首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 351 毫秒
1.
长江口溶解有机物光漂白和光矿化表观量子产率   总被引:3,自引:1,他引:2  
溶解有机物(DOM)经太阳光照射导致其吸光度(光漂白)和溶解有机碳(光矿化)损失,从而影响水体生态系统光学特性及碳循环。本文通过测定冬季长江口及其邻近海域DOM光降解表观量子产率(AQY),初步探讨了DOM光反应活性在河口及陆架海的变化特征。DOM光降解AQY由口内至口外逐渐递减,且有色溶解有机物(CDOM)光漂白速率是溶解有机碳(DOC)光矿化速率的10倍。Φble(CDOM光漂白表观量子产率)和Φmin(DOC光矿化平均量子产率)在最大浑浊带以东海域与盐度和SUVA254分别呈显著的线性负相关与正相关,表明DOM光反应活性在长江口外受物理混合影响为主,且陆源DOM光反应活性比海源高。此外,最大浑浊带下游DOM光降解AQY显著低于上游。DOM光降解速率随波长的变化呈现非高斯分布,且峰值出现在330 nm,积分结果表明UVA是DOM光降解的主要贡献者。本研究结果将为完善我国东海碳通量模型提供帮助。  相似文献   

2.
刘可  杨琳  杨桂朋  张婧 《海洋学报》2020,42(10):121-131
对2018年秋季西太平洋130°E断面上层水体有色溶解有机物(CDOM)的光学特性及光降解行为进行了研究。结果表明,西太平洋上层水体CDOM的吸收系数a(320)变化范围为0.025~0.64 m?1,平均值为(0.20±0.08) m?1;a(320)在表层相对较低,主要与表层CDOM的光漂白去除有关;在100~200 m水层较高,主要与次表层的生物活动有关。利用三维荧光光谱?平行因子分析技术,识别出两种荧光组分:类酪氨酸组分C1和海洋类腐殖质组分C2。C1主要源于棉兰老冷涡?上升流所带来的营养物质对浮游植物生产活动和微生物活动的促进作用;C2主要源于黑潮所带来的海洋类腐殖的输入。光化学降解实验发现,CDOM吸收值的损失主要发生在紫外波段;光照60 h后,类酪氨酸组分相较于海洋类腐殖质组分更易发生光降解;且光降解是西太平洋海域CDOM的重要去除途径。  相似文献   

3.
The photochemical oxidation of colored, dissolved organic matter (CDOM) is important for carbon cycling in the ocean. This oxidation process produces a number of products, including carbon monoxide (CO). While the photochemical production efficiency of CO (apparent quantum yield, AQY, defined in terms of CDOM absorbance) has been reported to be similar for many water types, a full evaluation of the observed natural variability in CO AQY requires additional study. Here we use a polychromatic irradiation system to determine twenty AQY spectra at sea on fresh samples ranging from the near coastal waters of the Gulf of Maine to the offshore waters of the Northwest Atlantic. Despite the geographic variability of these marine samples the AQY of CO production in the Gulf of Maine and Northwest Atlantic exhibited only a small degree of variability, none of which was not correlated with measured environmental parameters. Consequently, a single aggregate AQY spectrum λ = e(−(9.134+0.0425(λ−290)))+e(−(11.316+0.0142(λ−290))) was found to adequately represent the entire data set. Significantly, the accuracy of an AQY spectrum determined using this multispectral/statistical technique was confirmed with data obtained from a monochromatic irradiation technique on a single open ocean sample. Taken together, the AQY spectra determined in this study were similar in magnitude and shape to those previously published for marine samples and, overall, were somewhat lower than those previously reported for freshwater studies.  相似文献   

4.
海水中的一氧化碳(CO)主要由溶解有色有机物(CDOM)光降解产生,且CO的光致生成量受到环境因素的影响。采集了胶州湾及其河口表层水样,通过实验室模拟实验开展了不同的环境条件(辐射强度、光照时间、温度、pH和盐度)以及水体中CDOM的来源对CO光致生成的影响研究。结果表明胶州湾海水中CO的光致生成速率随辐射强度的增强、水温的升高和水体pH的增大而增大;随着光照时间的延长、水体盐度的增大而逐渐减小;不同来源的CDOM对水体中CO的光致生成速率产生了不同的影响。  相似文献   

