the crystallographic orientations of 43 olivine inclusions with diamond-imposed morphology, a feature generally interpreted to indicate syngenesis, in 20 diamonds from the Udachnaya kimberlite (Siberia). Our unprecedented large data set indicates no overall preferred orientation of these olivines in diamond. However, multiple inclusions within a single diamond frequently exhibit similar orientations, implying that they were derived from original single monocrystals. Therefore, regardless of the possible chemical re-equilibration during diamond-forming processes, at least some of the olivines may have existed prior to the diamond (i.e. they are protogenetic). Our results imply that a diamond-imposed morphology alone cannot be considered as unequivocal proof of syngenicity of mineral inclusions in diamonds.  相似文献   

13.
Olivine single crystals have been deformed under high confining pressure (P=5?GPa) and temperature (T=1400?°C) conditions in a multi-anvil high pressure apparatus. NaCl, diamond and NaCl+diamond (2:1 by volume) powders were encapsulated along with the olivine single crystals in order to produce a range of stress states. The change of the non-hydrostatic stress transmitted to the olivine samples, enclosed within these three different media, during heating has been evaluated by observation of dislocation microstructure and density. A higher differential stress can be generated with diamond powder (0.1?GPa) than with NaCl powder (0.02?GPa). Although an intermediate differential stress between 0.1?GPa and 0.02?GPa had been expected to be generated using NaCl+diamond powder, the generation of non-hydrostatic stress in the olivine sample was unsuccessful. This may be caused by the fact that compaction (or sintering) proceeded in the capsule throughout the experiments. The most important finding of these experiments is that a constant non-hydrostatic stress can be applied to a sample under very high pressure and temperature conditions within the multi-anvil high pressure apparatus for the duration of the experiment. This approach is therefore suitable for investigating the steady-state rheological properties of mantle minerals at near-mantle conditions.  相似文献   

14.
In the North‐East Greenland Caledonides, P–T conditions and textures are consistent with partial melting of ultrahigh‐pressure (UHP) eclogite during exhumation. The eclogite contains a peak assemblage of garnet, omphacite, kyanite, coesite, rutile, and clinozoisite; in addition, phengite is inferred to have been present at peak conditions. An isochemical phase equilibrium diagram, along with garnet isopleths, constrains peak P–T conditions to be subsolidus at 3.4 GPa and 940°C. Zr‐in‐rutile thermometry on inclusions in garnet yields values of ~820°C at 3.4 GPa. In the eclogite, plagioclase may exhibit cuspate textures against surrounding omphacite and has low dihedral angles in plagioclase–clinopyroxene–garnet aggregates, features that are consistent with former melt–solid–solid boundaries and crystallized melt pockets. Graphic intergrowths of plagioclase and amphibole are present in the matrix. Small euhedral neoblasts of garnet against plagioclase are interpreted as formed from a peritectic reaction during partial melting. Polymineralic inclusions of albite+K‐feldspar and clinopyroxene+quartz±kyanite±plagioclase in large anhedral garnet display plagioclase cusps pointing into the host, which are interpreted as crystallized melt pockets. These textures, along with the mineral composition, suggest partial melting of the eclogite by reactions involving phengite and, to a large extent, an epidote‐group mineral. Calculated and experimentally determined phase relations from the literature reveal that partial melting occurred on the exhumation path, at pressures below the coesite to quartz transition. A calculated P–T phase diagram for a former melt‐bearing domain shows that the formation of the peritectic garnet rim occurred at 1.4 GPa and 900°C, with an assemblage of clinopyroxene, amphibole, and plagioclase equilibrated at 1.3 GPa and 720°C. Isochemical phase equilibrium modelling of a symplectite of clinopyroxene, plagioclase, and amphibole after omphacite, combined with the mineral composition, yields a P–T range at 1.0–1. 6 GPa, 680–1,000°C. The assemblage of amphibole and plagioclase is estimated to reach equilibrium at 717–732°C, calculated by amphibole–plagioclase thermometry for the former melt‐bearing domain and symplectite respectively. The results of this study demonstrate that partial melt formed in the UHP eclogite through breakdown of an epidote‐group mineral with minor involvement of phengite during exhumation from peak pressure; melt was subsequently crystallized on the cooling path.  相似文献   

