首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater flow in a 3-D domain with fracture planes is numerically investigated using the finite element method. A flexible mesh generation method for discretization is proposed in this paper. The method, based on Delaunay triangulation, divides the whole domain into subdomains separated by fracture planes. It then triangulates each subdomain independently into tetrahedra which are further subdivided into hexahedra. By putting together all of the meshes of the subdomain, a finite element mesh of the whole domain is obtained. The appropriateness of the mesh generation method is topologically proved. Several applications of the proposed method are given, and the numerical solutions are in good agreement with those obtained with a structured grid. It is concluded that the proposed mesh generation method can replace the structured grid.  相似文献   

2.
The finite element method is widely employed in numerical analysis of seismic liquefaction at present. However, due to the mesh distortion in strong dynamic action, the results are generally inaccurate and can even stop the calculation. Therefore, an adaptive mesh refinement (AMR) scheme is introduced to improve the numerical results based on a finite element and finite difference coupled dynamic method (FEM–FDM). The changing law about the errors due to the linear and the bilinear recovered fields of coarse meshes, AMR meshes and fine meshes is discussed. The seismic response on soil is compared between different AMR meshes. The AMR strategy can better simulate seismic liquefaction and offer more accurate results than the normal finite element simulation.  相似文献   

3.
伪谱法弹性波场数值模拟中的边界条件   总被引:2,自引:1,他引:1       下载免费PDF全文
边界条件问题长期以来一直是困扰地震波数值模拟研究者的一个难题,许多人都提出了有效的方法,但是该问题仍然需要研究.本文针对伪谱法地震波场数值模拟的特殊要求,即所有网格点相互耦合,且傅立叶变换的周期性使得方程在网格边界上很难得到一个吸收的替代方程,研究衰减边界条件中衰减系数的变化对边界反射波衰减效果的影响.数值实验结果说明,随着衰减系数的增大,振幅衰减加快,用很少的过渡带网格就可以使边界上的反射波能量很小.但是如果衰减率过大,就会在传播区和过渡带产生干扰波场.因此,在衰减系数的选择上应采取折中办法,即在取某一较小的衰减系数的前提下,设置较少的过渡带网格数使边界的能量反射最少.  相似文献   

4.
We propose an optimized method to compute travel times for seismic inversion problems. It is a hybrid method combining several approaches to deal with travel time computation accuracy in unstructured meshes based on tetrahedral elementary cells. As in the linear travel time interpolation method, the proposed approach computes travel times using seismic ray paths. The method operates in two sequential steps: At a first stage, travel times are computed for all nodes of the mesh using a modified version of the shortest path method. The difference with the standard version is that additional secondary nodes (called tertiary nodes) are added temporarily around seismic sources in order to improve accuracy with a reasonable increase in computational cost. During the second step, the steepest travel time gradient method is used to trace back ray paths for each source–receiver pair. Travel times at each receiver are then recomputed using slowness values at the intersection points between the ray path and the traversed cells. A number of numerical tests with an array of different velocity models, mesh resolutions and mesh topologies have been carried out. These tests showed that an average relative error in the order of 0.1% can be achieved at a computational cost that is suitable for travel time inversion.  相似文献   

5.
A new mesh refinement strategy for generating high quality unstructured meshes of the Northwestern European continental shelf, the continental slope and the neighbouring ocean is presented. Our objective is to demonstrate the ability of anisotropic unstructured meshes to adequately address the challenge of simulating the hydrodynamics occurring in these three regions within a unique mesh. The refinement criteria blend several hydrodynamic considerations as the tidal wave propagation on the continental shelf and the hydrostatic consistency condition in steep areas. Several meshes illustrate both the validity and the efficiency of the refinement strategy. The selection of the refinement parameters is discussed. Finally, an attempt is made to take into account tidal ellipses, providing another cause for anisotropy in the mesh.  相似文献   

