首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Downward particle fluxes and hydrodynamics in the northwestern Mediterranean basin were measured by a sediment trap and a current meter deployed at 2350 m depth, 250 m above bottom, from November 2003 to April 2005. During the winter of 2003–2004 there were high river discharges, two strong E–SE storms and several moderate storms and short periods of moderate dense shelf-water cascading during which dense shelf water did not reach the deep basin. Downward particle fluxes at the basin site were low during most of this winter but increased above one order of magnitude as a consequence of the strong storm and moderate cascading event that occurred in late February 2004. During the winter of 2004–2005, neither important river floods nor strong storms occurred but there were very intense and persistent dense shelf-water cascading events from February to April 2005. Dense shelf water, mixed with offshore convection water, reached the basin site in early March 2005, increasing downward particle fluxes by more than two orders of magnitude for more than 1 month. These observations indicate that events of significant sediment transport to the northwestern Mediterranean basin can be caused by severe winter E–SE storms associated with moderate cascading events or by exceptionally intense and persistent dense shelf-water cascading episodes alone. On the other hand, river floods, severe storms during water column stratification conditions (without cascading) and moderate storms concurrent with moderate dense shelf-water cascading did not generate sediment transport events able to reach the basin.  相似文献   

2.
Processes relating to the formation of dense shelf water and intermediate water in the Okhotsk Sea were studied by examining oxygen isotope ratios (δ18O), salinity, and temperature. The salinity and δ18O of the cold dense shelf water on the northern continental shelf showed peculiar relationship. The relationship indicates that 3% of the mixed-layer water, having salinity of 32.6, froze and the remaining 97% became dense shelf water of salinities of more than 33.2 (σθ>26.7) during the sea ice formation. The salinity–δ18O relationship also shows that 20% of the Okhotsk Sea Intermediate Water at the σθ=26.8 level was derived from the dense shelf water. The remaining 80% came from the Western Subarctic Pacific water modified by diapycnal mixing of water affected by the surface cooling and freshening within the Okhotsk Sea. The mixing with dense shelf water contributes to only 26% of the temperature difference or 8% of the salinity difference between the original Pacific water and the Okhotsk Sea Intermediate Water at σθ=26.8. This result suggests that the cold and less saline properties of the Okhotsk Sea Intermediate Water are produced mainly by diapycnal mixing, rather than by mixing of the Pacific water with the dense shelf water.  相似文献   

3.
The paper evaluates atmospheric reanalysis as possible forcing of model simulations of the ocean circulation inter-annual variability in the Gulf of Lions in the Western Mediterranean Sea between 1990 and 2000. The sensitivity of the coastal atmospheric patterns to the model resolution is investigated using the REMO regional climate model (18 km, 1 h), and the recent global atmospheric reanalysis ERA40 (125 km, 6 h). At scales from a few years to a few days, both atmospheric data sets exhibit a very similar weather, and agreement between REMO and ERA40 is especially good on the seasonal cycle and at the daily variability scale. At smaller scales, REMO reproduces more realistic spatio-temporal patterns in the ocean forcing: specific wind systems, particular atmospheric behaviour on the shelf, diurnal cycle, sea-breeze. Ocean twin experiments (1990–1993) clearly underline REMO skills to drive dominant oceanic processes in this microtidal area. Finer wind patterns induce a more realistic circulation and hydrology of the shelf water: unique shelf circulation, upwelling, temperature and salinity exchanges at the shelf break. The hourly sampling of REMO introduces a diurnal forcing which enhances the behaviour of the ocean mixed layer. In addition, the more numerous wind extremes modify the exchanges at the shelf break: favouring the export of dense shelf water, enhancing the mesoscale variability and the interactions of the along slope current with the bathymetry.  相似文献   