5.
We analyze a two-year time-series of chromophoric dissolved organic matter (CDOM) light absorption measurements in the upper 400 m of the water column at the BOUSSOLE site in the NW Mediterranean Sea. The seasonal dynamics of the CDOM light absorption coefficients at 440 nm (acdom(440)) is essentially characterized by (i) subsurface maxima forming in spring and progressively reinforcing throughout summer, (ii) impoverishment in the surface layer throughout summer and (iii) vertical homogeneity in winter. Seasonal variations of the spectral dependence of CDOM absorption, as described by the exponential slope value (Scdom), are characterized by highest values in summer and autumn at the surface and low values at the depths of acdom(440) subsurface maxima or just below them. Variations of acdom(440) are likely controlled by microbial digestion of phytoplankton cells, which leads to CDOM production, and by photochemical destruction (photobleaching), which leads to CDOM degradation. Photobleaching is also the main driver of Scdom variations. Consistently with previous observations, acdom(440) for a given chlorophyll a concentration is higher than expected from Case I waters bio-optical models. The total non-water light absorption budget shows that surface waters at the BOUSSOLE site are largely dominated by CDOM during all seasons but the algal bloom in March and April. These results improve the knowledge of CDOM absorption dynamics in the Mediterranean Sea, which is scarcely documented. In addition, they open the way to improved algorithms for the retrieval of CDOM absorption from field or satellite radiometric measurements.  相似文献   

6.
胶州湾海水中一氧化碳光致生成影响因素的研究   总被引:3,自引:1,他引:2  
海水中的一氧化碳(CO)主要由溶解有色有机物(CDOM)光降解产生,且CO的光致生成量受到环境因素的影响。采集了胶州湾及其河口表层水样,通过实验室模拟实验开展了不同的环境条件(辐射强度、光照时间、温度、pH和盐度)以及水体中CDOM的来源对CO光致生成的影响研究。结果表明胶州湾海水中CO的光致生成速率随辐射强度的增强、水温的升高和水体pH的增大而增大;随着光照时间的延长、水体盐度的增大而逐渐减小;不同来源的CDOM对水体中CO的光致生成速率产生了不同的影响。  相似文献   

7.
浒苔的暴发会对水体生态环境产生巨大的影响, 对此进行遥感监测具有十分重要的意义。本文基于现场同步实测的有色溶解有机物(colored dissolved organic matter, CDOM)吸收系数、叶绿素浓度以及光谱数据建立遥感反演模型,再结合MODIS卫星影像提取山东半岛南侧近岸海域在各年份浒苔暴发前后CDOM与叶绿素浓度的时空分布特征。结果表明, 浒苔的消亡分解会在水体中产生大量的CDOM, 但浒苔的生长繁殖同样会消耗CDOM, 此外CDOM还受到浒苔暴发时期强烈的光降解作用。在各种因素的综合作用下, 研究区海域CDOM浓度在浒苔暴发时期微弱升高, 浒苔消亡后CDOM浓度则开始回落。浒苔在暴发期会抑制其他浮游微藻的生长, 使研究区海域叶绿素浓度有所降低, 而浒苔消亡后叶绿素浓度有所上升。水体中的叶绿素受多种生物地球化学因素的影响, 因此叶绿素浓度的降低与浒苔的暴发强度之间没有明确的相关性。遥感反演可以大范围快速地提取水体中各种要素的分布情况, 但就浒苔的暴发对海水中各要素的影响机制而言, 还需要结合各种生态环境因子进行综合分析。  相似文献   