6.
This study is focused on the integration of bare earth lidar (Light Detection and Ranging) data into unstructured (triangular) finite element meshes and the implications on simulating storm surge inundation using a shallow water equations model. A methodology is developed to compute root mean square error (RMSE) and the 95th percentile of vertical elevation errors using four different interpolation methods (linear, inverse distance weighted, natural neighbor, and cell averaging) to resample bare earth lidar and lidar-derived digital elevation models (DEMs) onto unstructured meshes at different resolutions. The results are consolidated into a table of optimal interpolation methods that minimize the vertical elevation error of an unstructured mesh for a given mesh node density. The cell area averaging method performed most accurate when DEM grid cells within 0.25 times the ratio of local element size and DEM cell size were averaged. The methodology is applied to simulate inundation extent and maximum water levels in southern Mississippi due to Hurricane Katrina, which illustrates that local changes in topography such as adjusting element size and interpolation method drastically alter simulated storm surge locally and non-locally. The methods and results presented have utility and implications to any modeling application that uses bare earth lidar.  相似文献   

7.
基于自适应网格的仿真型有限差分地震波数值模拟   总被引:2,自引:1,他引:1       下载免费PDF全文
在复杂山地和复杂海底条件下,地表和海底的剧烈起伏对地震波数值模拟提出了更高的要求.常规有限差分法采用矩形网格对模型进行网格剖分,由于矩形网格自身的限制,起伏地表或起伏海底只能由一系列阶梯状折线代替,从而引起人为虚假绕射波.此外,在模拟液-固界面的反射波时,如果界面与网格线不一致,则需要更密的网格才能得到精确的结果.为了解决上述问题,本文将自适应网格生成技术引入到起伏海底速度模型的网格剖分中,采用高阶仿真型有限差分法(MFD)对曲线坐标下的声波方程波进行了数值模拟.利用自适应网格生成技术对速度模型进行网格剖分不仅可以准确地描述模型边界,而且可以有效消除虚假绕射波.高阶仿真型有限差分法可以有效压制频散提高计算精度.模型试算结果表明,本文方法对复杂海底模型具有很好的适应性.  相似文献   

8.
A new mesh size field is presented that is specifically designed for efficient meshing of highly irregular oceanic domains: archipelagos. The new approach is based on the standard mesh size field that uses the proximity to the nearest coastline. Here, the proximities to the two nearest coastlines are used to calculate the distance between two islands or the width of a strait through an archipelago. The local value of the mesh size field is taken as the width (or distance between two islands) divided by the number of required elements across the strait (or between the islands). This new mesh size fields are illustrated for three examples: (1) the Aegean Sea, (2) the Indonesian Archipelago, and (3) the Canadian Arctic Archipelago.  相似文献   

9.
Fluid–structure interactions are modelled by coupling the finite element fluid/ocean model ‘Fluidity-ICOM’ with a combined finite–discrete element solid model ‘Y3D’. Because separate meshes are used for the fluids and solids, the present method is flexible in terms of discretisation schemes used for each material. Also, it can tackle multiple solids impacting on one another, without having ill-posed problems in the resolution of the fluid’s equations. Importantly, the proposed approach ensures that Newton’s third law is satisfied at the discrete level. This is done by first computing the action–reaction force on a supermesh, i.e. a function superspace of the fluid and solid meshes, and then projecting it to both meshes to use it as a source term in the fluid and solid equations. This paper demonstrates the properties of spatial conservation and accuracy of the method for a sphere immersed in a fluid, with prescribed fluid and solid velocities. While spatial conservation is shown to be independent of the mesh resolutions, accuracy requires fine resolutions in both fluid and solid meshes. It is further highlighted that unstructured meshes adapted to the solid concentration field reduce the numerical errors, in comparison with uniformly structured meshes with the same number of elements. The method is verified on flow past a falling sphere. Its potential for ocean applications is further shown through the simulation of vortex-induced vibrations of two cylinders and the flow past two flexible fibres.  相似文献   

