首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
Sediment cores from lakes Kormovoye and Oshkoty in the glaciated region of the Pechora Lowland, northern Russia, reveal sediment gravity flow deposits overlain by lacustrine mud and gyttja. The sediments were deposited mainly during melting of buried glacier ice beneath the lakes. In Lake Kormovoye, differential melting of dead ice caused the lake bottom to subside at different places at different times, resulting in sedimentation and erosion occurring only some few metres apart and at shifting locations, as further melting caused inversion of the lake bottom. Basal radiocarbon dates from the two lakes, ranging between 13 and 9 ka, match with basal dates from other lakes in the Pechora Lowland as well as melting of ice‐wedges. This indicates that buried glacier ice has survived for ca. 80 000 years from the last glaciation of this area at 90 ka until about 13 ka when a warmer climate caused melting of permafrost and buried glacier ice, forming numerous lakes and a fresh‐looking glacial landscape. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
With accelerated melting of alpine glaciers, understanding the future state of the cryosphere is critical. Because the observational record of glacier response to climate change is short, palaeo‐records of glacier change are needed. Using proglacial lake sediments, which contain continuous and datable records of past glacier activity, we investigate Holocene glacier fluctuations on northeastern Baffin Island. Basal radiocarbon ages from three lakes constrain Laurentide Ice Sheet retreat by ca. 10.5 ka. High sedimentation rates (0.03 cm a?1) and continuous minerogenic sedimentation throughout the Holocene in proglacial lakes, in contrast to organic‐rich sediments and low sedimentation rates (0.005 cm a?1) in neighbouring non‐glacial lakes, suggest that glaciers may have persisted in proglacial lake catchments since regional deglaciation. The presence of varves and relatively high magnetic susceptibility from 10 to 6 ka and since 2 ka in one proglacial lake suggest minimum Holocene glacier extent ca. 6–2 ka. Moraine evidence and proglacial and threshold lake sediments indicate that the maximum Holocene glacier extent occurred during the Little Ice Age. The finding that glaciers likely persisted through the Holocene is surprising, given that regional proxy records reveal summer temperatures several degrees warmer than today, and may be due to shorter ablation seasons and greater accumulation‐season precipitation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Glacier thermal regime is shown to have a significant influence on the formation of ice‐marginal moraines. Annual moraines at the margin of Midtdalsbreen are asymmetrical and contain sorted fine sediment and diamicton layers dipping gently up‐glacier. The sorted fine sediments include sands and gravels that were initially deposited fluvially directly in front of the glacier. Clast‐form data indicate that the diamictons have a mixed subglacial and fluvial origin. Winter cold is able to penetrate through the thin (<10 m) ice margin and freeze these sediments to the glacier sole. During winter, sediment becomes elevated along the wedge‐shaped advancing glacier snout before melting out and being deposited as asymmetrical ridges. These annual moraines have a limited preservation potential of ~40 years, and this is reflected in the evolution of landforms across the glacier foreland. Despite changing climatic conditions since the Little Ice Age and particularly within the last 10 years when frontal retreat has significantly speeded up, glacier dynamics have remained relatively constant with moraines deposited via basal freeze‐on, which requires stable glacier geometry. While the annual moraines on the eastern side of Midtdalsbreen indicate a slow steady retreat, the western foreland contains contrasting ice‐stagnation topography, highlighting the importance of local forcing factors such as shielding, aspect and debris cover in addition to changing climate. This study indicates that, even in temperate glacial environments, restricted or localised areas of cold‐based ice can have a significant impact on the geomorphic imprint of the glacier system and may actually be more widespread within both modern and ancient glacial environments than previously thought.  相似文献   

4.
