首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
青藏块体东北缘和川滇GPS监测区1991(1993)、1999和2001年高精度GPS观测资料揭示:2001年11月14日昆仑Ms8.1地震前,青藏块体北、东缘构造区域水平运动变形场动态演变具有一定的关联性特征。即:在继承性运动总体背景下,临近大震发生时两区域运动强度同步减弱且变形状态发生变化。结合地质构造分析研究认为,昆仑Ms8.1地震前,青藏块体边界运动变形的关联性变化与大震孕育后期大范围应力应变快速积累所形成的扰动应力场有关;随着块体内部大震的发生、应变能的大量释放和构造应力场的调整,可能会促使块体边界地带具有较高应变积累的相关构造部位(尤其是未被历史强震破裂贯通的地带)的应力应变的进一步积累或破裂释放。  相似文献   

2.
INTRODUCTIONThe Qinghai_Xizang(Tibet)blockis praised as a“piston”in the earth dynamics systemof theChinese mainland,andis regarded asthe hotspot in geoscience study all along.The occurrence of theMS8·1strong earthquake on November14,2001,inside the Qin…  相似文献   

3.
26 earthquakes with MS ≥5. 0 have been recorded in the northeast margin of the Qinghai- Xizang (Tibet) block since 1980,22 of which were relatively independent of other moderate- strong earthquakes. Research on the increase of small earthquake activity before the 22 moderate-strong earthquakes has indicated that small earthquake activity was enhanced before 17 of the moderate-strong earthquakes. Though the increased seismicity is a common phenomenon in the northeast margin of the Qinghai-Xizang ( Tibet ) block,we have difficulty in predicting the moderate-strong earthquakes by this phenomenon. In order to predict the moderate-strong earthquakes through the increased seismicity of small earthquakes,this paper attempts to propose a new method, which calculates small earthquake frequency through the change of distribution pattern of small earthquakes, based on the characteristics of small earthquake activity in the northeastern Qinghai-Xizang (Tibet) block,and then make primary applications. The result shows that we are able to obtain obvious anomalies in the frequency of small earthquakes before moderate strong earthquakes through the new method,with little spatial range effect on the amplitude of this small earthquake frequency anomaly. We can obtain mid to short-term anomaly indices for moderate-strong earthquakes in the northeast margin of the Qinghai-Xizang (Tibet) block.  相似文献   

4.
IntroductionAccording to the division of Neo-tectonically active blocks northeastern Qinghai-Xizang (abbreviated as QX thereafter) plateau is a juncture region where 3 intra-continental subplates, the Qinghai-Xizang, Xinjiang and North China subplate, meet with each other (DING, 1991). The subplates generally consist of blocks. Specifically, around the Yinchuan-Haiyuan (quasi-trijuncture( (TIAN, DING, 1998), where the 3 subplates meet, to the south locates the Gansu-Qinghai (GQ) blo…  相似文献   

5.
This paper gives a preliminarily study of the regional tectonic deformation setting before the Ms8.1 earthquake that occurred in the west of the Kunlun Mountains Pass; in the study, the data of the velocity field of crustal horizontal movement during 1991-2000 observed by GPS in and around the Qinghai-Tibet block and those of gravity reiteration in 1998 and 2000 were used. Analysis shows that the preparation and occurrence of this large earthquake are related to the horizontal movement and deformation setting in a large region and might be attributed to the block activity on a relatively large scale. Within the Qinghai-Tibet block, the region of left-lateral shear deformation is of a very large extent. This large earthquake occurred right in such a place where the left-lateral shear strain along the fault strike had the highest rate and the planar dilatation strain was tensile, which was on the margin of negative value region of abnormal gravity variation. The regional tectonic deformation setting can help the huge left-lateral strike-slip rupture to develop.  相似文献   

6.
划分大陆活动地块的重要标志之一是它们在地壳结构间的差异。大陆不同地块具有不同的地壳结构特征。这些结构和构造上的不同反映了它们在地壳内部的变形特征和动力过程的差异。文中利用深地震宽角反射 /折射剖面的结果 ,讨论了青藏高原东北缘东昆仑巴颜喀拉地块、鄂尔多斯地块和华北地块唐山震区地壳结构的差异。它们分别是变形强烈的活动地块、内部变形小相对稳定的地块和现代发生过强震的活动地块。在地壳结构上它们之间的差别是明显的。这些差异表现在地壳的分层性质、上地壳和下地壳的结构、地壳结构的不均匀尺度、壳 /幔分界的性质、壳内低速层的分布、地壳界面、特别是莫霍面的构造形态等方面  相似文献   