10.
A new method of local grid refinement for two-dimensional block-centered finite-difference meshes is presented in the context of steady-state groundwater-flow modeling. The method uses an iteration-based feedback with shared nodes to couple two separate grids. The new method is evaluated by comparison with results using a uniform fine mesh, a variably spaced mesh, and a traditional method of local grid refinement without a feedback.Results indicate: (1) The new method exhibits quadratic convergence for homogenous systems and convergence equivalent to uniform-grid refinement for heterogeneous systems. (2) Coupling the coarse grid with the refined grid in a numerically rigorous way allowed for improvement in the coarse-grid results. (3) For heterogeneous systems, commonly used linear interpolation of heads from the large model onto the boundary of the refined model produced heads that are inconsistent with the physics of the flow field. (4) The traditional method works well in situations where the better resolution of the locally refined grid has little influence on the overall flow-system dynamics, but if this is not true, lack of a feedback mechanism produced errors in head up to 3.6% and errors in cell-to-cell flows up to 25%.  相似文献   

11.
各向异性介质模型电性结构复杂,如何进行合理的网格剖分成为获得高精度正演结果的关键,为此本文开展时间域航空电磁各向异性大地三维自适应有限元正演算法研究.通过结合非结构时间域有限元算法和自适应网格优化技术,实现各向异性介质条件下三维时间域航空电磁自适应正演.考虑到时间域航空电磁响应随时间的衰减特性,为了综合评价不同时刻的后验误差,本文将时间作为加权因子,调整各个时刻后验误差的相对权重,进而实现对浅部和深部网格的同步优化.通过与一维解析结果进行对比验证了本文算法的可靠性.数值实验结果显示电导率各向异性对自适应网格影响严重,其最大主轴电导率的数值及其分布特征直接决定了网格加密效果.此外,各向异性对时间域航空电磁三分量响应的分布形态和异常幅值也会产生严重影响,利用全域视电阻率极性图,可以很好地识别各向异性主轴方向.  相似文献   

12.

Fluid–structure interactions are modelled by coupling the finite element fluid/ocean model ‘Fluidity-ICOM’ with a combined finite–discrete element solid model ‘Y3D’. Because separate meshes are used for the fluids and solids, the present method is flexible in terms of discretisation schemes used for each material. Also, it can tackle multiple solids impacting on one another, without having ill-posed problems in the resolution of the fluid’s equations. Importantly, the proposed approach ensures that Newton’s third law is satisfied at the discrete level. This is done by first computing the action–reaction force on a supermesh, i.e. a function superspace of the fluid and solid meshes, and then projecting it to both meshes to use it as a source term in the fluid and solid equations. This paper demonstrates the properties of spatial conservation and accuracy of the method for a sphere immersed in a fluid, with prescribed fluid and solid velocities. While spatial conservation is shown to be independent of the mesh resolutions, accuracy requires fine resolutions in both fluid and solid meshes. It is further highlighted that unstructured meshes adapted to the solid concentration field reduce the numerical errors, in comparison with uniformly structured meshes with the same number of elements. The method is verified on flow past a falling sphere. Its potential for ocean applications is further shown through the simulation of vortex-induced vibrations of two cylinders and the flow past two flexible fibres.

  相似文献   

13.
本文基于非结构网格实现了海洋可控源电磁法三维有限元正演模拟.该算法采用完全非结构网格剖分,可以模拟任意起伏地形和复杂地电模型.为了避免场源的奇异性,采用一次场/二次场分解算法,一次场由基于Schelkunoff势函数的一维解析公式得到.为了提高算法的精度和效率,采用对测点附近单元和异常体区域进行体积约束加密的方法,实现了非结构网格的局部加密.一、二维模型计算和分析表明,本文采用的局部加密方法能够明显地改善算法的精度,最大相对误差基本在1%以内.对三维模型计算及对比分析,说明了该算法对三维可控源电磁正演的实用性.复杂海底地形模型的正演模拟表明,海底地形对电磁场的影响很大,在进行海洋可控源电磁资料解释时,地形的影响有必要考虑在内.  相似文献   