4.
Cascades of dense water around the world ocean   总被引:1,自引:0,他引:1  
Dense water overflow off continental shelves (cascading) is one of the contributing processes of shelf-deep ocean exchange, and of topical interest to climate studies and nutrient fluxes. Dense water originating from cooling, evaporation, freezing and salinization on a shallow shelf spills over the shelf edge and may develop as near-bottom gravity current or an intermediate-depth intrusion. It is difficult to observe in nature due to its intermittent character.This paper provides an extensive inventory of observed cases of water cascades around the World Ocean, summarises their locations and individual properties, and provides statistics of the identified cases. The search for cascading was carried out using oceanographic databases and a literature review. This study identified 61 confirmed cases world-wide, including 25 cases in the Arctic seas, 12 at mid-latitudes, seven in sub-tropical and tropical regions, and 17 off the Antarctic shelves. Eighteen cascades had not been reported before. We analyze a set of numerical parameters of dense water cascades, allowing us to quantify, compare and contrast the properties of water cascades. The overall average density contrast between the confirmed cascades and ambient water is 0.37 (kg/m3); it can be as much as 2 (kg/m3) on some Arctic shelves. Frequently initiated by strong cooling at the surface, cascades often remain colder through the descent, thus supplying the deep ocean with colder and fresher water. In non-dimensional variables, the data from all climate zones fit well to a unique curve, which represents a relationship between a cascade’s internal structure and the parameters describing its forcing. On average, the down-slope volumetric flux provided by dense water cascades is estimated as 0.05 to 0.08 Sv per 100 km of shelf edge.Regional terms: Arctic, Antarctic, North Atlantic Ocean, Barents Sea, Mediterranean Sea, Skagerrak, Tasman Sea, Sea of Okhotsk  相似文献   

5.
We use hydrological and current meter data collected in the Ross Sea, Antarctica between 1995 and 2006 to describe the spatial and temporal variability of water masses involved in the production of Antarctic Bottom Water (AABW). Data were collected in two regions of known outflows of dense shelf water in this region; the Drygalski Trough (DT) and the Glomar-Challenger Trough (GCT). Dense shelf water just inshore of the shelf break is dominated by High Salinity Shelf Water (HSSW) in the DT and Ice Shelf Water (ISW) in the GCT. The HSSW in the northern DT freshened by ∼0.06 in 11 y, while the ISW in the northern GCT freshened by ∼0.04 in 8 y and warmed by ∼0.04 °C in 11 y, dominated by a rapid warming during austral summer 2001/02. The Antarctic Slope Front separating the warm Circumpolar Deep Water (CDW) from the shelf waters is more stable near GCT than near DT, with CDW and mixing products being found on the outer DT shelf but not on the outer GCT shelf. The different source waters and mixing processes at the two sites lead to production of AABW with different thermohaline characteristics in the central and western Ross Sea. Multi-year time series of hydrography and currents at long-term moorings within 100 km of the shelf break in both troughs confirm the interannual signals in the dense shelf water and reveal the seasonal cycle of water mass properties. Near the DT the HSSW salinities experienced maxima in March/April and minima in September/October. The ISW in the GCT is warmest in March/April and coolest between August and October. Mooring data also demonstrate significant high-frequency variability associated with tides and other processes. Wavelet analysis of near-bottom moored sensors sampling the dense water cascade over the continental slope west of the GCT shows intermittent energetic pulses of cold, dense water with periods from ∼32 h to ∼5 days.  相似文献   

6.
Comprehensive field observations of hydrological processes in the region of the continental slope of Severnaya Zemlya in the Laptev Sea allowed us to reveal descending dense (cold) shelf water over the slope (cascading) and to determine the spatiotemporal variability of the cascading [2]. The observations represented a series of polygon surveys in the autumn-winter-spring period. The estimates of the characteristics of the slope convection of the shelf water (cascading) were based on the results of laboratory and theoretical studies of the descending of the dense water over a sloping bottom in a rotating fluid with sources of different geometry. It was shown that the cascading of dense shelf water over the continental slope mainly corresponds to a smooth (geostrophic) regime. An analysis of some thermohaline and density sections indicates, however, the possibility of the development of a wave-eddy regime of cascading and/or generation of fast gravity waves in the upper part of the continental slope. The most representative estimation of the contribution of the cascading of dense shelf water on the northern continental slope of Severnaya Zemlya to the ventilation of the intermediate waters in the Nansen Basin for five winter months is ≈0.0614 Sv.  相似文献   

