首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Burial depth, cumulative displacement, and peak temperature of frictional heat of a fault system are estimated by thermal analysis in the fold–thrust belt of the Western Foothills complex, western Taiwan based on the vitrinite reflectance technique. The regional thermal structure across the complex reveals that the rocks were exposed to maximum temperatures ranging from 100 °C to 180 °C, which corresponds to a burial depth of 3.7–6.7 km. A large thermal difference of 90 °C were observed at the Shuilikeng fault which make the eastern boundary of the fold–thrust belt where it is in contact with metamorphic rock of Hsuehshan Range. The large thermal difference corresponds to cumulative displacements on the Shuilikeng fault estimated to be in the range of 5.2–6.9 km. However, thermal differences in across the Shuangtung and Chelungpu faults cannot be determined apparently due to small vertical offsets. The large displacement observed across the Shuilikeng fault is absent at the other faults which are interpreted to be younger faults within the piggyback thrust system. Localized high temperatures adjacent to fault zones were observed in core samples penetrating the Chelungpu fault. Three major fracture zones were observed at core lengths of 225 m, 330 m, and 405 m and the two lower zones which comprise dark gray narrow shear zones. A value of vitrinite reflectance of 1.8%, higher than the background value of 0.8%, is limited at a narrow shear zone of 1 cm thickness at the fracture zone at 330 m. The estimated peak temperature in the range of 550–680 °C in the shear zone is far higher than the background temperature of 130 °C, and it is interpreted as due to frictional heating during seismic faulting.  相似文献   

2.
The Larderello geothermal field is located in the Inner Northern Apennines, in an area which has been subject to extension since the Early Miocene. The latest extensional episode (Pliocene–Present) has resulted in the formation of NW-trending, NE-dipping listric normal faults, whose geometry is controlled down to 3 km by borehole data. In this paper, we integrate a new interpretation of seismic reflection lines with existing seismic, field, and borehole data to analyse the relations among listric normal faults, the top of the brittle–ductile transition, and the migration of geothermal fluids.In accordance with previous interpretations, we consider the strong reflector (K-horizon) marking the top of the reflective mid-lower crust, and located at a depth of 3–5 km in the geothermal area, to represent the top of the brittle–ductile transition. Its reflectivity most probably derives from the presence of overpressured fluids. We identify three main NW-trending, NE-dipping extensional brittle shear zones, showing listric geometry and soling out in the vicinity of the K-horizon. The latter appears to be dislocated in correspondence of the soling out of the shear zones. These shear zones, because of the associated intense fracturing, represent the most natural channels of upward migration of geothermal fluids from the magmatic sources located below the K-horizon.We suggest that these two conclusions—that listric normal faults root at or near the brittle–ductile transition, and that they act as preferential upward migration paths for magmatic fluids—may be of general validity for geothermal fields located in extensional settings.  相似文献   

3.
Conditions for indentation and channelised flow are investigated with two-dimensional thermomechanical models of Alpine-type continental collision. The models mimic the development of an orogen at an initial central portion of weakened lithosphere 150 km wide, coherent with several geological reconstructions. We study in particular the role of lower crustal strength in developing peculiar geometries after 20 Ma of shortening at 1 cm/year. Crustal layers produce geometries of imbricate layers, which result from two contrasted mechanisms of either channelised ductile lateral flow or horizontal rigid-like indentation:
– Channelised lateral flow develops when the lateral lower crust has a viscosity less than 1021 Pa s, exhibiting velocities opposite to the direction of convergence. This mechanism of deformation produces subhorizontal shear zones at the boundaries between the lower crust and the more competent upper crust and lithospheric mantle. It is also associated with a topographic plateau that equilibrates with a wide (about 200 km) but quasi-constant crustal root about 50 km deep.
– In contrast, indentation occurs with lateral lower crust layers that have a viscosity greater than about 1023 Pa s, producing significant shortening and thickening of the central crust. In this case topography develops steep and narrow (around 100 km wide), associated with a thickened crust exceeding 60 km depth. A crustal-scale pop-up forms bounded by subvertical shear zones that root into the mantle lithosphere.
Keywords: Continental collision indentation; Channel flow; Lower crust; Elastic–viscous–plastic rheology  相似文献   

