首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
变质作用温度与压力极限值的估算方法   总被引:3,自引:2,他引:1  
吴春明  陈泓旭 《岩石学报》2013,29(5):1499-1510
变质矿物共生组合中缺少某种矿物,或者变质矿物的原始成分被不同程度地破坏,无法直接应用压力计或温度计算出具体的温度或压力数值时,可以根据实际情况,估算P-T的极限值.估算方法包括如下几类:(1)根据纯相矿物的相变条件,可以确定温度或压力的极限值.例如,根据Al2SiO5矿物相图可知,与红柱石平衡的矿物组合,稳定存在的压力不超过Al2SiO5矿物三相点的压力条件(0.375±0.025GPa);与夕线石平衡的矿物组合,稳定存在的温度不低于Al2SiO5矿物三相点的温度条件(504±20℃);(2)某些特殊矿物组合,其稳定域本身就具有温度或压力极限值的指示意义.例如,高温或超高温变质岩中的紫苏辉石+夕线石+石英组合,稳定存在的压力不低于1.05 GPa;假蓝宝石+石英组合稳定存在的温度不低于1050℃;(3)特殊矿物消失的反应线,可以限定温度极大值.例如,白云母脱水分解的反应,在中等压力条件下,不超过650℃,即与白云母+石英平衡共生的矿物组合一般不会高于650℃;(4)对于矿物固溶体发生出溶的情况,根据新生出溶页片和残留基体矿物,采用溶线温度计(二长石温度计、二辉石温度计、方解石-白云石温度计)计算出的温度数值,代表原先成分均匀的矿物固溶体出溶之前的温度极小值;(5)如果岩石中发生了退变质反应,要恢复变质作用高峰期的P-T条件,需要尽可能恢复高峰期的矿物成分,或者采用接近高峰期的矿物成分;(6)根据压力计模式反应中位于高压侧或低压侧的某种纯相矿物,可以确定压力极限值.例如,金红石位于GRAIL压力计模式反应的高压一侧.当岩石中缺少金红石时,可以人为假定岩石中存在金红石,计算出的压力为真实压力的极大值.由于压力计模式反应大多为纯转变反应,因此根据实际矿物组合和压力计模式反应,一般可以估算变质作用压力的极小值或极大值.估算变质作用P-T的极限值,方法并不限于本文所述的例子.  相似文献   

2.
采用激光拉曼、阴极发光和电子探针技术,确认冀西北石榴角闪二辉麻粒岩锆石中保存早期高压变质包体矿物组合:石榴石(Grt)+单斜辉石(Cpx)+斜长石(Pl)+石英(Qtz)+金红石(Rt)、单斜辉石(Cpx)+斜长石(Pl)+石英(Qtz)和石榴石(Grt)+单斜辉石(Cpx)+斜长石(Pl)+石英(Qtz)。其中少量锆石具有继承性锆石的核,而多数锆石则形成于高压麻粒岩相变质阶段。利用TWQ方法限定石榴角闪二辉麻粒岩锆石中所保存的高压包体矿物组合的变质温度条件为750~820℃,压力为1.07~1.40 GPa。该项研究成果对于如何识别高压麻粒岩以及深入研究其成因机制均具有重要的科学意义。  相似文献   

3.
作者使用激光拉曼微光谱在柴达木北缘超高压变质带与一大型榴辉岩体有关的泥质片麻岩的锆石单矿物中发现柯石英。柯石英呈包体产出。此外,还发现一些石墨包体。这发现表明曾发生原地超高压变质作用。地体很可能是在低于金刚石稳定区压力条件下结晶的。  相似文献   