7.
本文利用水文和海流观测资料,从水团相互作用去研究东海高密水及其环流的演变。获得如下一些结果:东海高密水冬季形成于东海中部陆架混合水中,入春以后水团挤压,高密水显得更为突出,入秋后高密水变性,东海中部陆架混合水重新形成;东海高密水核心区可形成气旋环流,从冬到秋经历了一个弱—强—弱的演变过程。海流观测结果证实这个环流是存在的;在东海高密水南侧存在较明显的密度锋,从冬到秋它也经历了一个弱—强—弱的演变过程;水团分析发现,各种与主体分离的混合水从春到夏可在高密水核心周围组合成一个环,从而进一步印证了这个高密水环流的存在  相似文献   

8.
Dense water formation and circulation in the Barents Sea   总被引:1,自引:0,他引:1  
Dense water masses from Arctic shelf seas are an important part of the Arctic thermohaline system. We present previously unpublished observations from shallow banks in the Barents Sea, which reveal large interannual variability in dense water temperature and salinity. To examine the formation and circulation of dense water, and the processes governing interannual variability, a regional coupled ice-ocean model is applied to the Barents Sea for the period 1948-2007. Volume and characteristics of dense water are investigated with respect to the initial autumn surface salinity, atmospheric cooling, and sea-ice growth (salt flux). In the southern Barents Sea (Spitsbergen Bank and Central Bank) dense water formation is associated with advection of Atlantic Water into the Barents Sea and corresponding variations in initial salinities and heat loss at the air-sea interface. The characteristics of the dense water on the Spitsbergen Bank and Central Bank are thus determined by the regional climate of the Barents Sea. Preconditioning is also important to dense water variability on the northern banks, and can be related to local ice melt (Great Bank) and properties of the Novaya Zemlya Coastal Current (Novaya Zemlya Bank). The dense water mainly exits the Barents Sea between Frans Josef Land and Novaya Zemlya, where it constitutes 63% (1.2 Sv) of the net outflow and has an average density of 1028.07 kg m−3. An amount of 0.4 Sv enters the Arctic Ocean between Svalbard and Frans Josef Land. Covering 9% of the ocean area, the banks contribute with approximately 1/3 of the exported dense water. Formation on the banks is more important when the Barents Sea is in a cold state (less Atlantic Water inflow, more sea-ice). During warm periods with high throughflow more dense water is produced broadly over the shelf by general cooling of the northward flowing Atlantic Water. However, our results indicate that during extremely warm periods (1950s and late 2000s) the total export of dense water to the Arctic Ocean becomes strongly reduced.  相似文献   

9.
10.
A review is presented of the ocean circulation along Australia’s southern shelves and slope. Uniquely, the long, zonal shelf is subject to an equatorward Sverdrup transport that gives rise to the Flinders Current - a small sister to the world’s major Western Boundary Currents. The Flinders Current is strongest near the 600 m isobath where the current speeds can reach 20 cm/s and the bottom boundary layer is upwelling favourable. It is larger in the west but likely intermittent in both space and time due to possibly opposing winds, thermohaline circulation and mesoscale eddies. The Flinders Current may be important to deep upwelling within the ubiquitous canyons of the region.During winter, the Leeuwin Current and local winds act to drive eastward currents that average up to 20-30 cm/s. The currents associated with the intense coastal-trapped wave-field (6-12 day band) are of order 25-30 cm/s and can peak at 80-90 cm/s. Wintertime winds and cooling also lead to downwelling to depths of 200 m or more and the formation of dense coastal water within the Great Australian Bight and the South Australian Sea. Within the Great Australian Bight, the thermohaline circulation associated with this dense water is unknown, but may enhance the eastward shelf-edge, South Australian Current. The dense salty water formed within Spencer Gulf is known to cascade as a gravity current to depths of 200 m off Kangaroo Island. This dense water outflow and meanders in the shelf circulation also fix the locations of a sequence of quasi-permanent mesoscale eddies between the Eyre Peninsula and Portland.During summer, the average coastal winds reverse and surface heating leads to the formation of warm water in the western Great Australian Bight and the South Australian Sea. No significant exchange of shelf water and gulf water appears to occur due to the presence of a dense, nutrient-rich (sub-surface) pool that is upwelled off Kangaroo Island. The winds lead to weak average coastal currents (<10 cm/s) that flow to the north-west. In the Great Australian Bight, the wind stress curl can lead to an anticyclonic circulation gyre that can result in shelf-break downwelling in the western Great Australian Bight and the formation of the eastward, South Australian Current. In the east, upwelling favourable winds and coastal-trapped waves can lead to deep upwelling events off Kangaroo Island and the Bonney Coast that occur over 3-10 days and some 2-4 times a season. The alongshore currents here can be large (∼40 cm/s) and the vertical scales of upwelling are of order 150 m (off Kangaroo Island) and 250 m (off the Bonney Coast).Increasing evidence suggests that El Nino events (4-7 year period) can have a major impact on the winter and summer circulation. These events propagate from the Pacific Ocean and around the shelf-slope wave-guide of West Australia and into the Great Australian Bight. During winter El Nino events, the average shelf currents may be largely shut-down. During summer, the thermocline may be raised by up to 150 m. The nature and role of tides and surface waves is also discussed along with uncertainties in the general circulation and future research.  相似文献   

