首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tungsten minerals (scheelite and wolframite) from two genetic types of granitoids show significant differences in REE distribution, probably due to different material sources and origins. Tungsten minerals in granite porphyry of the crust-mantle source are relatively high in ΣREE(1884ppm on average). Σ Ce is rich relative to Σ Y and Σ Ce/ΣY is relatively high (>1). The chondrite-normalized REE distribution patterns are characterized by a group of rightward-inclined curves. Tungsten minerals in quartz veins intruding the granites of crust origin have lower ΣREE (335 ppm on average). ΣY is rich relative to ΣCe and ΣCe/ΣY is relatively low (<1). The chondrite-normalized REE distribution patterns are characterized by a group of leftward-inclined curves. So the REE distribution patterns can be used to discriminate the sources of rock-and ore-forming materials and the genetic types of W deposits so as to provide clues to ore prospecting.  相似文献   

2.
Preliminary studies have shown that REE geochemical characteristics are useful criteria to discriminate the two types of granitic rocks in Jiangxi Province. They are also of significant indication of metallization. The principal REE geochemical indices are ΣREE, ΣCe/ΣY andδEu, as well as REE distribution pattern. Each of the two types of granitic rocks has a metallogenic evolutionary series of its own with a successive decrease inδEu. The application of REE geochemistry in the study of petrogenesis and ore genesis has been receiving increasing attention. As will be shown in this paper, REE geochemical characteristics, especially ΣREE, ΣCe/ΣY,δEu and REE distribution pattern, are efficient indicators for distinguishing between the two series of granitic rocks in Jiangxi, and thus enable us to have a better understanding of the ore-forming processes in this region.  相似文献   

3.
The total rare-earth element values(ΣREE)of loess in the Xinjiang region vary over a range of 128-200 ppm ,with an average of 153ppm .The average REE content of loess lies between the earth‘s crust (155ppm) and sedimentary rocks(151ppm).The Xinjiang loess,with the REE distribu-tion patterns characterized by negative slopes ,is rich in the Ce-family elements, and has a distribu-tion pattern characteristic of sedimentary rocks.The North Xinjiang loess is relatively depleted in Tb,but rich in Yb and Lu.The South Xinjiang loess is relatively rich in light rare-earth elements.This is full proof that the Xinjiang loess comes partly from weathered materials(clay rock,sandstone)in the region studied.The REE distribution patterns in the Xinjiang loess are similar to those in the precipitated dust and Aeolian sand,indicating the same material source.The REE distribution pat-terns in the Xinjiang loess are also similar to those in loess from the middle Yellow River Valley,China and Taskent,the former USSR.This implies that loesses of the three locations(Xinjiang,the mid-dle Yellow River Valley and Taskent) come from a common material source.But the REE patterns in the Xinjiang loess are different from those in wall rocks (volcanic rock,K-bearing volcanic rock).Generally ,LREE/HREE,Eu/Eu* and Ce/Ce* ratios reflect the features of parent materials of loess,indicating that the parent rocks were probably in the early stage of alkaline weathering and the weathered materials existed in an oxidation environment with basic mediums under arid-climatic conditions before transport.As a result,the migration ability of the REE is weak.  相似文献   

4.
Our studies show that the granite bodies (γ 5 2 − 1 and γ 5 3 ) which constitute the Huangsha-Tieshanlong composite granitic intrusion in Jiangxi are characterized by their similarities in mineral assemblage, petrochemistry, trace element and REE distribution pattern. The values of ΣREE, ΣLREE, ΣHREE, ΣCe/ΣY, δEu and La/Yb apparently decrease from γ 5 2 − 1a to γ 5 2 − 1b , γ 5 3 and γ 5 3 . It is shown that the early Yenshanian W(Ta, Nb)-bearing granite (γ 5 2 − 1 ) and late Yenshanian Ta, Nb-bearing granite (γ 5 3 ) may have been derived from the differentiation and evolution of granitic magmas due to repeated remelting of the crust and their earlier and later intrusion. Although the earlier (γ 5 2 − 1b and later (γ 5 3 ) albitized Ta, Nb-bearing granites show some obvious differences in REE content, their δEu values and La/Yb ratios are similar to each other. Therefore, it may be concluded that the early and late Ta, Nb-bearing granites were derived from a congenetic magma.  相似文献   