8.
The photoreactivity of chromophoric dissolved organic matter (CDOM) transported to Arctic shelf environments by rivers has only recently been studied and its quantitative role in Arctic shelf biogeochemistry has received little attention. Sunlight exposure experiments were performed on CDOM collected over a three year period (2002 to 2004) from river, estuary, shelf, and gulf regions of the Western Canadian Arctic. Decreases in CDOM absorption, synchronous fluorescence (SF), and dissolved organic carbon (DOC) concentration were followed after 3 days of exposure, and in two experiments, six optical cutoff filters were used to incrementally remove ultraviolet radiation incident on the samples. Apparent quantum yields for CDOM photobleaching (AQYble) and for DOC photomineralization (AQYmin) were computed, as were two AQY spectra (ble and min) for the Mackenzie River and a sample from the Mackenzie Shelf. The photoreactivity of Mackenzie River CDOM was highest after break-up and peak discharge and lowest in late summer. The half-lives of CDOM and DOC were estimated at 3.7 days and 4.8 days, respectively, when Mackenzie River water was exposed to full sunlight. Photobleaching of Mackenzie River CDOM fluorescence after most UV-B wavelengths were removed increased the correlation between the river and offshore waters in the Beaufort Sea. When light attenuation from particle- and CDOM-rich river water was considered for the Mackenzie Shelf, our photodegradation models estimated around 10% loss of absorption and < 1% DOC loss, suggesting that sunlight exposure does not substantially degrade CDOM on Arctic shelves.  相似文献   

9.
《Marine Chemistry》2002,77(1):23-41
Chromophoric dissolved organic matter (CDOM) is the light absorbing fraction of dissolved organic carbon (DOC). The optical properties of CDOM potentially permit remote sensing of DOC and CDOM, and correction for CDOM absorption is essential for remote sensing of chlorophyll a (chl a) in coastal and estuarine waters. To provide data for this purpose, we report the distributions of CDOM, DOC, and chl a from seven cruises in Chesapeake Bay in 1994–1997. We observed non-conservative distributions of chl a and DOC in half of the cruises, indicating net accumulations within the estuary; however, there were no net accumulations or losses of CDOM, measured as absorption at 355 nm or as fluorescence. Freshwater end member CDOM absorption varied from 2.2 to 4.1 m−1. Coastal end member CDOM absorption was considerably lower, ranging over 0.4–1.1 m−1. The fluorescence/absorption ratio was similar to those reported elsewhere for estuarine and coastal waters; however, in the lower salinity/high CDOM region of the Bay, the relationship was not constant, suggestive of the mixing of two or more CDOM sources. Chl a was not correlated with the absorption for most of the cruises nor for the data set as a whole; however, CDOM and DOC were significantly correlated, with two groups evident in the data. The first group had high CDOM concentrations per unit DOC and corresponded to the conservative DOC values observed in the transects. The second group had lower CDOM concentrations per unit DOC and corresponded to the non-conservative DOC values associated with net DOC accumulation near the chl a maximum on the salinity gradient. This indicates the production of non-chromophoric DOC in the region of the chl a maximum of Chesapeake Bay. In terms of remote sensing, these data show that (1) the retrieval of the absorption coefficient of CDOM from fluorescence measurements in the Bay must consider the variability of the fluorescence/absorption relationship, and (2) estimates of DOC acquired from CDOM absorption will underestimate DOC in regions with recent, net accumulations of DOC.  相似文献   

10.
An optical model is developed for the remote sensing of coloured dissolved organic matter (CDOM) in a wide range of waters within coastal and open ocean environments. The absorption of CDOM (denoted as ag) is generally considered as an exponential form model, which has two important parameters – the slope S and absorption of CDOM at a reference wavelength ag(λ0). The empirical relationships for deriving these two parameters are established using in-situ bio-optical datasets. These relationships use the spectral remote sensing reflectance (Rrs) ratio at two wavelengths Rrs(670)/Rrs(490), which avoids the known atmospheric correction problems and is sensitive to CDOM absorption and chlorophyll in coastal/ocean waters. This ratio has tight relationships with ag(412) and ag(443) yielding correlation coefficients between 0.77 and 0.78. The new model, with the above parameterization applied to independent datasets (NOMAD SeaWiFS match-ups and Carder datasets), shows good retrievals of the ag(λ) with regression slopes close to unity, little bias and low mean relative and root mean square errors. These statistical estimates improve significantly over other inversion models (e.g., Linear Matrix-LM and Garver-Siegel-Maritorena-GSM semi-analytical models) when applied to the same datasets. These results demonstrate a good performance of the proposed model in both coastal and open ocean waters, which has the potential to improve our knowledge of the biogeochemical cycles and processes in these domains.  相似文献   