11.
Isopycnic and cartesian model simulations for the overflow and spreading of dense water are compared with each other and with independent transient-tracer observations. This case study is performed for Adriatic dense water overflowing into the deep eastern Mediterranean with chlorofluoromethane (CFC-12) observations used to test the model simulations. The realism of both types of model simulation depends on the representation of diapycnal mixing. In the cartesian model, convective adjustment and mixing dilute the overflow of Adriatic dense water and lead to unrealistic vertical homogenization. Incorporating a modified convection scheme emphasizing the sinking of dense fluid, rather than its mixing, leads to a more realistic penetration of the dense overflow. In the isopycnic model, there is an improved simulation of the overflow, which leads to the density contrast of the deep Mediterranean waters being maintained. However, there is too low a CFC-12 concentration at mid-depths unless explicit diapycnal mixing is incorporated. In each model, the different spreading of dense water is associated with a different bottom pressure torque and depth-integrated transport, and hence with contrasting tracer distributions throughout the water column.  相似文献   

12.
《Ocean Modelling》2001,3(1-2):51-65
Two mechanisms contribute to the formation of Antarctic bottom water (AABW). The first, and probably the most important, is initiated by the brine released on the Antarctic continental shelf during ice formation which is responsible for an increase in salinity. After mixing with ambient water at the shelf break, this salty and dense water sinks along the shelf slope and invades the deepest part of the global ocean. For the second one, the increase of surface water density is due to strong cooling at the ocean–atmosphere interface, together with a contribution from brine release. This induces deep convection and the renewal of deep waters. The relative importance of these two mechanisms is investigated in a global coupled ice–ocean model. Chlorofluorocarbon (CFC) concentrations simulated by the model compare favourably with observations, suggesting a reasonable deep water ventilation in the Southern Ocean, except close to Antarctica where concentrations are too high. Two artificial passive tracers released at surface on the Antarctic continental shelf and in the open-ocean allow to show clearly that the two mechanisms contribute significantly to the renewal of AABW in the model. This indicates that open-ocean convection is overestimated in our simulation. Additional experiments show that the amount of AABW production due to the export of dense shelf waters is quite sensitive to the parameterisation of the effect of downsloping and meso-scale eddies. Nevertheless, shelf waters always contribute significantly to deep water renewal. Besides, increasing the P.R. Gent, J.C. McWilliams [Journal of Physical Oceanography 20 (1990) 150–155] thickness diffusion can nearly suppress the AABW formation by open-ocean convection.  相似文献   