14.
Wavefront construction (WFC) methods provide robust tools for computing ray theoretical traveltimes and amplitudes for multivalued wavefields. They simulate a wavefront propagating through a model using a mesh that is refined adaptively to ensure accuracy as rays diverge during propagation. However, an implementation for quasi-shear (qS) waves in anisotropic media can be very difficult, since the two qS slowness surfaces and wavefronts often intersect at shear-wave singularities. This complicates the task of creating the initial wavefront meshes, as a particular wavefront will be the faster qS-wave in some directions, but slower in others. Analogous problems arise during interpolation as the wavefront propagates, when an existing mesh cell that crosses a singularity on the wavefront is subdivided. Particle motion vectors provide the key information for correctly generating and interpolating wavefront meshes, as they will normally change slowly along a wavefront. Our implementation tests particle motion vectors to ensure correct initialization and propagation of the mesh for the chosen wave type and to confirm that the vectors change gradually along the wavefront. With this approach, the method provides a robust and efficient algorithm for modeling shear-wave propagation in a 3-D, anisotropic medium. We have successfully tested the qS-wave WFC in transversely isotropic models that include line singularities and kiss singularities. Results from a VTI model with a strong vertical gradient in velocity also show the accuracy of the implementation. In addition, we demonstrate that the WFC method can model a wavefront with a triplication caused by intrinsic anisotropy and that its multivalued traveltimes are mapped accurately. Finally, qS-wave synthetic seismograms are validated against an independent, full-waveform solution.  相似文献   

15.
任政勇  汤井田 《地球物理学报》2009,52(10):2627-2634
总结了目前常用的结构化网格及其局限性,分析了非结构化网格对复杂地质体边界的适应性和Delaunay三角化算法及其网格加密策略,提出了一种新的局部节点加密方法,实现了对复杂模型的完全非结构化四面体全自动剖分,给出了三维直流电阻率模拟中四面体网格的质量评价标准和最优指标.计算和分析表明,数值解在点电流源及附近的奇异区精度最低,网格加密策略可以有效地减少其影响,极大地提高数值解的精度.本文提出的局部节点加密策略计算量最小,对精度的改善也优于经典方法.在精度要求苛刻或模型十分复杂时,局部体积加密策略和二次单元是高精度模拟的可靠保证.  相似文献   

16.
Damping solvent extraction is a finite element method for the analysis of unbounded (visco-)elastic media which was suggested by Wolf and Song in 1994. It was originally recommended that the method should be employed with a variable domain size depending on excitation frequency. Furthermore, other researchers who have utilized this method in the context of constant domain size, have often imposed strict conditions on the mesh size for the whole domain, which reduces the effectiveness of the approach. Considering the effect of artificial damping on mesh density selection, the present study introduces damping solvent as a method in which one can relax typical mesh density requirements to a large extent by utilizing a large value of artificial damping. Therefore, it makes the finite element mesh to benefit from a large domain size which improves the results for low frequency range. Moreover, good results are simultaneously obtained for high frequency range due to employing a large value of artificial damping. To illustrate the point, a rigid strip foundation with a cross section of rectangle embedded in half plane is considered. According to some comparison between the results obtained from several finite element meshes, the best one which takes full advantages of a large value of artificial damping for dynamic stiffness coefficients of strip foundation is introduced. These comparisons are carried out on domain size, mesh density and artificial damping.  相似文献   

17.
面向目标自适应三维大地电磁正演模拟   总被引:3,自引:3,他引:0       下载免费PDF全文
本文将面向目标的自适应算法应用于三维大地电磁数值模拟.使用基于非结构网格的矢量有限单元法对起伏地表大地电磁正演模拟问题进行求解.使用利用垂向电流密度在物性界面上的连续性对后验误差进行估算的算法指导网格优化.由于全局自适应算法针对观测点优化网格的能力较差,本文通过求解正演问题的对偶问题计算后验误差的加权系数,并对相关加权系数进行改进,从而实现了面向目标的自适应算法.与传统基于结构化网格的电磁正演算法相比,采用非结构网格能够更好地拟合起伏地表和地下不规则异常体.由于使用了面向目标的自适应算法,本文能够使用更少的网格达到较高的计算精度.通过对比本文模拟结果与半空间响应和全局自适应算法计算结果,并通过对比使用改进前和改进后加权系数得到的网格剖分结果验证了本文算法的有效性.  相似文献   