Both monsoons and westerlies have exerted influence on climate dynamics over the Tibetan Plateau (TP) since the last deglaciation, producing complex patterns of paleohydroclimatic conditions. Diverse proxy records are essential to forge a robust understanding of the climate system on the TP. Currently, there is a general lack of understanding of the response of inland lakes over the TP to climate change, especially glacier‐fed lakes. Paleohydrological reconstructions of such lakes could deepen our understanding of the history of lake systems and their relationship to regional climate variability. Here we use records of n‐alkanes and grain size from the sediments of Bangong Co in the western TP to reconstruct paleohydrological changes over the past 16,000 years. The Paq record (the ratio of non‐emergent aquatic macrophytes versus emergent aquatic macrophytes and terrestrial plants) is generally consistent with the variations in summer temperature and precipitation isotopes. The changes in grain‐size distributions show a similar trend to Paq but with less pronounced fluctuations in the early‐middle Holocene. The new data combined with previous results from the site demonstrate that: 1) Bangong Co experienced relatively large water‐level fluctuations during the last deglaciation, with a steadily high lake‐level during the early‐middle Holocene and a decreasing lake‐level in the late Holocene; 2) The lake level fluctuations were driven by both high summer temperatures via the melting water and monsoon precipitation. However, the dominant factor controlling lake level changed over time. The lake‐level history at Bangong Co deduced from the n‐alkanes and grain‐size records reveals the past hydrological changes in the catchment area, and stimulates more discussion about the future of glacier‐fed lakes under the conditions of unprecedented warming in the region.  相似文献   

5.
Varved lake sediments can be used to set multiple environmental proxies within a calendar year time scale. We undertook a systematic survey of lakes in the Province of Värmland, west central Sweden, with the aim of finding continuous varved lake sediment sequences covering the majority of the Holocene. In Fennoscandia, such sediments have previously only been recorded in northern Sweden and in southern and central Finland. By following a selective process and fieldwork we discovered three new varved sites (i.e. Furskogstjärnet, Mötterudstjärnet and Kälksjön). We found that lakes with varved sediments have several common lake morphometry properties and lake catchment characteristics such as maximum water depth, maximum water depth/lake surface area ratio, catchment soil types, altitude and number of inflows. Varve chronologies, supported by AMS-14C dating and tephrochronology were established for two of the sediment profiles. These varve chronologies are the longest geological records with an annual resolution known to exist in Sweden. In Furskogstjärnet, the AMS- 14C dates based on terrestrial plant macrofossils at several levels deviate significantly from the varve based time-depth curve. In Motterudstjarnet, a fully reasonable time-depth model based on the 14C dates gives older ages in the lower part of the sequence compared to the varve chronology. These results highlight that seemingly acceptable AMS radiocarbon dates may be erroneous. They also point to the fact that varved lake sediments are reliable geological archives with respect to chronological control and accuracy. Thus, these archives should be of prime interest for studies of climate and environmental change undertaken with the aim of providing sub-decadal resolution proxy data sets.  相似文献   

6.
Comparison of catchment geomorphology and lithostratigraphical analysis of sediments in two small neighbouring alpine lakes show that the minerogenic influx into the lakes has varied significantly during the Holocene, despite similarities in environmental setting. One lake contains a homogeneous organic‐rich sediment sequence whereas the sediment of the other lake is laminated and has a higher minerogenic content. X‐ray radiographs are used to visualise lithostratigraphical structures and provide high‐resolution density data. We find that moderate differences in geomorphology and process activity in the lakeshore region around alpine lakes can significantly affect the lake sediment composition. Minerogenic sediment accumulation rates vary strongly over time, owing to different depositional processes, which complicate temporal reconstructions. We also find that non‐glacial processes deposit minerogenic sediment layers with similar characteristics (high density, low organic content) as layers interpreted as having a glaciofluvial origin. This has implications for palaeoclimate studies based on proglacial lacustrine sediment. Our results indicate that erosion of surface sediments in the catchments characterised the early Holocene. A low and constant minerogenic inflow indicates that stable environmental conditions (with little fluvial erosion) were established in the catchments during the middle Holocene. The variability in sediment composition increased again in the late Holocene, possibly as a result of short‐term climate fluctuations superimposed on a general climate deterioration trend. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Establishing the precise timing of continental glacial dynamics and abrupt high‐latitude climate events is crucial to understanding the causes of global climate change. Here we present multi‐proxy records in a lake sediment core from arid Inner Mongolia (Wuliangsuhai Lake) that show two distinct glacially derived sedimentation events at ~26.2–21.8 and ~17.3–11.5k cal a BP. Fine sediments from the Last Glacial Maximum separate these glacially derived coarse sediments. Within these intervals, the occurrence of granite clasts at ~24–23.5, 17.3–17 and 15.6–14.1k cal a BP implies either sediment discharge by meltwater as well as strong current flow in the Yellow River and/or sediment influx through hill‐slope mass wasting and landsliding from the nearby Yin Mountains. Surface microfeatures of quartz grains and spot elemental analysis of black specks in these intervals, however, indicate that physical weathering is dominant and that the provenance of the rocks is probably from a glacial source. To the best of our knowledge, this is the first time glacier‐derived materials have been detected in any desert lake in the Yellow River basin. The occurrence of granite clasts roughly correlates with Heinrich events in the North Atlantic, suggesting synchronous ice sheet dynamics in high‐ and mid‐latitude regions during the Last Glacial period. Although our data provide unprecedented evidence for the influence of glacier‐related processes in arid Inner Mongolia, further well‐dated records are clearly needed to re‐evaluate the correlative inference drawn between granite clast layers in Wuliangsuhai Lake and Heinrich events in the North Atlantic. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The European Alps are very sensitive and vulnerable to climate change. Recent improvements in Alpine glacier length records and climate reconstructions from annually laminated sediments of Alpine Lake Silvaplana give the opportunity to investigate the relationship between these two data sets of Alpine climate. Two different time frames are considered: the last 500–1000 years as well as the last 7400 years. First, we found good agreement between the two different climate archives during the past millennium: mass accumulation rates and biogenic silica concentration are largely in phase with the glacier length changes of Mer de Glace and Unterer Grindelwaldgletscher, and with the records of glacier length of Grosser Aletschgletscher and Gornergletscher. Secondly, the records are compared with temporally highly resolved data of solar activity. The Sun has had a major impact on the Alpine climate variations in the long term, i.e. several centuries to millennia. Solar activity varies with the Hallstatt periodicity of about 2000 years. Hallstatt minima are identified around 500, 2500 and 5000 a. Around these times grand solar minima (such as the Maunder Minimum) occurred in clusters coinciding with colder Alpine climate expressed by glacier advances. During the Hallstatt maxima around 0, 2000 and 4500 a, the Alpine glaciers generally retreated, indicating a warmer climate. This is supported by archaeological findings at Schnidejoch, a transalpine pass in Switzerland that was only accessible when glaciers had retreated. On shorter timescales, however, the influence of the Sun cannot be as easily detected in Alpine climate change, indicating that in addition to solar forcing, volcanic influence and internal climate variations have played an important role. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Glaciers are an important element of the Earth system. Glaciers provide numerous, though poorly appreciated, ecological and economic benefits. However, glacial processes can also be hazards. Local glacial hazards include catastrophic floods from lakes impounded by glaciers and their moraines, landslides and debris flows induced by glacier thinning and retreat and permafrost thaw, and enhanced seismicity and volcanism due to large‐scale deglaciation. Regionally, rivers can be affected by changes in sediment supply from glacier forefields. Perhaps the greatest hazard that glaciers pose on a global scale of coastal erosion and flooding caused by sea‐level rise. If Earth's climate continues to warm, as scientists forecast, the rate of sea‐level rise will increase and some low‐lying coastal areas will be flooded by the end of this century.  相似文献   

10.
Understanding Arctic glacier sensitivity is key to predicting future response to air temperature rise. Previous studies have used proglacial lake sediment records to reconstruct Holocene glacier advance–retreat patterns in South and West Greenland, but high‐resolution glacier records from High Arctic Greenland are scarce, despite the sensitivity of this region to future climate change. Detailed geochemical analysis of proglacial lake sediments close to Zackenberg, northeast Greenland, provides the first high‐resolution record of Late Holocene High Arctic glacier behaviour. Three phases of glacier advance have occurred in the last 2000 years. The first two phases (c. 1320–800 cal. a BP) occurred prior to the Little Ice Age (LIA), and correspond to the Dark Ages Cold Period and the Medieval Climate Anomaly. The third phase (c. 700 cal. a BP), representing a smaller scale glacier oscillation, is associated with the onset of the LIA. Our results are consistent with recent evidence of pre‐LIA glacier advance in other parts of the Arctic, including South and West Greenland, Svalbard, and Canada. The sub‐millennial glacier fluctuations identified in the Madsen Lake succession are not preserved in the moraine record. Importantly, coupled XRF and XRD analysis has effectively identified a phase of ice advance that is not visible by sedimentology alone. This highlights the value of high‐resolution geochemical analysis of lake sediments to establish rapid glacier advance–retreat patterns in regions where chronological and morphostratigraphical control is limited.  相似文献   

11.