5.
The evolution characteristics of Gejiu granites, Yunnan Province are described in terms of their petrology, especially their trace elements and REE geochemistry. The three major types of Gejiu granites: porphyritic biotite monzonitic granite (stage I), medium-coarse-grained biotite-K-feldspar granite (stage II) and two-mica alkali-feldspar granite (stage III) are thought to have been formed successively from the same granite magma source through fractional crystallization (Rayliegh fractionation), because linear correlations are found between log(Rb/Sr)-log Sn, log(Rb/Ba)-log Sn, log(Rb/Ba)-log(Rb/Sr), log La-log Sr, log Ce-log Sr, log Eu-log Sr, etc. In addition, the characteristics of REE distribution patterns in these three major types of granites also reflect the magmatic differentiation features of Gejiu granites. Of the three major types, the two-mica alkali-feldspar granite of stage III underwent the strongest differentiation, and thus has the closest genetic relationship with the Gejiu tin-polymetallic ore deposit. Such tin-polymetal mineralized granites are characterized by high Rb/Sr and Rb/Ba ratios, low K/Rb and ΣCe/ΣY ratios and remarkable Eu depletion.  相似文献   

6.
Based on the data of 64 samples ,the REE geochemical characteristics of volcanic rocks in northern Zhejiang and eastern Jiangxi provinces are discussed in this paper.The REE distribution patterns in acid and intermediate-acid volcanic rocks in these areas display some similarities,as indicated by rightward-inclined V-shaped curves with negative Eu anomalies,which are parallel to earch other.In addi-tion,their REE parameters(ΣREE,ΣLREE/ΣHREE,δEu,Ce/Yb,La/Sm,La/Yb,etc)also va-ry over a narrow range with small deviations.HREE are particularly concentrated in the volcanic rocks as-sociated with uranium mineralization.The initial ^87Sr/^86Sr ratio in the volcanic rocks is about 0.7056-0.7139.All these features in conjunction with strontium isotopic data indicate that the rock-forming materials come from the sialic crust.The REE distribution patterns and REE geochemical parameters of the volcanic rocks ,as well as La/Sm-La and Ce/Yb-Eu/Yb diagrams may be applied to the sources of rock-forming and ore-forming materials.  相似文献   

7.
Nature of the crust in Maine,USA: evidence from the Sebago batholith   总被引:7,自引:0,他引:7  
 Neodymium and lead isotope and elemental data are presented for the Sebago batholith (293±2 Ma), the largest exposed granite in New England. The batholith is lithologically homogeneous, yet internally heterogeneous with respect to rare earth elements (REE) and Nd isotopic composition. Two-mica granites in the southern/central portion of the batholith (group 1) are characterized by REE patterns with uniform shapes [CeN/YbN (chondrite normalized) = 9.4–19 and Eu/Eu* (Eu anomaly) = 0.27–0.42] and ɛ Nd(t) = −3.1 to −2.1. Peripheral two-mica granites (group 2), spatially associated with stromatic and schlieric migmatites, have a wider range of total REE contents and patterns with variable shapes (CeN/YbN = 6.1–67, Eu/Eu* = 0.20–0.46) and ɛ Nd(t) = −5.6 to −2.8. The heterogeneous REE character of the group 2 granites records the effects of magmatic differentiation that involved monazite. Coarse-grained leucogranites and aplites have kinked REE patterns and low total REE, but have Nd isotope systematics similar to group 2 granites with ɛ Nd(t) = −5.5 to −4.7. Rare biotite granites have steep REE patterns (CeN/YbN = 51–61, Eu/Eu* = 0.32–0.84) and ɛ Nd(t) = −4.6 to −3.8. The two-mica granites have a restricted range in initial Pb isotopic composition (206Pb/204Pb = 18.41–18.75; 207Pb/204Pb = 15.60–15.68; 208Pb/204Pb = 38.21–38.55), requiring and old, high U/Pb (but not Th/U) source component. The Nd isotope data are consistent with magma derivation from two sources: Avalon-like crust (ɛ Nd>−3), and Central Maine Belt metasedimentary rocks (ɛ Nd<−4), without material input from the mantle. The variations in isotope systematics and REE patterns are inconsistent with models of disequilibrium melting which involved monazite. Received: 8 December 1995 / Accepted: 29 April 1996  相似文献   