7.
Characteristics of present-day tectonic movement in the northeastern margin of Qinghai-Xizang plateau (Tibetan) are studied based on earthquake data. Evidence of earthquake activity shows that junctures between blocks in this area consist of complicated deformation zones. Between the Gansu-Qinghai block and Alxa block there is a broad compressive deformation zone, which turns essentially to be a network-like deformation region to the southeast. The Liupanshan region, where the Gansu-Qinghai block contacts the Ordos block, is suffering from NE-SW compressive deformation. Junction zone between the Ordos and Alxa block is a shear zone with sections of variable trend. The northwestern and southeastern marginal region of the Ordos is under NNW-SSE extension. The above characteristics of present-day tectonic deformation of the northeastern Qinghai-Xizang plateau may be attributed to the northeastward squeezing of the plateau and the resistance of the Ordos block, as well as the southeastward extrusion of the plateau materials. Foundation item: State Natural Science Foundation of China (49732090) and the Development Program on National Key Basic Researches under the Project Mechanism and Prediction of Continental Strong Earthquakes (95-13-02-05). Contribution No. 00FE2003, Institute of Geophysics, China Seismological Bureau.  相似文献   

8.
INTRODUCTIONThe Zhangjiakou-Penglai fault zone has drawnextensive attentionfromseismologists and geologistssince it was determinedinthe1980’s(Zheng Binghua,et al.,1981).Ma Xingyuan,et al.(1989)consideredit asthe north boundaryof North China sub-block.Int…  相似文献   

9.
Introduction GPS observation results provide high-accuracy and large-range crustal movement data with real time, which makes it possible to obtain the velocity field of current crustal movement in Chi-nese mainland within a short time and check the previous tectonic deformation model. Geoscien-tists at home and abroad have made a great number of researches on the crustal movement in Chi-nese mainland and have obtained many results in this field (JIANG, et al, 2001; WANG, et al, 2001; ZHA…  相似文献   

10.
Pn arrival time data are collected from the bulletins of both national and regional seismological network in China-These data are tomographically inverted to map the lateral variation and anisotropy of Pn velocity in the northeast-ern marginal region of Qinghai-Xizang plateau.The average Pn velocity in this region is 8.09km/s,being a little higher than the average for whole China,Higher velocity is found in tectonically stable Qaidam basin,while lower velocity is seen in and around tectonically active Shanxi graben.The region where the 1920 Haiyuan great earth-quake occurred shows a slightly low Pn velocity.A noticeable result is that,differing from the tectonically com-pressive Tianshan region.where Pn velocity is low,the Qilianshan region,where the Neotectonic deformation is also primarily compressive,shows high Pn velocity,In the uppermost mantle beneath the Ordos plateau Pn veloc-ity is inhomogeneous,varying from higher velocity in southwestern part to lower one in northeastern part.This may be attributed to possible movement of the Ordos block,as there are strong earthquakes all around the block.  相似文献   

11.
IntroductionThenortheasternregionofQinghai-Xizangplateauisthejunctionregionofthethreeblocks,ie.,Qinghai-Xizang,AIxaandordosblock.TianandDing(l998)studiedtheclockwisetypequasi-trijunctionaroundHaiyuan-YinchuaninnortheasternregionofQinghai-Xizangplateau.Thethreet6ctonicbranchesofthequasi4rjunctionareQiIianshanfaultzone,Yinchuan-Jedai-Linhe(YJL)fractureddepressionbasinandLiupanshanfaultzone.TheQilianshanfaultzoneshowssin-istraIandcompressionalmovement,themovementofYJLbasinisofdextraland…  相似文献   

12.
This paper gives a preliminarily study of the regional tectonic deformation setting before the Ms8.1 earthquake that occurred in the west of the Kunlun Mountains Pass; in the study, the data of the velocity field of crustal horizontal movement during 1991-2000 observed by GPS in and around the Qinghai-Tibet block and those of gravity reiteration in 1998 and 2000 were used. Analysis shows that the preparation and occurrence of this large earthquake are related to the horizontal movement and deformation setting in a large region and might be attributed to the block activity on a relatively large scale. Within the Qinghai-Tibet block, the region of left-lateral shear deformation is of a very large extent. This large earthquake occurred right in such a place where the left-lateral shear strain along the fault strike had the highest rate and the planar dilatation strain was tensile, which was on the margin of negative value region of abnormal gravity variation. The regional tectonic deformation setting can help the huge left-lateral strike-slip rupture to develop.  相似文献   

13.

