首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil cover is a widely-used but relatively new method for solid waste containment. Standard while site-specific procedures for cover design, monitoring, and evaluation are needed to insure reliable cover performance. This paper presents a review of soil cover types, design principles and procedures, cover monitoring, and long-term performance modeling. Cover types and cover design are introduced with the general concepts and discussed on their specific applicabilities in different circumstances. Detailed discussion is given on unsaturated flow system properties and their field measurements, including methods, apparatuses/equipments and their advantages and disadvantages. Several unsaturated flow simulators are discussed and compared with regards to their simulation capacities for critical parameters closely related to soil cover performance such as runoff, infiltration and evaporation. Finally, research subjects are suggested for future work for better soil cover monitoring and modeling.  相似文献   

2.
A plane–strain numerical model has been developed to mimic a nailed loose fill slope under surcharge loading. The model has been used to back-analyse a field test that was conducted to examine the behaviour of soil nails in loose fill slopes under surcharge loading. Incremental elasto-plastic analyses coupled with pore water diffusion have been performed to study the internal deformation, water content redistribution in the soil, and the performance of the soil nails during and after the application of surcharge loading. The model parameters describing the mechanical and hydraulic properties of the nailed slope were obtained from field or laboratory tests. Different modelling techniques and boundary conditions for mimicking soil–nail interaction in loose fill material have been examined. Comparisons between numerical predictions and field measurements demonstrate that a new interfacial model, denoted as the embedded bond–slip interface model, is more suitable for mimicking the interfacial behaviour. Despite the simplicity of the numerical model, the predicted responses are in close agreement with the field test results, in particular the mobilisation and distribution of nail forces in response to surcharge loading. Both the numerical and the field test results suggest that soil nails are capable of increasing the overall stability of a loose fill slope for the loading conditions considered in this study. The increase in confining stress along the soil nails near the surcharge area is central to the overall stabilising mechanism. On the contrary, the nail forces mobilised near the nail heads are much smaller, indicating that the beneficial effect of having a structural grillage system at the slope face is limited for the range of surcharge pressures considered in this study.  相似文献   

3.
邱清文  张文杰  程泽海 《岩土力学》2012,33(Z1):283-289
蒸发蒸腾覆盖层相比传统覆盖层有许多优势,目前这种覆盖层主要应用于干旱和半干旱地区,但研究湿润地区垃圾填埋场蒸发蒸腾覆盖层的水分运移规律和工作性能很有必要。通过二维饱和-非饱和模型,分析覆盖层厚度、土壤类型、植被条件、气候条件等设计参数对蒸发蒸腾覆盖层防渗性能的影响,并对覆盖层中的水分运移规律及其工作性能和适用性进行研究。研究结果表明,随着覆盖层厚度和叶面积指数LAI增加,蒸发蒸腾覆盖层的最终透水量(穿过覆盖层水分)呈减小趋势,但覆盖层厚度和叶面积指数较大时透水量减小趋势不明显;拥有较大储水能力和适当渗透系数的覆盖层能够有效地减少透水量;降雨的季节性分布对蒸发蒸腾覆盖层性能有很大影响,当多雨期与高温期分布一致时,蒸发蒸腾覆盖层的性能可满足设计要求;在非饱和条件下,毛细阻滞型覆盖层利用粗-细粒土之间水力特性的差异形成毛细阻滞效应减少水分向下入渗,其防渗性能优于单一土层型覆盖层,但在不利气象条件组合下,该毛细阻滞作用可能失效, 其防渗性能将大大下降。  相似文献   

4.
It is absolutely necessary to quantify the hydrological processes in earth surface by numerical models in the cold regions where although most Chinese large rivers acquire their headstreams, due to global warming, its glacier, permafrost and snow cover have degraded seriously in the recent 50 years. Especially in an arid inland river basin, where the main water resources come from mountainous watershed, it becomes an urgent case. However, frozen ground’s impact to water cycle is little considered in the distributed hydrological models for a watershed. Took Heihe mountainous watershed with an area of 10,009 km2, as an example, the authors designed a distributed heat-water coupled (DWHC) model by referring to SHAW and COUP. The DWHC model includes meteorological variable interception model, vegetation interception model, snow and glacier melting model, soil water-heat coupled model, evapotransporation model, runoff generation model, infiltration model and flow concentration model. With 1 km DTM grids in daily scale, the DWHC model describes the basic hydrological processes in the research watershed, with 3∼5 soil layers for each of the 18 soil types, 9 vegetation types and 11 landuse types, according to the field measurements, remote sensing data and some previous research results. The model can compute the continuous equation of heat and water flow in the soil and can estimate them continuously, by numerical methods or by some empirical formula, which depends on freezing soil status. However, the model still has some conceptual parameters, and need to be improved in the future. This paper describes only the model structure and basic equations, whereas in the next papers, the model calibration results using the data measured at meteorological stations, together with Mesoscale Model version 5 (MM5) outputs, will be further introduced.  相似文献   