11.
2007年夏季在东海舟山海域河口锋区开展了陆源溶解有机质的调查研究。测定了有色溶解有机质(CDOM)在激发波长370 nm/发射波长460 nm处的荧光强度和在λ=355 nm处的吸收系数,用于代表陆源CDOM浓度,并测定了荧光指数以指示CDOM来源。结果表明,CDOM的荧光值和紫外吸收系数之间呈显著正相关性,陆源CDOM浓度大体有向海方向降低的趋势,但是纵向上存在一些"突跃"现象。在舟山海域东北角不时观测到表层水体含有高浓度的CDOM,但变异性很大,推测可能该海区受到长江口羽状流的影响。在连续观测站发现陆源CDOM浓度在低平潮时往往比高平潮时要高。河海水在混合过程中CDOM浓度与盐度呈显著的线性负相关关系。在低盐度的悬沙锋区(S<24)CDOM浓度明显低于理论稀释值,而在较高盐度的羽状锋区,CDOM浓度接近于理论稀释值。在盐度为24~31范围内,大部分水样的荧光指数在1.50上下波动,表明其中CDOM来源以陆地来源为主;在较低盐度(S<24)的水样中荧光指数在1.70至1.90以上,表明CDOM以海洋来源为主,这与其陆源组分在高浊度的低盐度区存在显著的去除过程有关。研究表明,舟山海域水质存在着显著的变异性,与近岸羽状流密切相关,陆源溶解有机质的分布特征对此有较好的响应。  相似文献   

12.
Chromophoric dissolved organic matter (CDOM) was measured in the spring and summer in the northern Gulf of Mexico with the ECOShuttle, a towed, instrumented, undulating vehicle. A submersible pump mounted on the vehicle supplied continuously flowing, uncontaminated seawater to online instruments in the shipboard laboratory and allowed discrete samples to be taken for further analysis. CDOM in the northern Gulf of Mexico was dominated by freshwater inputs from the Mississippi River through the Birdfoot region and to the west by discharge from the Atchafalaya River. CDOM was more extensively dispersed in the high-flow period in the spring but in both time periods was limited by stratification to the upper 12 m or so. Thin, subsurface CDOM maxima were observed below the plume during the highly stratified summer period but were absent in the spring. However, there was evidence of significant in situ biological production of CDOM in both seasons.The Mississippi River freshwater end member was similar in spring and summer, while the Atchafalaya end member was significantly higher in the spring. In both time periods, the Atchafalaya was significantly higher in CDOM and dissolved organic carbon (DOC) than the Mississippi presumably due to local production and exchange within the coastal wetlands along the lower Atchafalaya which are absent along the lower Mississippi. Nearshore waters may also have higher CDOM due to outwelling from coastal wetlands. High-resolution measurements allow the differentiation of various water masses and are indicative of rapidly varying (days to weeks) source waters. Highly dynamic but conservative mixing between various freshwater and marine end members apparently dominates CDOM distributions in the area with significant in situ biological inputs (bacterial degradation of phytoplankton detritus), evidence of flocculation, and minor photobleaching effects also observed. It is clear that high-resolution measurements and adaptive sampling strategies allow a more detailed examination of the processes that control CDOM distributions in river-dominated systems.  相似文献   

13.
Onega Bay waters are characterized by a high content of chromophoric dissolved organic matter (CDOM). The absorbance spectra and fluorescence intensity (excitation wavelength 455 nm, emission wavelength >680 nm) were used to assess the distribution of CDOM content in water filtered through a GF/F filter. The CDOM content at different points in Onega Bay showed more than a fourfold difference, as inferred from the measured values. The CDOM content in surface waters was, as a rule, higher than in the deeper horizons. A higher CDOM content was measured near the Onega River, near the middle part of the Onega shore, and near the Pomor shore opposite the town of Belomorsk. River runoff is the major source of CDOM in Onega Bay water. The CDOM chemical composition in Onega Bay waters was heterogeneous. The ratio of the fluorescence intensity to the absorbance value was higher near the mouths of rivers and in intensive mixing zones than in water characterized by high salinity. A highly significant linear correlation (R2 = 0.7825) between water salinity and CDOM fluorescence intensity was demonstrated. The contribution of fluorescent compounds to river runoff CDOM is substantially higher than the contribution to the composition marine CDOM.  相似文献   