Along the south coast of Ireland, a shelly diamict facies, the Irish Sea Till, has been variously ascribed to subglacial deposition by a grounded Irish Sea glacier or to glacimarine sedimentation by suspension settling and iceberg rafting. Observations are presented here from five sites along the south coast to directly address this question. At these sites, sedimentary evidence is preserved for the onshore advance of a grounded Irish Sea glacier, which glacitectonically disturbed and eroded pre‐existing sediments and redeposited them as deformation till. Recession of this Irish Sea glacier resulted in the damming of ice‐marginal lakes in embayments along the south coast, into which glacilacustrine sedimentation then took place. These lake sediments were subsequently glacitectonised and reworked by overriding glacier ice of inland origin, which deposited deformation till on top of the succession. There is no evidence for deposition of the Irish Sea diamicts by glacimarine sedimentation at these sites. The widespread development of subglacial deforming bed conditions reflected the abundance of fine‐grained marine and lacustrine sediments available for subglacial erosion and reworking. Stratigraphical and chronological data suggest that the advance of a grounded Irish Sea glacier along the south coast occurred during the last glaciation, and this is regionally consistent with marine geological data from the Celtic Sea. These observations demonstrate extension of glacier ice far beyond its traditional limits in the Celtic Sea and on‐land in southern Ireland during the last glaciation, and remove the stratigraphical basis for chronological differentiation of surficial glacial drifts, and thus the Munsterian Glaciation, in southern Ireland. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
The sedimentology and stratigraphy of a multi‐phase glaciation sequence dating to Marine Isotope Stage 6 in the Rakaia Valley, South Island, New Zealand, is presented. This outcrop presents an example of the depositional signature of an end member of temperate valley glaciation, where voluminous sediment supply in a tectonically active setting combines with high annual temperatures and low seasonality to generate significant year‐round glacifluvial activity. Such glacial systems produce geological–climatic units that are dominated by thick sequences of aggradational gravels and proglacial lake sediments trapped behind outwash heads during deglaciation. At Bayfields Cliff, outwash sequences record an oscillating glacier margin marked by a sequence of glacier‐fed, Gilbert‐type deltas. The deltas are cut by numerous small‐scale, syndepositional, normal faults indicating both loss of glacier support and melt‐out of buried ice. A larger‐scale thrust fault system reflects late‐stage ice overrun. Braid plain gravels and chaotic disturbed glacial lake sediments are also recorded. A notable feature of these systems is the virtual absence of till in an environment with much other evidence for proximal ice. Cumulatively we regard these sediment–landform associations as diagnostic of debris‐laden, perhumid, temperate valley glacier systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Hidden within the vast Bolivian Altiplano are archives of past climate change in the form of remarkable carbonate rocks surrounding lakes long since disappeared. Beyond the Salar de Uyuni, the largest salt flat in the world, lies a relatively untouched realm of volcanoes and salt lakes. Ancient shorelines from intervals in the Altiplano history, when large lakes were more abundant, may hold important information about a time when the climate in this region was punctuated by much wetter phases before present day aridity took a hold. Previous studies in this region have reconstructed robust chronological timelines for such events and highlight two large lake phases over the last 18 thousand years (the Tauca and Coipasa lake phases); however higher resolution climate data are scarce. Current studies on climate proxies from smaller lakes in southern Bolivia may shed light on some of these higher resolution climate events including El Niño–Southern Oscillation (ENSO) events. Laminated tufa found around the palaeoshorelines of the West Lípez Lakes is one such proxy, and can be analysed to investigate the potential roles of annual versus shorter‐term climatic variation in the evolving Altiplano climate at the time.  相似文献   

14.