13.
Recently proposed criteria to identify sites, periods and characteristics of dense water formation in the Mediterranean Sea are analyzed. These criteria were first obtained through tank experiments and numerical and theoretical analyses. They can be useful for discriminating between processes that reach the sea bottom and those involving only the less thick superficial layers. With these criteria, general characteristics of newly formed dense water can be inferred from a knowledge only of winter density stratification g′, of the buoyancy increase B due to the violent winter storms, and of the horizontal space scale R of the region of interest, a quantity usually identified by a decrease of 0.5–1°C of the SST. For the Mediterranean Sea, these criteria are applied here to the few known field observations and to more indirect “routine” information, namely climatological values of the stratification, numerical estimates of the buoyancy flux and remotely sensed SST from satellite imagery. In this way a stimulating picture of these dramatic phenomena is obtained, giving some insight into the possibility of forecasting and into other characteristics of dense water formation processes.  相似文献   

14.
Vertical distribution of phytoplankton in early warming season in the eastern Bering Sea and adjacent sea areas was investigated. In the surface layer which was under the influence of newly melted sea ice in the shelf water region of the Bering Sea in May, remarkably dense populations ofThalassiosira hyalina andT. nordenskiöldii and relatively large populations ofFragilaria andNavicula occupied large part of phytoplankton community. In June, although theThalassiosira populations sunk into the bottom layer and withered, a certain part of theFragilaria-Navicula populations was still suspended in subsurface layer. Thus,Fragilaria-Navicula were the leading components of the June community in the shelf region.In the Bering Basin region, no dense phytoplankton populations were developed until a shallow thermocline was established. In June when the shallow thermocline developed near shelf edge,Thalassiosira decipiens burst out. As the shallow thermocline extended from near shelf to central part of the Basin region with surface warming, the areas of blooming also shifted from near shelf to the central part.Contribution No. 73 from the Research Institute of North Pacific Fisheries, Hokkaido University.  相似文献   

15.
We present new evidence of shallow-water muddy contourite drifts at two distinct locations in the central Mediterranean characterized by a relatively deep shelf edge (between 170 and 300 m below sea level): the south-eastern Adriatic margin and the north-western Sicily Channel. The growth of these shelf-edge contourite drifts is ascribed to the long-term impact of the Mediterranean themohaline circulation. The Levantine Intermediate Water flows continuously, with annual or inter-annual variations, and affects the shelf edge and the upper slope in both study areas. In addition, the SW Adriatic margin is impinged by the seasonally modulated off-shelf cascading of North Adriatic Dense Water. This water mass has formed ever since the large Adriatic continental shelf was drowned by the post-glacial sea-level rise. It energetically sweeps the entire slope from the shelf edge to the deep basin. These bottom currents flow parallel or oblique to the depth contours, and are laterally constricted along markedly erosional moats aligned parallel to the shelf edge where they increase in flow velocity. The internal geometry and growth patterns of the shelf-edge contourites reflect changes in oceanographic setting affecting the whole Mediterranean Sea. In particular, seismic correlation with published sediment cores documents that these deposits are actively growing and migrating during the present interglacial, implying an enhancement in bottom-water formation during intervals of relative sea-level rise and highstand. Regardless of the specific mechanisms of formation, sediment drifts in both study areas have been affected by widespread thin-skinned mass-wasting events during post-glacial times. Repeated mass-transport processes have affected in particular the downslope flank of the shelf-edge contourite drifts, indicating that these muddy deposits are prone to failure during, or soon after, their deposition.  相似文献   

16.
Scorpaena notata is a small, sedentary scorpaenid species widely distributed in the Mediterranean and adjacent waters of the Atlantic. In the western Mediterranean it inhabits coastal continental shelf bottoms. In the Balearic Islands, these bottoms are characterised by the presence of the facies with red algae, including both Peyssonnelia and mäerl beds. These beds enhance the structural complexity, biodiversity and secondary production of the soft bottoms. Due to the oceanographic conditions of the Islands, the facies with red algae are especially rich in terms of biomass and algal coverage, and are widespread distributed between 40 and 90 m depth, where trawlers exploiting the continental shelf operate. The present work studies the biology of S. notata and its relationship with habitat characteristics. Special attention is focused on the aspects related to fish condition and growth as a tool to assess the importance of the facies with red algae for fish.  相似文献   