14.
The spectral absorption properties of chromophoric dissolved organic matter (CDOM) and their distributions in two Chinese estuaries, the Yangtze River Estuary and the Jiulong River Estuary, were studied during August 2003 (wet season) and during different seasons between 2003−2005, respectively. The CDOM concentrations (a355) of fresh end members in the Jiulong River Estuary varied seasonally, while its quality remained relatively stable. However, the a355 of the marine end members exhibited less variability. Application of a conservative mixing model indicated that CDOM behaved conservatively in the Yangtze River Estuary. No photobleaching removal was observed at high salinity region of this estuary. Although CDOM showed conservative behavior for many cruises in the Jiulong River Estuary, there was evidence for removal in the low salinity regions during some cruises. Laboratory mixing experiments and a salt addition experiment suggested that particle sorption of CDOM maybe the possible reason for the removal. These results showed that absorption properties of CDOM can be used as a tool to observe the quantitative and qualitative dynamics of DOM during estuarine mixing.  相似文献   

15.
依据2017年8—9月对黄海海域溶解有机物(DOM)的调查,探讨了夏季黄海海水中溶解有机碳(DOC)和有色溶解有机物(CDOM)的空间分布特征。在表层海水中,受陆源影响较大的近岸海域CDOM含量相对较高,北黄海冷水团区域由于水产养殖的饵料引起DOC浓度升高,且该部分DOC以无色为主。DOC浓度随深度逐渐降低,而CDOM逐渐升高,该特征在冷水团区域更为显著,因此DOC和CDOM在冷水团区域的表底差异远大于浅水区的非冷水团区域。陆源输入和初级生产是引起表层DOC升高的主要原因,而光漂白则引起CDOM降低,同时光漂白还导致表层水体中CDOM分子量和芳香性低于底层。底层溶解氧饱和度在冷水团为80%~93%,均表现为弱不饱和状态。层化不仅阻碍了O2向底层水体输送,还抑制了DOC和CDOM的垂向混合,这是引起冷水团区域表底层DOC和CDOM差异较大的主要原因。  相似文献   

16.
One indicator of health in estuarine and coastal ecosystems is the ability of local waters to transmit sunlight to planktonic, macrophytic, and other submerged vegetation for photosynthesis. The concentration of coloured dissolved organic matter (CDOM) is a primary factor affecting the absorption of incident sunlight in coastal and estuarine waters. In estuaries, CDOM concentrations vary due to changes in salinity gradients, inflows of industrial and domestic effluents, and the production of new dissolved organic matter from marine biologic activity. CDOM absorption data have been collected from a variety of waters. However, there are a limited number of measurements along the US east coast and a general lack of data from New England waters.This study characterized the temporal and spatial variability of CDOM absorption over an annual cycle in Narragansett Bay and Block Island Sound (Rhode Island). Results suggested that, in Narragansett Bay, the magnitude of CDOM absorption is related to the seasonal variability of freshwater input from surrounding watersheds and new CDOM production from in situ biologic activity. The data show that the average CDOM absorption coefficient at 412 nm was 0·45 m−1 and the average spectral slope was 0·020 nm−1.  相似文献   

17.
The distribution and characteristics of coloured dissolved organic matter (CDOM) in the Baltic – North Sea transition zone were studied. The aim was to assess the validity of predicting CDOM absorption in the region on the basis of water mass mixing alone and demonstrate the utility of CDOM as an indicator of water mass mixing in coastal seas. A three-end-member mixing model representing the three major allochthonous CDOM sources was sufficient to describe the patterns in CDOM absorption distribution observed. The three-end-member water masses were the: Baltic outflow, German Bight and the central North Sea. Previously, it was thought that water from the German Bight transported northwards in the Jutland coastal current only sporadically influenced mixing between the Baltic and North Sea. The results from this study show that water from the German Bight is detectable at salinities down to 12 in the Kattegat and Belt Sea. On average, 23% of the CDOM in bottom waters of the Kattegat, Great Belt, Belt Sea, Arkona Sea and the Sound originated from the German Bight. Using this conservative mixing model approach, local CDOM inputs were detectable but found to be limited, representing only 0.25% of CDOM in the surface waters of the Kattegat and Belt Sea. The conservative mixing of CDOM makes it possible to predict its distribution and characteristics and offers a powerful tool for tracing water mass mixing in the region. The results also emphasize the need to include the Jutland Coastal current in hydrodynamic models for the region.  相似文献   