8.
Peridotite and granite xenoliths, in the early stage of weathering, occur in the Nyos volcanic region (NW Cameroon). Geochemical data shows that peridotites are marked by high concentrations of MgO (42.30 wt.%, with SiO2/MgO ∼ 1), chromium (2100 ppm), nickel (2100 ppm) and cobalt (104 ppm), as well as by low lanthanide contents (ΣREE: 7.41 ppm). Granites display SiO2 contents (70–73 wt.%), and are mostly peraluminous (1.40 > A/CNK < 1.6). They are also characterized by low contents in chromium (<24 ppm), nickel (ranging from 6 to 15 ppm) and cobalt (ranging from 3 to 6 ppm). Granites possess high lanthanide contents (ΣREE varying between 248.00 and 463.00 ppm), particularly in light lanthanides (LREE/HREE ratios ranging from 21 to 32). The chondrite-normalized patterns of the studied xenoliths are characterized by: (i) LREE enrichments in both rock types; (ii) negative Eu anomalies ([Eu/Eu*] ranging from 0.45 to 0.64) and weak positive Ce anomalies ([Ce/Ce*] ranging from 1.06 to 1.46) in granites. The weathering process provokes a remobilization of several trace elements notably light lanthanides.The geochemical survey of Platinum-Group Elements (PGE) done in these rocks in the early stage of weathering shows that PGE contents are less than 7 ppb in the peridotites. The highly concentrated elements are ruthenium (6.26 ppb) and platinum (5.53 ppb). The total PGE content is 14.57 ppb. These concentrations normalized with respect to chondrites display a flat spectrum from iridium to platinum. PGE contents in the granites are below detection limit except for two samples (LNY01 and LNY02) whose platinum content is close to 0.23 ppb.  相似文献   

9.
The Suzhou granite suite is the anorogenic product, which is located on the inactive continental margin of east China. It was emplaced about 141 Ma ago, occurring as a stock with a polygonal outline on the surface, belonging to alkali potash-feldspar granites with K2O > Na2O, Reit’s alkali coefficient = 0.694, SiO2 = 74.95, and Al2O3/(K2O + Na2O)mol= 1. Besides K and Na, Li and Rb are also rather high. Highlycharged metals such as Zr, Nb, REE, Y, Sn, Th, Ga and Zn are 10, or even 50 times higher than those in the ordinary granites. Halogen elements such as F and Cl are high in abundance with F = 2700 ppm and Cl = 170 ppm on average. The abundances of deep-source elements such as Ti, Al, Ca, Mg and P are relatively low, with A12O3 = 12.65% and Ca + Mg < 1%. High Ga and low Al contents are typomorphically characteristic of A type granites. Biotite in the rocks is, for the most part, annite, usually filling in quartz and feldspar crystals, indicating that the crystallization of magma proceeded under relatively anhydrous condition. More than 40 kinds of accessory minerals have been identified, of which the mantle-derived mineral chrompicotite and moissanite is of great interest. Two different intrusions, the major and supplementary intrusions, can be distinguished in the granite suite. The rock-forming temperature is estimated to be 810°C, pressure 2.5 kbars, pH 8.1,18O/16O low(δ18OWR = 6.19‰), andfo2= 10−16. The abundances of REE are high and Eu depletion is remarkable (δEu = 0.24). A variety of mineral deposits related to the Suzhou granite suite have been recognized.  相似文献   

10.
The metasedimentary-volcanic series of the Wutai and Hutuo groups experienced regional metamorphism and thus turned into moderate-to low-grade metamorphic rocks.REE abundances and REE distribution patterns in the Shizui and Taihuai Subgroup metasedimentary-volcanic rocks are typical of the Archean,whereas the Gaofan Subgroup and the Hutuo Group show post-Archean REE geochemical char-acteristics.Five types of REE distribution pattern are distinguished:(1)rightward inclined smooth curves with little REE anomaly(Eu/Eu*=0.73-0.95) and heavy REE depletion (e.g.the Late Archean metasedimentary rocks);(2)rightward inclined V-shaped curves with sharp Eu anoma-ly (Eu/Eu*=0.48-0.76) and slightly higher ∑REE (e.g.the post-Archean metasedimentary rocks);(3) rightward inclined steep curves with negative Eu anomaly(Eu/Eu*=0.73-0.76) and the lowest ∑REE (e.g.the post-Archean dolomites);(4)rightward inclined,nearly smooth curves with both positive Eu anomaly and unremarkable positive Eu anomaly(Eu/Eu*=0.95-1.25)(e.g.the meta-basic volcanic rocks);and (5) rightward inclined curves with Eu anomaly(Eu/Eu*=1.09-1.19)and heavy REE depletion(e.g.the meta-acid volcanic rocks).Strata of the two groups are considered to have been formed in an island-arc belt-an instable continental petrogenetic environment.  相似文献   