4.
与目前广泛存在的传统热力学温压计相比,矿物包裹体拉曼弹性温压计是一种独立于化学平衡之外的基于力学平衡的新型温压计。其原理是利用激光拉曼频移标定矿物包裹体在常压条件下储存的残余应力,结合包裹体与寄主两相矿物弹性物理特性,可准确恢复包裹体捕获时的温度和压力条件,是一个潜在的优质温压计。作为新发展起来的技术和方法,越来越多地引起地质学家的关注,但是目前大量的研究还集中于对该温压计自身的推演和校正,而对于天然样品的研究还相对缺乏。近来年,学者们成功地将拉曼弹性矿物温压计应用到各类天然样品的研究中。有限的研究表明拉曼弹性矿物温压计具有较大的应用范围,不仅是一个潜在的优质地质温压计,而且可广泛应用于恢复俯冲带受后期热事件强烈改造的高压-超高压变质信息,进而示踪地球早期俯冲带演化的动力学过程。因此矿物包裹体拉曼弹性温压计具有广泛的地质用途和应用前景。  相似文献   

5.
越南西北部大象山超高温变质岩的发现及其区域构造意义   总被引:1,自引:1,他引:0  
越南西北部大象山群孔兹岩系中发育一套含刚玉+尖晶石+石榴石+夕线石组合的富铝岩石块体,它们呈透镜状包体形式赋存于孔兹岩系内。岩石中刚玉+尖晶石+石榴石+夕线石组合的发育指示岩石经历了超高温变质作用的改造。其中尖晶石和石英的共生组合表明了变质温度高于900℃,而利用岩石退变质矿物组合中的黑云母-石榴石温度计,黑云母-斜长石-石榴石-石英组合温度-压力计估算的变质温度压力条件分别为879~917℃、0.90~0.94GPa。岩石中的早期刚玉+夕线石的组合的存在说明岩石变质作用已经从高角闪岩相进入到了麻粒岩相;而峰期变质矿物组合尖晶石+石英的出现,指示了变质温度高于900℃的超高温变质作用。另一方面,退变质过程中钛铁矿的发育表明岩石经历了快速抬升降压的过程。变质作用的P-T轨迹分析揭示出岩石经历了早期同步升温增压后的快速增温达到峰期条件,后经历快速等温减压过程。这种温压条件的变化与板块会聚过程中由于俯冲板片的断离而使软流圈上涌造成热异常的温压条件变化基本一致。通过对超高温变质岩石进行锆石SIMS U-Pb测年获得的结果大于58Ma,推测这次超高温变质与喜马拉雅运动中印度与欧亚大陆的初期会聚-碰撞作用相关。  相似文献   

6.
石墨作为各种岩浆岩和变质岩的副矿物可作为主岩形成条件的指示剂。本文利用激光拉曼光谱分析在大坪金矿含金脉石英中发现了大量孤立的石墨固体包裹体,进一步利用激光拉曼光谱和显微测温分析了其寄主矿物的流体包裹体特征,据此探讨了这些石墨包裹体的形成条件和本区成矿流体的来源。结果表明:所有大坪石墨的拉曼光谱都在1576~1580cm-1处出现尖锐的有序O峰,而绝大多数在1355cm-1附近不出现无序的D锋,表明这些石墨具有完全有序结构和完好的结晶度;其寄主矿物流体包裹体主要是纯CO2包裹体和富CO2包裹体。根据大坪石墨的拉曼光谱D:O峰强度比,估计这些石墨形成于麻粒岩相变质温度条件下,与石英中富CO2流体包裹体的均一温度(300.0~420.0℃)极不相称;含金石英脉中包裹体的类型和成分也表明本区不存在从流体中直接沉淀石墨的物理化学条件,因此推测这些石墨形成于下地壳麻粒岩相变质环境下。本区喜马拉雅期切割较深的韧性剪切带从下地壳麻粒岩相变质基底中汲取大量富CO2的流体的同时,还从下地壳携带微粒石墨,富含CO2和高结晶度石墨的成矿流体沿剪切带上升,并在闪长岩体内脆性断裂中沉淀成矿。本文的研究成果再次证实了下地壳流体对大坪金矿成矿的贡献。  相似文献   