5.
Macropores developed in barrier layers in soil covers overlying acid-generating waste rock may produce preferential flow through the barrier layers and compromise cover performance. However, little has been published on the effects of preferential flow on water balance in soil covers. In the current study, an inclined, layered soil cover with a 10-cm-wide sand-filled channel pathway in a silty clay barrier layer was built over reactive waste rock in the laboratory. The channel or preferential flow pathway represented the aggregate of cracks or fissures that may occur in the barrier during compaction and/or climate-induced deterioration. Precipitation, runoff, interflow, percolation, and water content were recorded during the test. A commercial software VADOSE/W was used to simulate the measured water balance and to conduct further sensitivity analysis on the effects of the location of the channel and the saturated hydraulic conductivity of the channel material on water balance. The maximum percolation, 80.1% of the total precipitation, was obtained when the distance between the mid-point of the channel pathway and the highest point on the slope accounted for 71% of the total horizontal length of the soil cover. The modeled percolation increased steadily with an increase in the hydraulic conductivity of the channel material. Percolation was found to be sensitive to the location of the channel and the saturated hydraulic conductivity of the channel material, confirming that proper cover design and construction should aim at minimizing the development of vertical preferential flow in barrier layers. The sum of percolation and interflow was relatively constant when the location of the channel changed along the slope, which may be helpful in locating preferential flow pathways and repairing the barrier.  相似文献   

6.
An ideal engineered soil cover can mitigate acid rock drainage (ARD) by limiting water and gaseous O2 ingress into an underlying waste rock pile. However, the barrier layer in the soil cover almost invariably tends to develop cracks or fractures after placement. These cracks may change water flow and O2 transport in the soil cover and decrease performance in the long run. The present study employed a 10-cm-wide sand-filled channel installed in a soil barrier layer (silty clay) to model the aggregate of cracks or fractures that may be present in the cover. The soil cover had a slope of 20%. Oxygen transport through the soil cover and oxidation of the underlying waste rock were investigated and compared to a controlled column test with bare waste rock (without soil cover). Moreover, gaseous O2 transport in the soil cover with channel and its sensitivity to channel location as well as the influence of the saturated hydraulic conductivity of the channel material were modeled using the commercial software VADOSE/W. The results indicted that the waste rock underlying the soil cover with channel had a lower oxidation rate than the waste rock without cover because of reduced O2 ingress and water flushing in the soil cover with channel, which meant a partial soil cover might still be effective to some extent in reducing ARD generation. Gaseous O2 ingress into the covered waste rock was more sensitive to the channel location than to the saturated hydraulic conductivity of the material filling the channel. Aqueous equilibrium speciation modeling and scanning electron microscopy with energy dispersive X-ray analysis indicated that secondary minerals formed as a result of the oxidation of the waste rock included gypsum and goethite in the covered waste rock and schwertmannite and other Fe oxides in the uncovered waste rock. The findings of the study provided insight into the effect of channel flow on O2 transport and oxidation of the covered waste rock, which may help to improve soil cover design and construction to minimise the generation of preferential flow in the barrier layer.  相似文献   

7.
The current regulatory requirement for cover soils in landfills and surface impoundments is that the soils attain, upon compaction, a very low hydraulic conductivity of 10–7 cm/s or less. Although the influence of the interaction between waste chemicals and clay soil on waste migration has been extensively studied, attempts to incorporate as design components the effects of sulfidic (sulfide-bearing) clays on the integrity of clay caps have largely been ignored. These influences may include increasing the permeability of the cover to percolating moisture, enhancing erosion of clay covers, and killing of vegetation on downslopes of the cover. Consequently, it is suggested that clay cap designers test the acid-generating capabilities of potential clay cap materials before exploiting these earth formations. This can be done by incubating a sample of the candidate capping material (with pH > 3.5) under moist aerobic conditions (field capacity) at room temperature. The soil will be said to contain sulfidic materials if it shows a drop in pH (1 1 by weight in water) of 0.5 or more units to a pH value of 4.0 or less within eight weeks. Decisions should then be made as to whether the soil should be avoided or used with amendments to the cap design.Although some of the authors of this article are employees of the United States Enviornmental Agency, the paper has not been subjected to Agency review and no official endorsement should be inferred.  相似文献   