This paper gives a preliminarily study of the regional tectonic deformation setting before the Ms8.1 earthquake that occurred in the west of the Kunlun Mountains Pass; in the study, the data of the velocity field of crustal horizontal movement during 1991-2000 observed by GPS in and around the Qinghai-Tibet block and those of gravity reiteration in 1998 and 2000 were used. Analysis shows that the preparation and occurrence of this large earthquake are related to the horizontal movement and deformation setting in a large region and might be attributed to the block activity on a relatively large scale. Within the Qinghai-Tibet block, the region of left-lateral shear deformation is of a very large extent. This large earthquake occurred right in such a place where the left-lateral shear strain along the fault strike had the highest rate and the planar dilatation strain was tensile, which was on the margin of negative value region of abnormal gravity variation. The regional tectonic deformation setting can help the huge left-lateral strike-slip rupture to develop.

  相似文献   

14.
Tectonic activity is intense and destructive earthquakes occur frequently in the northern section of the North-South Seismic Belt(NSSB). After the May 12, 2008 Wenchuan earthquake, the North-South Seismic Belt enters a new period of high seismicity. On July 22, 2013, the Minxian-Zhangxian earthquake occurred, which broke the 10-years seismic quiescence of magnitude 6 of the area, indicating an increasing trend of strong earthquakes in the region. Earthquake is the product of crustal movement. Understanding the dynamics of the process of crustal movement may provide basis for earthquake prediction. GPS measurement can provide high-precision, large-scale, quasi-real-time quantitative crustal movement data, that allows us to explore the evolution of crustal movement and its relationship with earthquake, thus providing the basis for determining the seismic situation. Since 2009, the density of mobile GPS measurement stations has significantly improved in the Chinese mainland, and moreover, the Wenchuan earthquake has brought about adjustment of the regional crustal deformation regime. So the introduction of the latest repeat GPS data is important for understanding the features of crustal movement in the northern section of the North-South Seismic Belt. In this paper, we obtained the GPS velocity field, fault profile and baseline time series and analyzed the dynamics of recent crustal movement in the northern section of the North-South Seismic Belt using the 1999a-2014a GPS data of mobile and continuous GPS measurement stations. The results show that: the Qilianshan Fault has a high strain accumulation background. There are locked portions on the Liupanshan Fault, especially in the region of Jingning, Pingling, Dingxi, Longxi. In 2004-2009a, the degree of locking of the Liupanshan Fault got higher. In 2009—2013a, crustal movement on the northern section of the North-South Seismic Belt weakened compared with 1999-2004, 2004-2009, and showed some features as follows: ① The velocity field weakened more markedly near the Qilian-Haiyuan-Liupanshan faults; ②The velocity decreased more significantly in the region north of Qilianshan-Haiyuan Fault than that of the south, resulting in enhanced thrust deformation on the Qilianshan Fault in 2009-2013a and the decreased sinistral shear deformation on the Qilianshan Fault and Haiyuan Fault; ③the velocity field decreased more remarkably at 50km west of Liupanshan Fault, compared to the east region, which led to the locked range on the Liupanshan Fault extending to the range of 100km near the fault zone during 2009-2013 from the previous locked range of 50km near the fault. The GPS baseline time series analysis also reveals a number of structural features in the region: Yinchuan Graben is continuing extending, and the extension in the west is stronger than that in the east. On the southern end of Yinchuan Graben, the deformation is very small.  相似文献   

15.
Introduction The northeast margin of Qinghai-Xizang block has become the place with close attentions from geo-specialists at home and abroad for its significant tectonic movement and intensive seismicity. Quite a number of achievements have been obtained from the studies on geological structures and strong earthquake activities (DING, LU, 1989, 1991; GUO, et al, 1992, 2000; GUO, XIANG, 1993; HOU, et al, 1999; Tapponnier, et al, 1990; Gaudemer, et al, 1995). In the Development Program…  相似文献   

16.
昆仑山口西8.1级地震前青藏块体边界断层异常活动   总被引:5,自引:0,他引:5  
范燕  车兆宏 《地震》2003,23(2):121-126
系统分析了青藏块体边界断层的形变资料,研究了断层活动的动态过程及空间分布。结果表明,昆仑山口西8.1级地震前孕震影响范围达到青藏块体的周边地区;发震断层所在的构造带震前断层活动最为剧烈;加强对构造块体断层整体活动的宏观动态比较和分析,有助于判定未来强震发生的危险地段;震后应力将转移并集中到西秦岭构造带及其邻近地区。  相似文献   