Alluvial and colluvial sediment deposition provide a vital record of environmental change during the Holocene. Firm chronological control on these archives is necessary to enable us to relate sediment dynamics to human activity and climate variability. In the Eastern Mediterranean, such relationships are hard to establish due to the lack of spatially well‐distributed sediment archives with good chronological control. This scarcity is problematic with respect to regional‐scale reconstructions of the temporal variation of sediment dynamics. Here, we present a radiocarbon database (n = 178) of geomorphological activity collected from multiple distinct sediment archives within the territory of Sagalassos in south‐western Turkey. The data were grouped according to their sedimentary facies for analysis using cumulative probability distributions (CPDs) and sedimentation rate (SR) modelling. Two small‐scale colluvial valleys, where chronological information was abundant, were investigated in more detail. Results show that sedimentation chronology differs between individual, nearby cores, as it depends strongly on the local geomorphic situation. A generalizing approach combining multiple core results yields more widely valid conclusions. High sedimentation rates coincided with the initial major anthropogenic disturbance of the landscape and decreased afterwards, probably due to hillslope soil depletion. CPD and SR analysis indicates that in general colluvial sedimentation rates did not change much from 2000 BC onwards. River floodplain sedimentation, in contrast, increased markedly during the first millennium BC and during recent times, and a significant time lag in enhanced sediment deposition between the upper and lower reaches of the river valleys was observed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
《Quaternary Science Reviews》2007,26(5-6):743-758
Detailed examination of the Tekapo Formation in the Tasman Valley, New Zealand has identified 20 facies, and five facies associations. These associations are delta foresets and bottomsets, sediment density flows, ice-contact lake sediments with ice-rafted debris and resedimentation deposits, and outwash gravels. Interpretation of the sediment-landform associations informed by observations at modern glacier termini suggests that the Late Pleistocene Tekapo Formation moraines have been formed by downwasting of a more expanded Tasman Glacier. During the early stages of glacier retreat, ponds on the glacier surface develop into thermokarst lakes which enlarge and coalesce to form a large supraglacial lake. Continued downwasting causes the lake outlet river to entrench into the impounding latero-frontal ice-cored moraine, lowering the lake level. This exposes lake-bottom sediments and forms shorelines on the proximal slopes of the ice-cored moraine. As the ice-cored moraine melts, these lake sediments are deformed and deposited against the Mt. John moraine. The observations and interpretations reported here suggest the Late Pleistocene end moraine is a constructional feature not a structural (glaciotectonic) feature as suggested by previous studies.  相似文献   

16.
We have undertaken a comparative study of down‐core variation in multiproxy palaeoclimate data (magnetic susceptibility, calcium carbonate content and total organic carbon) from two coastal water bodies (Myall and Tuggerah Lakes) in temperate eastern Australia to identify local, regional and global‐forcing factors within Holocene estuarine sediments. The two lakes lie within the same temperate climate zone adjacent to the Tasman Sea, but are not part of the same catchment and drain different geological provinces. One is essentially a freshwater coastal lake whereas the other is a brackish back‐barrier lagoon. Despite these differences, data from two sites in each of the two lakes have allowed us to investigate and compare cyclicity in otherwise uniform, single facies sediments within the frequency range of 200–2000 years, limited by the sedimentation rate within the lakes and our sample requirements. We have auto‐ and cross‐correlated strong periodicities at ~360 years, ~500–530 years, ~270–290 years, 420–450 years and ~210 years, and subordinate periods of ~650 years, 1200–1400 years and ~1800 years. Our thesis is that climate is the only regionally available mechanism available to control common millennial and centennial scale cyclicity in these sediments, given the geographical and other differences. However, regional climate may not be the dominant effect at any single time and either location. Within the range of frequency spectral peaks we have identified, several fall within known long‐term periodical fluctuations of sun spot activity; however, feedback loops associated with short‐term orbital variation, such as Dansgaard–Oeschger cycles, and the relationship between these and palaeo‐ENSO variation, are also possible contributors. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