8.
Due to the existence of fragile karst geo-ecological environments, such as environments with extremely poor soil cover, low soil-forming velocity, and fragmentized terrain and physiognomy, as well as inappropriate and intensive land use, soil erosion is a serious problem in Guizhou Province, which is located in the centre of the karst areas of southwestern China; evaluation of soil loss and spatial distribution for conservation planning is urgently needed. This study integrated the revised universal soil loss equation (RUSLE) with a GIS to assess soil loss and identify risk erosion areas in the Maotiao River watershed of Guizhou. Current land use/cover and management practices were evaluated to determine their effects on average annual soil loss and future soil conservation practices were discussed. Data used to generate the RUSLE factors included a Landsat Thematic Mapper image (land cover), digitized topographic and soil maps, and precipitation data. The results of the study compare well with the other studies and local data, and provide useful information for decision makers and planners to take appropriate land management measures in the area. It thus indicates the RUSLE–GIS model is a useful tool for evaluating and mapping soil erosion quantitatively and spatially at a larger watershed scale in Guizhou.  相似文献   

9.
This paper examines the long-term field performance of the check-dams in mitigation of soil erosion in the Duozhao catchment of Jiangjia stream, southwest China. Since their construction between 1979 and 1982, the check-dams have been functioning effectively. The examination is made via comparisons between the environmental conditions of the Duozhao catchment with its adjacent Menqian catchment in the stream, because no check dams were constructed in the Menqian catchment. The examination is based on recent field investigations and aerial photograph analyses, and covers four aspects: (a) bed gradients of catchment channels; (b) stability of bank slopes; (c) rates of land erosion; and (d) vegetations on bank slopes. The field data demonstrate that the check-dams have had the following good functions for mitigation of soil erosion: (1) restricting the channel depth and lateral erosions, (2) protecting the channel erosion base, (3) reducing the bed gradients of debris-flow channels, (4) fixing the channel bed, (5) stabilizing the bank slopes, as well as (6) facilitating the growth of vegetations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Field monitoring is necessary for the geotechnical engineer to verify design assumptions. More importantly, the field data may also be assembled into a comprehensive case record that is available for use when checking validity of any analytical and numerical models. The ongoing process of back-analysis in unsaturated soil engineering can help to refine and improve our understanding, providing guidance for future designs, where the effects of soil suction and hydraulic hysteresis are still being explored. A range of recent field studies of the mechanisms of rainfall infiltration into slopes is presented. In addition, some physical simulations of unsaturated soil slopes subjected to rainfall, rising ground water table and changes of moisture in centrifuge model tests are reported.  相似文献   

11.
由城市化进程改变的城市空间热环境对城区土体湿度产生了重要影响。为了了解城区与郊区土体湿度的差异,以南京市为例,分别在城区、郊区建立了土体湿度监测站,分析2009年6月1日至2010年6月7日南京城区、郊区地下1 m范围内裸土、草地及混凝土覆盖环境下土体湿度的时空演化特征。研究结果表明,南京城区土体湿度总体上小于郊区,存在显著的城市土体"干岛效应",年平均干岛强度为-7.4%。在时间尺度上,1月的干岛强度最小,为-2.1%;7月最大,达到-20.5%。在空间尺度上,郊区土体湿度随深度增加而增大,城区土体则无明显规律。在不同地面覆盖环境下,城区、郊区土体湿度变化规律不同:城区裸土环境下土体湿度日变化明显,而草地及混凝土下的土体湿度日变化相对较小,3种地面覆盖环境的年均土体湿度变化规律为草地(19.0%)<混凝土(26.4%)<裸土(29.5%);郊区3种地面覆盖环境下土体湿度日变化区间及变化频率均比城区大,且年均土体湿度为混凝土(27.4%)<草地(34.7%)<裸土(36.2%)。最后,分析了造成城区、郊区土体湿度差异的原因。  相似文献   