7.
在云南省鹤庆县六合乡河东村的正长斑岩中产出多种含石榴石的深源包体。文中详细介绍了这些包体的岩相学特征和退变质特征 ,提供了包体中主要造岩矿物的化学成分分析结果。根据包体中的矿物组合及主要造岩矿物的化学成分特征划分出了 5种包体类型 ,并运用单斜辉石地质温压计、角闪石地质压力计和石榴石单斜辉石Fe Mg交换地质温度计计算了包体形成和退变质的温压条件 ,初步确定石榴石透辉岩及石榴辉石岩来源于上地幔 (87~ 95km) ,在快速上升到下地壳时被正长斑岩岩浆捕获 ;石榴石透辉角闪岩、麻粒岩形成于下地壳 (45~ 5 5km ) ,石榴石斜长角闪岩形成于中下地壳 (约 30km) ,为壳源岩石包体。除石榴辉石岩外 ,其余 4种包体均经历了退变质作用。根据它们的显微结构特征、矿物化学特征及温压计算结果 ,划分了两个变质期次 ,构筑了包体形成及退变质作用的 p T轨迹 ,讨论了退变质过程中压力 深度的变化及意义 ,并推断在退变质过程中包体经历了富Na流体的交代作用。  相似文献   

8.
高温高压下矿物的拉曼原位测量表明,某些拉曼活性的物质其拉曼位移与压力之间具有良好的线性关系。这一特性使我们能够通过测量矿物包裹体中含有这些子矿物的拉曼位移以确定矿物的形成压力。与目前常采用的共存矿物对压力计以及流体包裹体的CO2等容线法等压力测定方法相比,该方法具有快速、方便和准确的特点。由于包裹体中可以存在各种不同的子矿物以及不同的溶液物质,因此系统研究包裹体中一切可能存在的矿物或物质的拉曼位移与温度和压力之间的关系将可以提供一种方便、准确的地质压力测量手段。  相似文献   

9.
广西东南部大容山-十万大山地区过铝质(S型)花岗岩中包含丰富的副变质麻粒岩包体.部分麻粒岩包体保留了尖晶石+石英、斜方辉石+夕线石±石英等超高温变质矿物组合,指示这些麻粒岩包体曾经历了超高温变质作用.矿物温压估算结果显示:峰期温压条件为7.5~8.0kbar,950~1000℃,峰后退变质温压条件为3.2~3.7kba...  相似文献   

10.
花岗岩中常用压力计的应用评述   总被引:2,自引:0,他引:2  
       本文简要讨论了花岗岩中常用压力计的应用限制条件和误差。对于钙碱性花岗岩推荐使用角闪石全铝压力计;对低 压矿化岩体建议使用黑云母全铝压力计即可;奥长环斑花岗岩中可应用富铁斜方辉石-铁橄榄石-石英组合压力计;存在两 种长石和石英平衡共结的花岗岩可利用Q-Ab-Or-H2O相图获得它们的共结压力。花岗岩矿物中流体包裹体的内压可以通过 热力学状态方程或者拉曼光谱获得;特殊的岩浆矿物如绿帘石有时候也可以指示岩浆结晶时所处的最低压力。此外,通过 THERMOCALC计算的视剖面是约束共生矿物组合及熔体形成温压条件的最后方法。  相似文献   