15.
矿物或流体包体可以有效保存寄主矿物生长过程中的化学环境、温度、压力等信息。在高压变质过程中,石榴子石中石英包体的分子振动与环境压力之间具有良好的相关性。根据这一特性,前人提出了石英包体拉曼偏移压力计,其原理是利用显微激光拉曼光谱仪分析石英包体在室温常压下保留的残余压力,再结合石英与寄主矿物的弹性物理特性,恢复石英包体被捕获时的压力,属于矿物物理光谱学压力计,本文介绍了利用石英包体的拉曼位移计算变质压力的基本原理和方法,并对不同方法的适用条件和使用局限做了简要分析。石英包体拉曼偏移压力计是恢复变质岩石形成温度和压力条件的有效方法,具有广泛的应用前景。  相似文献   

16.
In an external vacuum and at temperatures between 900° C and 1650° C internal graphitisation takes place on or around mineral inclusions in diamond, and appears to be responsible for similar features previously reported in diamond from several localities. Several mechanisms are proposed and discussed for internal graphitisation at temperatures as low as 900° C: it is proposed that at low external pressures CO2 exsolves from inclusions and causes internal graphitisation. The results also indicate that immediately after pressure release arising from volcanic breakthrough of kimberlites of different geological ages at several localities in West and South Africa, the temperature was not in excess of 800° C to 900° C in certain regions of the diatremes.  相似文献   

17.
A paleo-alluvial 0.21 ct yellow diamond (L058) from Bingara (NSW) has three inclusions of coesite (two subequant crystals and one thin plate), each under more than 3.1 GPa internal pressure as measured by Raman spectroscopy. These inclusions cause overlapping birefringent retardation stress/strain haloes in the host diamond, visible under cross-polarised light. The complicated retardation pattern is quantified by mapping targeted retardation contours (170 nm, 270 nm and 380 nm) onto a photo of the diamond. A mathematical model of retardation is developed for each inclusion, and then the combined light retardations (CLR) are calculated using radial and tangential components with spherical and elliptical geometries. The CLR model reproduces most features of the measured data, but remaining differences may be due to local release of stress/strain by two short fractures radiating from one inclusion.  相似文献   

18.
The Sanbagawa belt is one of the famous subduction‐related high‐pressure (HP) metamorphic belts in the world. However, spatial distributions of eclogite units in the belt have not yet satisfactorily established, except within the Besshi region, central Shikoku, southwest Japan because most eclogitic rocks were affected by lower pressure overprinting during exhumation. In order to better determine the areal distribution of the eclogite units and their metamorphic features, inclusion petrography of garnet porphyroblasts using a combination of electron probe microanalyser and Raman spectroscopy was applied to pelitic and mafic schists from the Asemi‐gawa region, central Shikoku. All pelitic schist samples are highly retrogressed, and include no index HP minerals such as jadeite, omphacite, paragonite, or glaucophane in the matrix. Garnet porphyroblasts in pelitic schists occur as subhedral or anhedral crystals, and show compositional zoning with irregular‐shaped inner segments and overgrown outer segments, the boundary of which is marked by discontinuous changes in spessartine. This feature suggests that a resorption process of the inner segment occurred prior to the formation of the outer segment, indicating discontinuous crystallization between the two segments. The inner segment of some composite‐zoned garnet grains displays Mn oscillations, implying infiltration of metamorphic fluid during the initial exhumation stage. Evidence for an early eclogite facies event was determined from mineral inclusions (e.g., jadeite, paragonite, glaucophane) in the garnet inner segments. Mafic schists include no index HP minerals in the matrix as with pelitic schists. Garnet grains in mafic schists show simple normal zoning, recording no discontinuous growth during crystal formation. There are no index HP mineral inclusions in the garnet, and thus no evidence suggesting eclogite facies conditions. Quartz inclusions in garnet of the pelitic and mafic schists show residual pressure values (?ω1) of >8.5 cm?1 and <8.5 cm?1 respectively. The combination of Raman geobarometry and conventional thermodynamic calculations gives peak PT conditions of 1.6–2.1 GPa at 460–520°C for the pelitic schists. The ?ω1 values of quartz inclusions in mafic schists are converted to a metamorphic pressure of 1.2–1.4 GPa at 466–549°C based on Raman geothermometry results. These results indicate that a pressure gap definitely exists between the mafic schists and the almost adjacent pelitic schists, which have experienced a different metamorphic history. Furthermore, the peak P–T values of the Asemi‐gawa eclogite unit are compatible with those of Sanbagawa eclogite unit in the Besshi region of central Shikoku, suggesting that these eclogite units share a similar P–T trajectory. The Asemi‐gawa eclogite unit exists in a limited area and is composed of mostly pelitic schists. We infer that these abundant pelitic schists played a key role in buoyancy‐driven exhumation by reducing bulk rock density and strength.  相似文献   