12.
 This paper presents the results of field tests of hydrologic parameters in a landfill and the results of numerical simulation to find the efficiency of the pumping method to reduce leachate levels in the landfill. The field hydraulic conductivity and storativity of waste and buried cover soils in the landfill are measured by pumping and slug tests. The hydrologic condition inside the landfill is first calibrated using the drawdown-time curve obtained from the pumping test, and the flow behavior of leachate during pumping in the landfill, when various layers of waste and buried cover soil exist, is analyzed through three-dimensional numerical simulation of flow. The results of the field investigation show that the buried cover soil of low hydraulic conductivity forms an impermeable layer preventing the downward flow of leachate and upward flow of landfill gas. The hydraulic conductivities of the pumping test and slug tests were quite close on the same order of magnitude. It was also possible to match the drawdown-time data of the field tests with those of the model using input data close to the hydrologic property obtained from the field tests. The numerical flow analysis showed that pumping was possible up to 120 tons/day for a single well without a drain, while the pumping rate could be increased to 300 tons/day for the same well with the drain. From the vertical section of the flow vector with a horizontal drain, the barrier role of buried cover soil is identified, which was proposed by examining the water contents of the disposed cover soil and waste in the field. Received: 15 May 1998 · Accepted: 4 January 1999  相似文献   

13.
Computer-based landscape evolution models offer the ability to evaluate landscape stability over the short (annual), medium (decades to hundreds of years) and long-term (thousands of years). Modeling has advantages in that design ideas can be tested, different surface material properties can be evaluated and risk analysis carried out. Landscape evolution models allow landscape surface change through time. These models also offer the advantage that the landscape can be evaluated visually as it develops through time, which is not possible with other types of models. Landscape evolution models can be used for not only soil loss assessment (i.e. tonnes/hectare/year), but also to evaluate the method of soil loss (i.e. rill or interrill erosion). This study examines a range of waste rock dump designs for the Minera Alumbrera Ltd. copper mine, Argentina. An erosion assessment using the SIBERIA erosion model over a 1000-year simulation period demonstrates waste rock dump designs using a conventional stepped design of backsloping benches and caps with angle of repose slopes provide the lowest average erosion rates and depths of incision than do other designs. Caution should be applied in interpreting these results as the SIBERIA erosion model is sensitive to parameter input and in this case was calibrated and run using a generic set of parameters that are not site specific. Nevertheless, the results provide a guide as to the strengths and weaknesses of different rehabilitation designs and demonstrate the insights that modeling studies can provide.  相似文献   

14.
If a mine waste pile is left open, an active chemical reaction of oxidation is often found due to the commonly high content of pyritic materials. The oxidation of pyrites is an exothermic process and the released heat will promote the flow of fresh oxygen from the surrounding atmosphere into the waste dump. As a result, oxidation reaction will accelerate and temperature within the dump can increase to as high as 60°C above the ambient temperature. The oxidation process also releases sulphuric acid and hydrogen ions into ground water to cause water contamination. Low‐permeability covers such as clay liners have been recently proposed to abate the oxidation process in mine wastes. The effectiveness of using low‐permeability materials to cover mine wastes in order to suppress the pyrite oxidation is examined. By conducting the theoretical analysis of the onset of convective air flow within waste rocks, the conditions under which soil gas flow is significant are identified. By comparing the results with previous field measurements and theoretical analysis for the uncovered conditions, it is shown that low‐permeability covers can effectively suppress soil gas flow and slow down the pyrite oxidation process in mine wastes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
A coupled thermal-hydro-mechanical computational modeling of actual field tests, which had been conducted on an end bearing heat exchanger pile, has been carried out. Results of a conventional triaxial test program, which was performed during the site investigation, indicated that two soil layers were anisotropic. A simplified form of a transverse isotropy was used to model the response of these layers. Additional analyses were carried out for completely isotropic soil layers. Comparisons between the measurements obtained during the field testing and predictions of the computational models showed a very good to excellent agreement. Overall the anisotropic model performed better than the isotropic model.  相似文献   