17.
20世纪20年代,青藏高原东北发生了两次8级以上强震,其中1920年12月16日发生的海原M8.5地震距今已经100年。海原断裂带作为青藏高原东北缘最活跃的断裂带之一,至今仍控制着该区域微震及中强地震活动。本文基于ISCE软件和StaMPS平台,以2017年3月至2020年6月覆盖研究区的72景哨兵一号(Sentinel-1)SAR影像为数据源,采用PS-InSAR技术对海原断裂带进行时序形变监测,并以区域内GPS速度场进行校正,获取了其三年多来雷达视线向(Line of sight,LOS)的年平均形变速率。研究结果表明:①海原断裂带南北两盘形变速率差异明显,这与左旋走滑的运动性质相符;②毛毛山断裂、老虎山断裂西段处于闭锁状态,老虎山断裂中东段处于较为活跃状态,观测到蠕滑变形;海原地震破裂带部分断裂浅部处于愈合状态;③老虎山断裂中东段的蠕滑变形是青藏高原东北缘最为显著的区段,推断与1888年和1990年景泰的两次六级地震有关。  相似文献   

18.
青藏块体东北部2003年最新GPS复测揭示:昆仑山口西8.1级地震后本区水平运动变形较前变异显,以甘青块体西部出现的与NE向挤压背景相反的张性运动变形为主要标志,且区域总体应变幅度增大。结合地震有序活动分析认为:本区目前的水平运动变形态势,与8.1级大震及随后青藏块体中西部发育的NE向中强以上地震条带在较短时间内释放了大量的压应变,使得青藏块体北部区域NE向推挤的应力场失衡(西侧的区域应力场强度衰减、东侧的应力场增强)密切相关;因而青藏块体北部大区域应力场趋于平衡过程将有利于块体东北边缘应力应变加速积累和破裂错动。  相似文献   

19.
The GPS data in and around the Ordos block area indicate that the left-lateral slip rate along the northern or southern margin of the Ordos block is about twice or three times as fast as the right-lateral slip rate along the eastern or western margin of the block. However, many researchers stressed the dextral-slip of the eastern or western boundaries of the Ordos block, and suggested that the block as a whole rotated counterclockwise based on the available geological data. Focusing on the inconsistency, we reexamine the late Cenozoic deformation pattern in the Ordos region based on seismicity data and geodesy data (GPS and leveling) around it. The results indicate that the rigid block-like motion appears to be the basic characteristic of the kinematics of the Ordos region, and this motion is absorbed by the displacement of the faults around the block. When the faults along the northern and southern boundaries of the Ordos block are active, its eastern boundary is inactive. However, if the faults along the eastern boundary are active, the northern and southern are inactive. In recent years, the northern and southern boundaries of the Ordos block are in active. But in the long term, the Ordos block is moving southeastward relative to the Alxa and Yinshan blocks because of the strong pushing of the Tibetan Plateau on its southwestern side, and this deformation is accommodated by the counterclockwise rotation of the block itself.  相似文献   

20.
The GPS data in and around the Ordos block area indicate that the left-lateral slip rate along the northern or southern margin of the Ordos block is about twice or three times as fast as the right-lateral slip rate along the eastern or western margin of the block. However, many researchers stressed the dextral-slip of the eastern or western boundaries of the Ordos block, and suggested that the block as a whole rotated counterclockwise based on the available geological data. Focusing on the inconsistency, we reexamine the late Cenozoic deformation pattern in the Ordos region based on seismicity data and geodesy data (GPS and leveling) around it. The results indicate that the rigid block-like motion appears to be the basic characteristic of the kinematics of the Ordos region, and this motion is absorbed by the displacement of the faults around the block. When the faults along the northern and southern boundaries of the Ordos block are active, its eastern boundary is inactive. However, if the faults along the eastern boundary are active, the northern and southern are inactive. In recent years, the northern and southern boundaries of the Ordos block are in active. But in the long term, the Ordos block is moving southeastward relative to the Alxa and Yinshan blocks because of the strong pushing of the Tibetan Plateau on its southwestern side, and this deformation is accommodated by the counterclockwise rotation of the block itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号