11.
Garnet crystals with quartz inclusions were hydrothermally crystallized from oxide starting materials in piston–cylinder apparatuses at pressures from 0.5 to 3 GPa and temperatures ranging from 700 to 800 °C to study how entrapment conditions affect remnant pressures of quartz inclusions used for quartz-in-garnet (QuiG) elastic thermobarometry. Systematic changes of the 128, 206 and 464 cm?1 Raman band frequencies of quartz were used to determine pressures of quartz inclusions in garnet using Raman spectroscopy calibrations that describe the P–T dependencies of Raman band shifts for quartz under hydrostatic pressure. Within analytical uncertainties, inclusion pressures calculated for each of the three Raman band frequencies are equivalent, which suggests that non-hydrostatic stress effects caused by elastic anisotropy in quartz are smaller than measurement errors. The experimental quartz inclusions have pressures ranging from ??0.351 to 1.247 GPa that span the range of values observed for quartz inclusions in garnets from natural rocks. Quartz inclusion pressures were used to model P–T conditions at which the inclusions could have been trapped. The accuracy of QuiG thermobarometry was evaluated by considering the differences between pressures measured during experiments and pressures calculated using published equation of state parameters for quartz and garnet. Our experimental results demonstrate that Raman measurements performed at room temperature can be used without corrections to estimate garnet crystallization pressures. Calculated entrapment pressures for quartz inclusions in garnet are less than ~?10% different from pressures measured during the experiments. Because the method is simple to apply with reasonable accuracy, we expect widespread usage of QuiG thermobarometry to estimate crystallization conditions for garnet-bearing silicic rocks.  相似文献   

12.
The prograde metamorphic history of the Sulu ultrahigh‐pressure metamorphic terrane has been revealed using Raman‐based barometry of the SiO2 phases and other mineral inclusions in garnet porphyroblasts of a coesite eclogite from Yangzhuang, Junan region, eastern China. Garnet porphyroblasts have inner and outer segments with the boundary being marked by discontinuous changes in the grossular content. In the inner segment, the SiO2 phase inclusions are α‐quartz with no coesite or relict features such as radial cracks. The residual pressures retained by the quartz inclusions systematically increase from the crystal centre to the margin of the inner segment. The metamorphic conditions estimated by calculation from the residual pressure and conventional thermodynamic calculation range from 500 to 630 °C and 1.3 to 2.3 GPa for the stage of the inner segment. Coesite and its pseudomorph occur as inclusions in the outer segment of the garnet and matrix omphacite. This occurrence of coesite is consistent with the pressure and temperature conditions of 660–725 °C and 3.1 GPa estimated by conventional geothermobarometry. Our results suggest that the quartz inclusions in the inner segment were trapped by garnet under α‐quartz‐stable conditions and survived phase transition to coesite at the peak metamorphic stage. The SiO2 phases and other inclusions in the garnet have retained evidence of the pre‐eclogite prograde stage even during exhumation stage. The combined Raman spectroscopic and petrological approaches used here offers a powerful means for obtaining more robust constraints prograde stages involving garnet growth where different SiO2 phases are present as inclusions.  相似文献   