11.
The Dokhan volcanics are represented by a thick stratified lava flows succession of basalt, andesite, imperial porphyry, dacite, rhyodacite, rhyolite, ignimbrites, and tuffs. These lavas are interbanded with their pyroclastics in some places including banded ash flow tuffs, lithic tuffs, crystal lapilli tuffs, and agglomerates. They are typical calc–alkaline and developed within volcanic arc environment. All rocks show moderate enrichment of most large ion lithophile elements relative to high field strength elements (HFSE). The incompatible trace elements increase from basalt through andesite to rhyolite. The felsic volcanics are characterized by moderate total rare earth elements (REE) contents (162 to 392 ppm), less fractionated patterns {(Ce/Yb)N = (1.24 to 10.93)}, and large negative Eu anomaly {(Eu/Eu*) = (0.15 to 0.92)}. The mafic volcanics have the lowest REE contents (61 to 192 ppm) and are relatively steep {(Ce/Yb)N = (3.2 to 8.5)}, with no negative Eu anomalies {(Eu/Eu*) = (0.88 to 1)}. The rhyolite displays larger negative Eu anomaly (Eu/Eu* = 0.28) than those of other varieties, indicating that the plagioclase was an early major fractionating phase. The mineralogical and chemical variations within volcanics are consistent with their evolution by fractional crystallization of plagioclase and clinopyroxene.  相似文献   

12.
Widespread in the Wuyi Mountain area of eastern Jiangxi are petrochemically peraluminous granites and they are characterized as being high in silica (SiO2 > 75% ) and highly alkaline (ALK=6.9% -7.5%) with K2O > Na2O and rather high ratios of FeOT/MgO (11.3-17.9). The rocks have low contents of CaO, MgO, TiO2 and P2 O5. The granites are enriched in REE (ΣREE =210.3 - 496. 8 μg/g) with remarkable negative Eu anomalies, but depleted in Eu, Ba, Sr, V, Co, and Ni, with 10000 x Ga/Al ratios, varying from 6. 1 to 9. 8. It is clear that these granites are obviously different from the I- and S-type granites, but are quite similar to those typical A-type granites such as aluminous A-type granites in the coastal areas of Fujian Province. State Geological Survey Project: supported by the Regional Geological Survey Project (No: 20001300002091 ) on the basis of the maps (scale 1: 250000) of Jingdezheng City, Nanchang City and Shangrao City.  相似文献   

13.
In order to study the characteristics of sea-floor exhalative sedimentary and magmatic hydrothermal superimposition on the Bainiuchang polymetallic deposit, the REE compositions of the granites, host-rocks and ores have been systematically analyzed by ICP-MS. As viewed from their REE compositions, the granites show obvious negative Eu anomalies and weak negative Ce anomalies. According to their REE characteristics, the host-rocks were derived partly from sea-floor exhalative sediments. In terms of their REE compositions, the ores can be divided into two groups: one group, of which the samples were collected from the Baiyang segment relatively far away from the Bozhushan granite batholith, possesses positive Eu anomalies or no Eu anomaly and negative Ce anomalies, indicating that ore-forming hydrothermal fluid was relatively reductive and its temperature was higher than 250 ℃. Furthermore, the coinstantaneous presence of positive Eu anomalies and negative Ce anomalies indicate that the convective mixing of a little amount of seawater with hydrothermal fluid had happened while ores were precipitated on ancient sea floor. The other group, of which the samples were mainly collected from the Chuanxindong and Duimenshan segments near the Bozhushan granite batholith, has similar chondrite-monalized REE distribution patterns to those of the magmatic rocks. But as a whole, the REE characteristics of both groups change gradually starting from the Bozhushan granite batholith. Based on the REE characteristics of the granites, host-rocks and ores, it is suggested that the ore-forming metals seem to have come from several different sources.  相似文献   