17.
Winter thermohaline properties of the northern Adriatic are analysed here with the aim of getting a better insight into dense water formation on the shelf. The hydrographic parameters collected in February in the 1967–2000 interval at two stations, the first located close to the eastern shore (station 1), and the second positioned near the Po river mouth (station 2), are compared. Two types of winter hydrographic conditions are distinguished: type A when bottom salinity and density are higher at station 1 than at station 2 and type B when these parameters are higher at station 2 than at station 1. Type A is more likely to occur in warmer and type B in colder winters. Both A and B distribution types can occur in periods when the Adriatic is under the influence of very saline waters of Mediterranean origin. Interannual changes in density are, at both stations, more dependant on haline than on thermal variations. At both stations temperature was somewhat higher in the early seventies than during the eighties and nineties, while salinity and density were lower in the early seventies and early nineties than in other years of the analysed period. By comparing the 1967–2000 changes in hydrographic conditions in February to monthly values of northern Adriatic surface fluxes and Po river discharge rates, it is shown that winter thermohaline characteristics in the region depend on processes which occur much earlier, i.e. during the previous autumn and late in spring of the preceding year, and even during the previous winter, 12 months before.  相似文献   

18.
1989年东海陆架水团及高密水环流的季节变化   总被引:3,自引:1,他引:3  
本文利用1989年的观测资料,分析了水团及高密水环流的季节演变特征。结果表明:东海高密水在陆架上存在一个季节性的变化过程,核心区有一个气旋型的密度环流;这个环流秋、冬季较弱,春、夏季较强;在该环流的产生过程中,它可以影响邻近水团的分布;在春季,邻近水团在东海高密水周围形成一个环状分布  相似文献   

19.
We use simple quantitative analyses to evaluate controversial water level scenarios for the Mediterranean “Lower Evaporites” of the Messinian salinity crisis. Our results indicate that a shallow-water scenario for the Lower Gypsum units – with Mediterranean water level lower than the sill at Gibraltar – would imply unrealistic salt thicknesses on the order of 3 km. Some outflow to the open ocean must have persisted, implying that the Mediterranean was a deep-water basin during Lower Gypsum formation. Since glacio-eustatic fluctuations do not seem to have had a major influence on Lower Gypsum deposits, Mediterranean water level was even substantially higher than the Gibraltar sill. Our analyses furthermore show that precessional changes in the freshwater budget may explain the observed cyclic lithological changes of gypsum and non-evaporitic sediments. Potential precipitation of gypsum in the deep Mediterranean basins would have critically depended on the availability of oxygen and thus on the stratification of the water column. Finally, our results indicate that the deep Mediterranean halite units could have been deposited under shallow conditions, assuming that they correspond to the ~ 70 kyr time interval between glacials TG12 and TG14, when Mediterranean outflow to the Atlantic was blocked.  相似文献   

20.
This study of the mixing of Mediterranean Sea Water (MW) with the surrounding waters was made possible by the Semane 2002 cruise (Sortie des Eaux Meditérranéennes dans l'Atlantique Nord-Est) that took place in the Gulf of Cadiz in July 2002. Potential temperature, salinity, oxygen, nutrients and CFC data are used to describe the water masses present in the Gulf. In the southern part of the basin, a water mass characterised by low oxygen, high nutrient and low CFC concentrations occurs along the African continental slope. This water has been identified as the modified Antarctic Intermediate Water (AAIW). It has been previously observed south of this section, at the latitude of the Canary Islands, as a northward flow between the African shelf and the islands. The modified AAIW found in the Gulf of Cadiz is situated at a density of 27.5 kg m−3. Above, at 27.3 kg m−3, the lower limb of the North Atlantic Central Water is observed as a salinity minimum. The modified AAIW enters the Gulf of Cadiz along the south-western part of the continental shelf. It flows cyclonically and exits north-westward. In the northern part of the gulf, due to the presence of the Mediterranean Undercurrent (MU), the AAIW flows off the coast. An optimum multiparameter analysis was conducted to evaluate the influence of the AAIW on the MW northwest of the basin. We show that the AAIW is present in the lower core of the MU at a proportion of 12.9±8.2% and is absent in the upper core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号