13.
Mineral inclusions are ubiquitous in metamorphic rocks and elastic models for host‐inclusion pairs have become frequently used tools for investigating pressure–temperature (P–T) conditions of mineral entrapment. Inclusions can retain remnant pressures () that are relatable to their entrapment P–T conditions using an isotropic elastic model and P–T–V equations of state for host and inclusion minerals. Elastic models are used to constrain P–T curves, known as isomekes, which represent the possible inclusion entrapment conditions. However, isomekes require a temperature estimate for use as a thermobarometer. Previous studies obtained temperature estimates from thermometric methods external of the host‐inclusion system. In this study, we present the first P–T estimates of quartz inclusion entrapment by integrating the quartz‐in‐garnet elastic model with titanium concentration measurements of inclusions and a Ti‐in‐quartz solubility model (QuiG‐TiQ). QuiG‐TiQ was used to determine entrapment P–T conditions of quartz inclusions in garnet from a quartzofeldspathic gneiss from Goodenough Island, part of the (ultra)high‐pressure terrane of Papua New Guinea. Raman spectroscopic measurements of the 128, 206, and 464 cm?1 bands of quartz were used to calculate inclusion pressures using hydrostatic pressure calibrations (), a volume strain calculation (), and elastic tensor calculation (), that account for deviatoric stress. values calculated from the 128, 206, and 464 cm?1 bands’ hydrostatic calibrations are significantly different from one another with values of 1.8 ± 0.1, 2.0 ± 0.1, and 2.5 ± 0.1 kbar, respectively. We quantified elastic anisotropy using the 128, 206 and 464 cm?1 Raman band frequencies of quartz inclusions and stRAinMAN software (Angel, Murri, Mihailova, & Alvaro, 2019,  234 :129–140). The amount of elastic anisotropy in quartz inclusions varied by ~230%. A subset of inclusions with nearly isotropic strains gives an average and of 2.5 ± 0.2 and 2.6 ± 0.2 kbar, respectively. Depending on the sign and magnitude, inclusions with large anisotropic strains respectively overestimate or underestimate inclusion pressures and are significantly different (<3.8 kbar) from the inclusions that have nearly isotropic strains. Titanium concentrations were measured in quartz inclusions exposed at the surface of the garnet. The average Ti‐in‐quartz isopleth (19 ± 1 ppm [2σ]) intersects the average QuiG isomeke at 10.2 ± 0.3 kbar and 601 ± 6°C, which are interpreted as the P–T conditions of quartzofeldspathic gneiss garnet growth and entrapment of quartz inclusions. The P–T intersection point of QuiG and Ti‐in‐quartz univariant curves represents mechanical and chemical equilibrium during crystallization of garnet, quartz, and rutile. These three minerals are common in many bulk rock compositions that crystallize over a wide range of P–T conditions thus permitting application of QuiG‐TiQ to many metamorphic rocks.  相似文献   

14.
夏琼霞 《地球科学》2019,44(12):4042-4049
石榴石是高压-超高压变质岩石中最重要的变质矿物之一,是研究俯冲带深部变质和熔融过程的理想研究对象.通过对俯冲带内不同条件下形成的石榴石进行详细研究,确定了岩浆成因、变质成因和转熔成因石榴石.岩浆石榴石是岩浆熔体在冷却过程中结晶形成,成分主要为锰铝榴石-铁铝榴石,通常含有石英、长石、磷灰石等晶体包裹体.变质石榴石是在亚固相条件下通过变质反应形成,包裹体为参与变质反应的矿物组合;进变质生长的石榴石通常显示核部到边部锰铝榴石降低的特征.转熔石榴石是在超固相条件下通过转熔反应形成,通常含有晶体包裹体,其中既有从转熔熔体结晶的矿物包裹体,也有转熔反应残留的矿物包裹体.对超高压变质岩石中转熔石榴石的识别,可以为深俯冲陆壳岩石的部分熔融提供重要的岩石学证据,是大陆俯冲带部分熔融研究的重要进展之一.   相似文献   

15.
Abstract According to the kinds of feldspar and rock associations in the Al-rich gneisses, the low-pressure metamorphic crust of the Early Proterozoic granulite facies in central Inner Mongolia can be divided into southern and northern belts which are composed of six rock associations. They represent the relevant rock sequences of the layered metamorphic rock series formed under specific metamorphic temperature and pressure conditions as well as tectonic environments. Mineral inclusions and reaction texture have recorded that the medium-temperature high-pressure mineral assemblages are replaced by the high-temperature low-pressure mineral assemblages, thus, giving rise to: garnet+quartz? hypersthene+plagioclase; kyanite? sillimanite and garnet+ kyanite / sillimanite+quartz? cordierite. The deformation fabrics of the rocks, the change of mineral assemblages and the PTt path of metamorphism indicate that the contempranceous high-temperature normal-slip ductile shearing is the main cause of the formation of the low-pressure metamorphic crust of granulite facies. In the orogenic event, the co-action of thrusting and extension resulted in the change of a medium-temperature high-pressure metamorphic environment into the high-temperature low-pressure metamorphic conditions.  相似文献   

16.
Chris D. Parkinson   《Lithos》2000,52(1-4):215-233
Coarse-grained whiteschist, containing the assemblage: garnet+kyanite+phengite+talc+quartz/coesite, is an abundant constituent of the ultrahigh-pressure metamorphic (UHPM) belt in the Kulet region of the Kokchetav massif of Kazakhstan.