14.
Abstract The Zudong and Guanxi granites are original rocks of the ion adsorption-type HREE and LREE deposits in weathering crust of granites. The ∑REE 1 ∑REE=REE+Y.
value and LREE 2 LREE=∑(La-Eu) and HREE=∑(Gd-Lu)+Y.
/ HREE ratio of the Zudong granite are 264 ppm and 0.81-0.24 respectively, and the average Y/∑REE ratio is 35.8-54.5%. This is mainly due to magmatic crystallization and evolution and deuteric metasomatism (albitization, muscovitization and fluorite-doveritization). These alterations resulted in endogenic mineralizations of yttrium-group REE fluorine carbonates, silicates and arsenates. The Guanxi granite is characterized by LREE enrichment (the average LREE/HREE ratio is 2.43).  相似文献   

15.
Analysis of currently available data (877 individual high-precision zircon analyses) on the composition of zircons from eclogite complexes worldwide reveals general relations in the zircon composition: an anomalous decrease in the Th concentration (no higher than 3 ppm on average) and the Th/U ratio (0.33 on average), a significant decrease in the concentrations of all REE (to 22 ppm) and particularly LREE (<2 ppm), and relatively low concentrations of Y (34 ppm), U (100 ppm), and P (41 ppm) at an elevated Hf concentration (11 400 ppm on average). The REE patterns of eclogitic zircons are noted for pronounced flat HREE patterns, poorly pronounced (if any) negative Eu anomalies, strongly reduced positive Ce anomalies (Ce/Ce* = 11 on average), and U-shaped configurations of LREE patterns up to the development of negative Nd anomalies. The relations detected in the distribution of trace elements and REE in eclogitic zircons are of universal nature and occur irrespective of the rock type (metabasites, metaultrabasites, or gneisses) and the metamorphic pressure (eclogites of high and ultrahigh pressure). The application of the aforementioned criteria makes it possible to reliable distinguish eclogitic zircons from those of magmatic or metamorphic genesis (not related to high-pressure metamorphism). Eclogites in the Belomorian Mobile Belt (in the Salma and Gridino areas) were determined to contain zircons in metagabbro eclogites; the cores of these zircons have an age of 2.8?C2.9 Ga and are of magmatic genesis, whereas their outer metamorphic zones have an age of 1.9 Ga and a trace-element composition typical of eclogitic zircons. Hence, the Belomorian Mobile Belt was affected only by single (Svecofennian, at ??1.9 Ga) episode of eclogite metamorphism of Archean rocks.  相似文献   

16.
This work reports, for the first time, the mineralogical and geochemical characteristics of the Cretaceous sedimentary kaolin deposits in the Red Sea area, Egypt and sheds the light on their source. Mineralogical and geochemical analyses of both bulk deposits and the sand and clay fractions of these deposits indicated that they are composed of kaolinite (average of 75 wt.%) and quartz (average of 22 wt.%). Traces of anatase (average of 1 wt.%) were identified in all kaolin samples, while traces of halite (average of 2 wt.%) and hematite (average of 1 wt.%) were reported in the majority of the analyzed samples. The clay fractions show relatively high contents of TiO2 (average of 2.1%), Ni (average of 103 ppm), Nb (average of 98 ppm), Y (average of 67 ppm), and Zr (average of 630 ppm). Sum of the rare earth elements (ΣREE) in the clay fractions varies between 193 and 352 ppm. Chondrite-normalized REE patterns show enrichment of the light REE relative to the heavy REE ((La/Yb)N = 9) and negative Eu anomaly (Eu*/Eu = 0.67).  相似文献   

17.
为了研究白牛厂银多金属矿床成矿作用特征,对矿区岩浆岩、围岩和矿石的稀土元素进行了ICP-MS分析测试。花岗岩稀土元素组成表现了较强的Eu负异常和弱的Ce负异常。围岩稀土元素特征表现出一定程度的热水沉积成因。矿石的稀土元素组成大致可分为两组:一组矿石表现为Eu正异常或无异常和Ce负异常,反映喷流沉积稀土元素组成特征,主要是距离花岗岩体较远的白羊矿段,指示成矿热液为温度较高(&gt;250℃)、相对还原的流体,另外,Eu正异常和Ce负异常同时出现,说明矿石沉淀时较高温度的流体与少量的海水发生了对流混合;另一组矿石表现出与岩浆岩一致的球粒陨石标准化稀土配分模式,显示岩浆热液叠加改造成因,主要是距离花岗岩体较近的穿心洞矿段和对门山矿段。两组矿石稀土元素组成特征总体来说随着花岗岩体距离的变化而变化。根据岩浆岩、围岩和矿石的稀土元素组成特征,白牛厂银多金属矿床由喷流沉积形成主矿体,燕山期花岗质岩浆活动对矿体部分叠加改造。  相似文献   