16.
植物已被广泛用于改善岩土设施的服役性能。然而,植物生长对填埋场多层覆盖系统防渗性能的影响尚不清楚。本研究通过在深圳下坪固体废弃物填埋场开展为期两年的现场试验,并利用数值模拟进行对比与参数化分析,旨在量化湿润气候下植物生长对土体水力性质以及三层覆盖系统防渗功能的影响。经研究发现,土体饱和渗透系数(ks)随根长密度(RLD)的增加呈线性下降。相比裸露土,植草土ks、入渗量和入渗速率分别降低55%,18%和35%。这导致在现场监测期间植草覆盖系统中维持的吸力明显高于裸露覆盖系统,数值分析与实测结果相一致。然而,百年一遇降雨后两覆盖系统内吸力分布无显著差异。在两年的现场监测中,相比裸露覆盖系统,草类减少累积渗漏量达21%。通过裸露与植草覆盖系统的年均渗漏量均满足美国环保局建议的每年30 mm的设计要求,证明了没有土工膜的三层覆盖系统在湿润气候下的良好防渗性能。  相似文献   

17.
18.
地质系统热-水-力耦合作用的随机建模初步研究   总被引:2,自引:0,他引:2  
热-水-力(THM)耦合作用是岩石力学与环境地质中的重要基础理论问题,核废料地质处置库周围的缓冲材料和围岩中的热-水-力耦合现象将影响其力学稳定性、热传导性和渗透性,进而影响放射性核素在裂隙岩体中的迁移规律。核废料或放射性废料的地下深埋处置是国际上正在研究的永久性隔离的有效方法之一。因此,对核废料地质处置法安全性评估的一个重要内容就是对裂隙岩体中力学稳定性与构造应力、地下水渗流及热载荷等的耦合作用之数值模拟和评估。这已成为当前刻不容缓的重要的环境影响评价课题。笔者研究了温度场-渗流场-应力场中热传导系数和渗透率以及岩体力学参数的空间变异性,用实验方法研究三场耦合效应及裂隙岩体的场性能等效处理,试图建立热-水-力耦合作用的随机性数学模型及可视化数值模拟方法,为核废料地质处置安全性评估提供直观的新方法。  相似文献   

19.
M. Langer 《Engineering Geology》1993,34(3-4):159-167
The problem of waste disposal in Germany has been solved by using a combination of above-ground and underground disposal. Site selection criteria and precise criteria for the performance assessment of various types of waste disposal are available. In view of long-term safety of disposal, it is necessary to include geological and hydrogeological viewpoints in addition to purely engineering viewpoints.

In particular, the geotechnical site-specific safety assessment is described, as defined by the government in “Technical Regulations on Wastes” (TA-Abfall) in the section “Underground Disposal”. This safety assessment must cover the entire system comprising waste, cavern/mine and surrounding rock. For this purpose geo-mechanical models have to be developed.

According to the multi-barrier principle, the geological setting must be able to contribute significantly to isolation of the waste over longer periods. The assessment of the integrity of the geological barrier can only be performed by making calculations with validated geomechanical models.

Various engineering geological data are required for the selection of a site, for the design and construction of a repository, and for a safety analysis for the post-operational phase. These data can only be attained by the execution of a comprehensive site-specific geomechanical exploration and investigation program. The planning and design of an underground repository in rock salt layers are described, as an example for the various steps of this type of safety assessment.  相似文献   


20.
This study suggests a novel approach to the retrieval of soil surface parameters using a single-acquisition single-configuration synthetic-aperture radar (SAR) system. Soil surface parameters such as soil moisture and surface roughness are key elements for many environmental studies, including Earth surface water cycles, energy exchange, agriculture, and geology. Remote sensing techniques, especially SAR data, are commonly used to retrieve such soil surface parameters over large areas. Several backscattering models have been proposed for soil surface parameters retrieval from SAR data. However, commonly, these backscattering models require multi configuration SAR data, including multi-polarization, multi-frequency, and multi-incidence angle. Here we propose a methodology that employs single-acquisition single-configuration SAR data for the retrieval of soil surface parameters. The originality is to use single-acquisition single-configuration SAR data to retrieve the soil surface parameters using an optimization approach by the genetic algorithm (GA); we have used the modified Dubois model (MDM) in HH polarization as the backscattering model. Three HH polarization and C band data sets from Quebec (Radarsat-1), Ontario (SIR-C), and Oklahoma (AIRSAR) were analyzed. The retrieved values of soil moisture and soil surface roughness were then compared to ground truth measurements with corresponding parameters. We employed diverse criteria, including the mean absolute error (MAE), the root mean square error (RMSE), the coefficient of performance (CP), and the correlation coefficient to investigate the performance of the proposed methodology. This analysis suggests the capability of the GA for the retrieval of soil surface parameters. Based on our findings, this method presents a viable alternative approach to the retrieval of soil surface parameters when only single-acquisition single-configuration SAR data is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号