18.
水体中有色可溶性有机物的研究进展   总被引:12,自引:0,他引:12  
有色可溶性有机物(CDOM)是水体中一类重要的光吸收物质,在短波的吸收大大降低了紫外辐射在水体的衰减,因而其光学行为和生物地球化学循环将对水体生态系统产生重要影响。CDOM在水体生态系统、水色遥感和全球碳循环研究中具有广阔的应用前景。文章综述了国内外CDOM研究现状与动态,其中包括CDOM的光吸收特性、荧光特性、光化学降解以及CDOM和DOC浓度的水色遥感,最后提出在内陆水体湖泊中开展CDOM研究的设想。  相似文献   

19.
To distinguish true red tide water (particularly Cochlodinium polykrikoides blooms) from non-red tide water (false satellite high chlorophyll water) in the South Sea of Korea, we developed a systematic classification method using spectral information from MODIS level products and applied it to five different harmful algal bloom events. Red tide and nonred tide waters were classified based on four different criteria. The first step revealed that the radiance peaks of potential red tide water occurred at 555 and 678 nm. The second step separated optically different waters that were influenced by relatively low and high contributions of colored dissolved organic matter (CDOM) (including detritus) to chlorophyll. The third and fourth steps discriminated red tide water from non-red tide water based on the blue-to-green ratio in areas with lower and higher contributions of CDOM to chlorophyll, respectively. After applying the red tide classification (using the four criteria), the spectral response of the red tide water, which is influenced by pigment concentration, showed different slopes for the blue and green bands (lower slope at blue bands and higher slope at green bands). The opposite result was found for non-red tide water, due to decreasing phytoplankton absorption and increasing detritus/CDOM absorption at blue bands. The results were well matched with the discoloration of water (blue to dark red/brown) and delineated the areal coverage of C. polykrikoides blooms, revealing the nature of spatial and temporal variations in red tides. This simple spectral classification method led to increase user accuracy for C. polykrikoides and non-red tide blooms (>46% and >97%) and provided a more reliable and robust identification of red tides over a wide range of oceanic environments than was possible using chlorophyll a concentration, chlorophyll anomaly, fluorescence analysis, or proposed red tide detection algorithms.  相似文献   

20.
Chromophoric dissolved organic matter (CDOM), as the light absorbing fraction of bulk dissolved organic matter (DOM), plays a number of important roles in the global and local biogeochemical cycling of dissolved organic carbon (DOC) and in controlling the optical properties of estuarine and coastal waters. Intertidal areas such as salt marshes can contribute significant amounts of the CDOM that is exported to the ocean, but the processes controlling this CDOM source are not well understood. In this study, we investigate the production of DOM and CDOM from the decomposition of two salt marsh cordgrasses, Spartina patens, a C4 grass, and Typha latifolia, a C3 grass, in well-controlled laboratory experiments. During the seven-week incubation period of the salt marsh grasses in oxic and anoxic seawater, changes in dissolved organic carbon (DOC) concentrations, dissolved nitrogen (DN) concentrations, stable carbon isotopic composition of DOC (DOC-δ13C), and CDOM fluorescence demonstrate a significant contribution of DOC and CDOM to estuarine waters from salt marsh plants, such as Spartina and Typha species. In the natural environment, however, the release processes of CDOM from different cordgrass species could be controlled largely by the in situ oxic and anoxic conditions present during degradation which affects both the production and decomposition of DOC and CDOM, as well as the optical properties of CDOM in estuarine and coastal waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号