18.
探讨了如何基于Midas/GTS来实现用FLAC3D建立复杂边坡模型。首先在Midas/GTS中建立几何模型和划分网格,然后根据两种软件的网格数据形式进行转换,把Midas/GTS的网格模型导入FLAC3D中。对于二维边坡问题,认为采用四边形单元比三角形单元的计算精度更高,在模型较为复杂的情况下建议在Midas/GTS中采用四边形+三角形的方式生成混合网格,然后导入FLAC3D中形成brick+wedge形式的混合网格进行分析,以保证计算精度。最后将上述建模方法应用于某边坡工程的稳定性分析,验证了该建模方法的可行性和实用性。  相似文献   

19.
In a paper presented at last year's Amsterdam meeting (viz. Geophysical Prospecting 14 (1966), 3, 301–341), J. R. Schopper derived formulas relating formation factor, permeability and porosity, by means of a statistical-network approach and by treating the electric and hydraulic resistance analogously. The model of the porous medium consists of a network of branch resistors, their values being statistically distributed about a mean Ro with a relative standard deviation (variation coefficient) s. A properly defined total resistance R of the network can be expressed by the relationship: ((1′)) Here α is a geometrical factor dependent only on the shape of the network (i.e. the number of meshes in the longitudinal and transversal direction), ε is a characteristical constant dependent only on the individual mesh shape (i.e. the number of nodes and branches within a mesh). This network constant ε enters the equations relating formation factor, permeability and porosity, ε had been found to be in the range zero to one by calculating algebraically two special limiting network cases. However, for a better understanding of which value exactly this constant will have in actual porous media, networks with various mesh shapes have to be treated generally. Because of the basically statistical approach, the networks have to be large so that a general algebraic treatment is precluded. Hence numerical methods using digital computers must be applied. The determination of the total resistance R of any resistance network leads to the problem of solving a system of linear, inhomogeneous equations; i.e. Ohm's law written in matrix form: ((2′))
  • (R) is the matrix of the coefficients, composed of the individual branch resistances.
  • (I) is the column vector, its components being fictitious circular mesh currents.
  • (U) is the inhomogeneity column, its components being source voltages within the individual meshes.
The matrix (R) has characteristic properties that depend on the mesh shape on the one hand and on the number and arrangement of the meshes on the other hand. With the regular arrangement of identical meshes investigated here, the matrix always has a banded structure and is symmetrical with respect to the main diagonal, positive definite, and non-singular. For the numerical determination of the wanted constant ε the coefficients matrix is provided with values having a known distribution. Here, in particular, a computer-generated pseudorandom homogeneous distribution is used. The system, of equations is solved for R by a modified Cholesky method. Equation (1′) can then be solved fore. The main features of an ALGOL program written for this purpose and optimized with respect to storage space requirement and computer time are discussed. Networks of triangular, square and hexagonal meshes have been investigated. The results are discussed.  相似文献   

20.
The effect of mesh type on the accuracy and computational demands of a two-dimensional Godunov-type flood inundation model is critically examined. Cartesian grids, constrained and unconstrained triangular grids, constrained quadrilateral grids, and mixed meshes are considered, with and without local time stepping (LTS), to determine the approach that maximizes computational efficiency defined as accuracy relative to computational effort. A mixed-mesh numerical scheme is introduced so all grids are processed by the same solver. Analysis focuses on a wide range of dam-break type test cases, where Godunov-type flood models have proven very successful. Results show that different mesh types excel under different circumstances. Cartesian grids are 2–3 times more efficient with relatively simple terrain features such as rectilinear channels that call for a uniform grid resolution, while unstructured grids are about twice as efficient in complex domains with irregular terrain features that call for localized refinements. The superior efficiency of locally refined, unstructured grids in complex terrain is attributable to LTS; the locally refined unstructured grid becomes less efficient using global time stepping. These results point to mesh-type tradeoffs that should be considered in flood modeling applications. A mixed mesh model formulation with LTS is recommended as a general purpose solver because the mesh type can be adapted to maximize computational efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号