Garnet displays prograde compositional zonation, with decreasing spessartine and increasing pyrope components, from core to rim. Cores were recrystallized at T=380°C (inner) to 580°C (outer) at P<10 kbar (garnet–ilmenite geothermometry, margarite+quartz stability), and mantles at T=720–760°C and PH20=34–36 kbar (coesite+graphite stability, phengite geobarometer, KFMASH system reaction equilibria). Textural evidence indicates that rims grew during decompression and cooling, within the Qtz-stability field.

Silica inclusions (quartz and/or coesite) of various textural types within garnets display a systematic zonal distribution. Cores contain abundant inclusions of euhedral quartz (type 1 inclusions). Inner mantle regions contain inclusions of polycrystalline quartz pseudomorphs after coesite (type 2), with minute dusty micro-inclusions of chlorite, and more rarely, talc and kyanite in their cores; intense radial and concentric fractures are well developed in the garnet. Intermediate mantle regions contain bimineralic inclusions with coesite cores and palisade quartz rims (type 3), which are also surrounded by radial fractures. Subhedral inclusions of pure coesite without quartz overgrowths or radial fractures (type 4) occur in the outer part of the mantle. Garnet rims are silica-inclusion-free.

Type 1 inclusions in garnet cores represent the low-P, low-T precursor stage to UHPM recrystallization, and attest to the persistence of low-P assemblages in the coesite-stability field. Coesites in inclusion types 2, 3, and 4 are interpreted to have sequentially crystallized by net transfer reaction (kyanite+talc=garnet+coesite+H2O), and were sequestered within the garnet with progressively decreasing amounts of intragranular aqueous fluid.

During the retrograde evolution of the rock, all three inclusion types diverged from the host garnet PT path at the coesite–quartz equilibrium, and followed a trajectory parallel to the equilibrium boundary resulting in inclusion overpressure. Coesite in type 2 inclusions suffered rapid intragranular H2O-catalysed transformation to quartz, and ruptured the host garnet at about 600°C (when inclusion P27 kbar, garnet host P9 kbar). Instantaneous decompression to the host garnet PT path, passed through the kyanite+talc=chlorite+quartz reaction equilibrium, resulting in the dusty micro-assemblage in inclusion cores. Type 3 inclusions suffered a lower volumetric proportion transformation to quartz at the coesite–quartz equilibrium, and finally underwent rupture and decompression when T<400°C, facilitating coesite preservation. Type 4 coesite inclusions are interpreted to have suffered minimal transformation to quartz and proceeded to surface temperature conditions along or near the coesite–quartz equilibrium boundary.  相似文献   


17.
The early Precambrian khondalite series is widely distributed in the Jining-Zhuozi-Fengzhen-Liangcheng area, southeastern Inner Mongolia. The khondalite series mainly consists of sillimanite garnet potash feldspar (or two-feldspar) gneiss and garnet biotite plagioclase gneiss. These gneissic rocks have commonly experienced granulite-facies metamorphism. In zircons separated from sillimanite garnet potash feldspar gneisses, many mineral inclusions, including Sil, Grt, Ky, Kfs, Qtz and Ap, have been identified by the Laser Raman spectroscopy. Generally, prograde metamorphic mineral inclusion assemblages such as Ky + Kfs + Qtz + Ap and Ky + Grt + Kfs + Qtz are preserved in the core of zircon, while peak granulite-facies metamorphic minerals including Sil + Grt + Kfs + Qtz and Sil + Grt + Kfs + Qtz + Ap are identified in the mantle and rim of the same zircon. However, in some zircons are only preserved the peak metamorphic minerals such as Sil + Grt + Kfs + Qtz and Sil + Grt + Kfs + Qtz + Ap from core to ri  相似文献   