High‐resolution loss‐on‐ignition analyses of lacustrine sediment cores from both proglacial and non‐glacial lakes in southern Norway have revealed a specific pattern characterised by a significant, two‐peaked reduction of the loss‐on‐ignition values in the basal half of the cores. In non‐glacier‐fed lakes, the loss‐on‐ignition variations are interpreted to reflect mainly lake productivity and hence variability in surface summer air temperature. Sediments deposited in proglacial lakes, however, reflect mainly the glacier activity in the lake catchment. Bulk AMS radiocarbon dates from the core sequences and the loss‐on‐ignition curve pattern suggest that this event correlates with the ‘8200 cal. yr BP event’ recorded in the GRIP and GISP2 Greenland ice‐cores, termed the Finse event in southern Norway. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
中国玛珥湖及其研究意义   总被引:4,自引:2,他引:2  
随着全球变化研究的深入,科学家们认识到古气候变化除轨道尺度的冰期/间冰期旋回之外还存在年代际-千年尺度的高频变化和突变事件。要认知这些变化,古气候记录的时间分辨率要达到"年-年代际"。因此,寻求时间跨度长、连续性好、信息丰富的高分辨率记录是过去全球变化研究面临的主要任务之一。玛珥湖为火山射汽喷发形成的封闭湖泊,由于其独特的形成机制及水文背景,使其能够提供数万年乃至几十万年连续稳定的沉积记录,是高分辨率古气候、古环境变化研究的重要对象。中国玛珥湖得天独厚,从热带到寒温带均有分布,为系统研究中国不同气候区各种时间尺度古气候变化规律提供了理想材料。本文基于中国玛珥湖的分布及沉积特征,探讨玛珥湖沉积记录能够为古全球变化研究做出怎样的贡献,解决什么科学问题,具体包括以下三个方面的内容:(1)在轨道尺度上,精确定位现代气候在地质历史中的位置是未来最具挑战性的科学问题之一。我国热带地区玛珥湖沉积物跨越了至少4个冰期-间冰期旋回,能够为理解冰期驱动机制、下一次冰期来临、高低纬关联等关键科学问题提供多学科数据;(2)千年尺度古气候变化,其成因可能源于不同的动力学机制,是气候系统对各种外部和内部驱动因子响应的结果,因此千年震荡可能存在明显的时空差异。集成不同气候带的玛珥湖沉积记录将为理解千年震荡规律及其驱动因子做出贡献;(3)年-年代际气候变化是预测未来气候变化的基础,PAGES、IPCC以及PAGES-Asia 2K均将过去2千年来气候变化作为预测未来几十年至百年尺度上重大全球变化的背景,并为此构建全球数据体系,玛珥湖沉积特别是纹层沉积记录能够填补某些地区高分辨率数据的空白。  相似文献   

19.
In Arctic alpine regions, glacio‐lacustrine environments respond sensitively to variations in climate conditions, impacting, for example,glacier extent and rendering former ice‐contact lakes into ice distal lakes and vice versa. Lakefloors may hold morphological records of past glacier extent, but remoteness and long periods of ice cover on such lakes make acquisition of high‐resolution bathymetric datasets challenging. Lake Tarfala and Kebnepakte Glacier, located in the Kebnekaise mountains, northern Sweden, comprise a small, dynamic glacio‐lacustrine system holding a climate archive that is not well studied. Using an autonomous surface vessel, a high‐resolution bathymetric dataset for Lake Tarfala was acquired in 2016, from which previously undiscovered end moraines and a potential grounding line feature were identified. For Kebnepakte Glacier, structure‐from‐motion photogrammetry was used to reconstruct its shape from photographs taken in 1910 and 1945. Combining these methods connects the glacial landform record identified at the lakefloor with the centennial‐scale dynamic behaviour of Kebnepakte Glacier. During its maximum 20th century extent, attained c. 1910, Kebnepakte Glacier reached far into Lake Tarfala, but had retreated onto land by 1945, at an average of 7.9 m year–1. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
Lake Vättern represents a critical region geographically and dynamically in the deglaciation of the Fennoscandian Ice Sheet. The outlet glacier that occupied the basin and its behaviour during ice‐sheet retreat were key to the development and drainage of the Baltic Ice Lake, dammed just west of the basin, yet its geometry, extent, thickness, margin dynamics, timing and sensitivity to regional retreat forcing are rather poorly known. The submerged sediment archives of Lake Vättern represent a missing component of the regional Swedish deglaciation history. Newly collected geophysical data, including high‐resolution multibeam bathymetry of the lake floor and seismic reflection profiles of southern Lake Vättern, are used here together with a unique 74‐m sediment record recently acquired by drill coring, and with onshore LiDAR‐based geomorphological analysis, to investigate the deglacial environments and dynamics in the basin and its terrestrial environs. Five stratigraphical units comprise a thick subglacial package attributed to the last glacial period (and probably earlier), and an overlying >120‐m deglacial sequence. Three distinct retreat–re‐advance episodes occurred in southern Lake Vättern between the initial deglaciation and the Younger Dryas. In the most recent of these, ice overrode proglacial lake sediments and re‐advanced from north of Visingsö to the southern reaches of the lake, where ice up to 400 m thick encroached on land in a lobate fashion, moulding crag‐and‐tail lineations and depositing till above earlier glacifluvial sediments. This event precedes the Younger Dryas, which our data reveal was probably restricted to north‐central sectors of the basin. These dynamics, and their position within the regional retreat chronology, indicate a highly active ice margin during deglaciation, with retreat rates on average 175 m a?1. The pronounced topography of the Vättern basin and its deep proglacial‐dammed lake are likely to have encouraged the dynamic behaviour of this major Fennoscandian outlet glacier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号