19.
Summary Based on mineral-chemical evidence we propose that the northernmost Scandian ultra-high pressure (UHP) metamorphic domain within the Western Gneiss Region of Norway can be extended 25 km northeastwards. A newly discovered, well preserved, fine-grained, Fe–Ti type garnet peridotite body at Svartberget, located in the Ulla Gneiss of the ‘M?re og Romsdal’ area north of Molde, is cut by a network of systematically orientated coarse-grained garnet-websterite and garnetite veins. Standard thermobarometric techniques based on electron microprobe analyses yield pressure (P) and temperature (T) estimates around 3.4 GPa, and 800 °C for the peridotite body and 5.5 GPa, and 800 °C for the websterite veins consistent with UHP conditions. In addition, polyphase solid inclusions, consisting of silicates, carbonates, sulphates and elemental carbon (including microdiamond), are randomly located in garnet and clinopyroxene of the websterite vein assemblage. Garnet-clinopyroxene mineral pairs yield a Sm–Nd cooling age of 393 ± 3 Ma for the peridotite and 381 ± 6 Ma for the vein assemblage suggesting that the Svartberget body was overprinted during the UHPM of the Scandian Orogeny. The initial ratio of the mineral isochron and Nd model ages suggest a mid-Proterozoic origin for the peridotite body. The polyphase inclusions, coupled with high 87Sr/86Sr ratios may indicate that the peridotite body was infiltrated by crustal-derived C–O–H melts/fluids at UHPM conditions to form the websterite veins in the diamond field. We propose that fracturing and vein emplacement were the result of local high fluid pressure during subduction of the Baltic plate. Present address: Physics of Geological Processes, University of Oslo, Oslo, Norway  相似文献   

20.
We have performed dissections of two diamondiferous eclogites (UX-1 and U33/1) from the Udachnaya kimberlite, Yakutia in order to understand the nature of diamond formation and the relationship between the diamonds, their mineral inclusions, and host eclogite minerals. Diamonds were carefully recovered from each xenolith, based upon high-resolution X-ray tomography images and three-dimensional models. The nature and physical properties of minerals, in direct contact with diamonds, were investigated at the time of diamond extraction. Polished sections of the eclogites were made, containing the mould areas of the diamonds, to further investigate the chemical compositions of the host minerals and the phases that were in contact with diamonds. Major- and minor-element compositions of silicate and sulfide mineral inclusions in diamonds show variations among each other, and from those in the host eclogites. Oxygen isotope compositions of one garnet and five clinopyroxene inclusions in diamonds from another Udachnaya eclogite (U51) span the entire range recorded for eclogite xenoliths from Udachnaya. In addition, the reported compositions of almost all clinopyroxene inclusions in U51 diamonds exhibit positive Eu anomaly. This feature, together with the oxygen isotopic characteristics, is consistent with the well-established hypothesis of subduction origin for Udachnaya eclogite xenoliths. It is intuitive to expect that all eclogite xenoliths in a particular kimberlite should have common heritage, at least with respect to their included diamonds. However, the variation in the composition of multiple inclusions within diamonds, and among diamonds, from the same eclogite indicates the involvement of complex processes in diamond genesis, at least in the eclogite xenoliths from Yakutia that we have studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号