18.
The (ultra‐) high pressure eclogites from Sumdo area, recorded the subduction and exhumation process of the Paleo‐Tethys oceanic crust. Previous studies showed that there are significant differences in temperature and pressure conditions of the eclogites in four regions, e.g. Sumdo, Xindaduo, Bailang and Jilang. The cause of this differences remains unclear. Studying the peak metamorphic conditions and P‐T path of Sumdo eclogite is of great significance to reveal the subduction and exhumation mechanism of Paleo‐Tethys ocean. In this paper, we choose the Jilang eclogite as an example, which has a mineral assemblage of garnet, omphacite, phengite, hornblende, rutile, epidote, quartz and symplectit (diopside + amphibole + plagioclase), and minor biotite. Garnet has a “dirty” core with abundant mineral inclusions and a “clear” rim with less mineral inclusions, showing typical growth zoning. From the core to the rim, Prp content in garnet increasing while Grs content decreasing. P‐T pseudosection calculated with Domino constrained peak P‐T conditions of Jilang eclogite as 563°C, 2.4 GPa. Combined with petrographical observation, four stages of metamorphism have been recognized: (1) early stage prograde metamorphism represent by the core of garnet and mineral inclusions therein; (2) peak metamorphism represent by the rim of garnet, omphacite, phengite, glaucophane, rutile and quartz; (3) first stage of retrograde metamorphism characterized by decomposition of lawsonite to zoisite; (4) second stage of retrograde metamorphism characterized by symplectites surrounding omphacite and cornona rimmed garnet. Jilang eclogite shows a clockwise P‐T path, and near isothermal decompression during exhumation. It differs from eclogites in other area, which are hosted by garnet‐bearing mica schists or serpentinites. Jilang eclogites are enclosed in metamorphic quartzites, with relatively low P‐T conditions. We infer that the Jilang eclogite was derived from the shallow part of the subduction zone, and was exhumated by low density materials in the subduction channel.  相似文献   

19.
Cathodoluminescence (CL) of quartz from metamorphic rocks representing a range of conditions from the garnet grade to the migmatite grade reveals a variety of textures, that is, a function of metamorphic grade and deformation history. Ti concentrations, determined by electron microprobe and ion microprobe, generally correlate with CL intensity (blue wavelengths), and application of the Ti‐in‐quartz thermometer (TitaniQ) reflects the temperature of quartz growth or recrystallization, and, in some settings, modification by diffusion. Quartz from garnet grade samples is not visibly zoned, records temperatures of 425–475 °C, and is interpreted to have recrystallized during fabric formation. Quartz grains from staurolite grade samples are zoned in CL with markedly darker cores and brighter rims, some of which are interpreted to have been produced by the dominant stauroliteproducing reaction, whereas others are interpreted as having formed by diffusion of Ti into quartz rims. Quartz from the matrix of kyanite and sillimanite grade samples are generally unzoned, although locally displays slightly brighter rims (higher Ti); quartz inclusions within garnet and staurolite have distinctly brighter rims, which are interpreted as having been produced by diffusive exchange with the host mineral. Quartz from migmatite grade samples displays highly variable CL intensity, which is dependent on the location of the grain. Matrix grains in melanosomes are largely unzoned or rarely zoned with darker cores. Leucosome quartz is strongly zoned with bright cores and dark rims and is interpreted as having formed during crystallization of the melt. Locally within the leucosome is observed oscillatory‐zoned quartz, which is interpreted as a subsolidus recrystallization to achieve strain relaxation. Quartz inclusions within garnet or plagioclase crystals often show bright domains separated by zones of dark CL. These enigmatic textures possibly reflect local melting fluxed by fluid inclusions. Temperatures calculated from the Ti–in–quartz thermometer are a function of the metamorphic grade of the sample, the textural setting of the quartz, the reaction history and the deformation history of the rock. The TitaniQ temperatures can be used to constrain the conditions at which various metamorphic processes have occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号