18.
Granitic rocks of various ages and composition are found in the Schwarzwald region of West Germany. These granites range in age from Upper Devonian to Upper Carboniferous (370-280 m.y.) and in composition from granodiorites to alkali feldspar granites. 14 representative samples of twelve different types were analysed for their La, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Lu by instrumental neutron activation. The studies reveal that there are characteristic differences between the different types of granitic rocks both as regards to their total REE content as well as the distribution pattern of these elements. These differences can not be directly related to the variations in the major element chemistry or the mineralogy of the granites. On the other hand, a relationship is found between the age of the granitic rocks and the total REE as well as their distribution pattern. In general the ΣREE varies from 22 to 215 ppm in different types. The ΣLa-Lu increases gradually in the direction Upper Devonian→Lower Carboniferous, however, in the granitic rocks of the Upper Carboniferous this trend is reversed and there is again a marked depletion in the content of REE. The chondrite normalised patterns of all the older types give a smooth concave curve with decrease of concentration from La to Lu. All the Upper Carboniferous granites on the other hand are characterised by a progressive pronounced negative Eu anomaly. The gradual increase of the ΣREE in the older granites is related to their evolution by progressive anatexis, whereas, the decrease in the total REE content in case of the younger Upper Carboniferous granites is due to processes of magmatic differentiation. The depletion of Eu in these K-feldspar rich types of granite is probably related to the breakdown of biotite in the anatectic starting material.  相似文献   

19.
The major element, trace element and Nd-Sr isotopic composition of Cenozoic basaltic volcanic rocks from the Maguan area, eastern Tibet, indicates that the volcanic rocks are enriched in alkalis, especially K (K2O up to 3.81%) and depleted in Ti (TiO2 = 1.27%-2.00%). These rocks may be classified as two groups, based on their Mg# numbers: one may represent primary magma (Mg# numbers from 68 to 69), and the other, the evolved magma(Mg# numbers from 49 to 57). Their REE contents are very high (∑REE = 155.06-239.04μg/g). Their REE distribution patterns are of the right-inclined type, characterized by LREE enrichment [(La/Yb)N =12.0-19.2], no Ce anomaly (Ce/Ce*=1.0), and weak negative Eu anomaly (Eu/Eu*=0.9). The rocks are highly enriched in Rb, Sr and Ba (59.5-93.8μg/g, 732-999 μg/g, and 450-632 g/g, respectively), high in U and Th (1.59-2.31μg/g and 4.73-8.16 μg/g, respectively), and high in Nb, Ta, Zr and Hf (70-118 μg/g,3.72-5.93 μg/g, 215-381 μg/g, and 5.47-9.03 μg/g, respectively). In the primitive mantle-normalized incompatible element spidergram, Nb, Ta, Zr, Hf and P show positive anomalies, whereas Ba, Ti and Y show negative anomalies. The 87Sr/86Sr ratios range from 0. 704029 to 0.704761; 143Nd/144Nd from 0. 512769 to 0. 512949; and εNd from 2.6 to 6.1. These geochemical features might suggest that the potential source of the basaltic high-K volcanic rocks in the Maguan area is similar to the OIB-source mantle of Hawaii and Kergeulen volcanic rocks.  相似文献   

20.
This paper deals with the REE geochemical characteristics of Permian-Triassic marine carbonate rocks in Guizhou Province.It is found that there are two broad categories of strati-graphic units in the region studied in accordance with their ΣREE contents and REE distribu-tion patterns: one is characterized by LREE enrichment and slight Ce depletion,with the REE distribution patterns similar to those of North American shales,and the other featrures relative HREE enrichment and relatively remarkable Ce depletion,with the REE distribution patterns close to those of pelagic sediments.In terms of their different ΣREE contents,five types of stratigraphic units can be distinguished.Incorporation of detrital minerals,REE complexing ca-pability,oxidation-reduction conditions of the media are the main factors affecting the REE com-position and REE distribution patterns of marine carbonate rocks in the region studied.In the light of REE geochemical characteristics of carbonate rocks,coupled with sedimentary facies analysis,this paper discusses the characteristics of the Permian-Triassic marine sedimentary environment in Guizhou Province and its evolutional rules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号