4.
Qunshu Tang  Ling Chen   《Tectonophysics》2008,455(1-4):43-52
We have used Rayleigh wave dispersion analysis and inversion to produce a high resolution S-wave velocity imaging profile of the crust and uppermost mantle structure beneath the northeastern boundary regions of the North China Craton (NCC). Using waveform data from 45 broadband NCISP stations, Rayleigh wave phase velocities were measured at periods from 10 to 48 s and utilized in subsequent inversions to solve for the S-wave velocity structure from 15 km down to 120 km depth. The inverted lower crust and uppermost mantle velocities, about 3.75 km/s and 4.3 km/s on average, are low compared with the global average. The Moho was constrained in the depth range of 30–40 km, indicating a typical crustal thickness along the profile. However, a thin lithosphere of no more than 100 km was imaged under a large part of the profile, decreasing to only ~ 60 km under the Inner Mongolian Axis (IMA) where an abnormally slow anomaly was observed below 60 km depth. The overall structural features of the study region resemble those of typical continental rift zones and are probably associated with the lithospheric reactivation and tectonic extension widespread in the eastern NCC during Mesozoic–Cenozoic time. Distinctly high velocities, up to ~ 4.6 km/s, were found immediately to the south of the IMA beneath the northern Yanshan Belt (YSB), extending down to > 100-km depth. The anomalous velocities are interpreted as the cratonic lithospheric lid of the region, which may have not been affected by the Mesozoic–Cenozoic deformation process as strongly as other regions in the eastern NCC. Based on our S-wave velocity structural image and other geophysical observations, we propose a possible lithosphere–asthenosphere interaction scenario at the northeastern boundary of the NCC. We speculate that significant undulations of the base of the lithosphere, which might have resulted from the uneven Mesozoic–Cenozoic lithospheric thinning, may induce mantle flows concentrating beneath the weak IMA zone. The relatively thick lithospheric lid in the northern YSB may serve as a tectonic barrier separating the on-craton and off-craton regions into different upper mantle convection systems at the present time.  相似文献   

5.
Backstripping analysis and forward modeling of 162 stratigraphic columns and wells of the Eastern Cordillera (EC), Llanos, and Magdalena Valley shows the Mesozoic Colombian Basin is marked by five lithosphere stretching pulses. Three stretching events are suggested during the Triassic–Jurassic, but additional biostratigraphical data are needed to identify them precisely. The spatial distribution of lithosphere stretching values suggests that small, narrow (<150 km), asymmetric graben basins were located on opposite sides of the paleo-Magdalena–La Salina fault system, which probably was active as a master transtensional or strike-slip fault system. Paleomagnetic data suggesting a significant (at least 10°) northward translation of terranes west of the Bucaramanga fault during the Early Jurassic, and the similarity between the early Mesozoic stratigraphy and tectonic setting of the Payandé terrane with the Late Permian transtensional rift of the Eastern Cordillera of Peru and Bolivia indicate that the areas were adjacent in early Mesozoic times. New geochronological, petrological, stratigraphic, and structural research is necessary to test this hypothesis, including additional paleomagnetic investigations to determine the paleolatitudinal position of the Central Cordillera and adjacent tectonic terranes during the Triassic–Jurassic. Two stretching events are suggested for the Cretaceous: Berriasian–Hauterivian (144–127 Ma) and Aptian–Albian (121–102 Ma). During the Early Cretaceous, marine facies accumulated on an extensional basin system. Shallow-marine sedimentation ended at the end of the Cretaceous due to the accretion of oceanic terranes of the Western Cordillera. In Berriasian–Hauterivian subsidence curves, isopach maps and paleomagnetic data imply a (>180 km) wide, asymmetrical, transtensional half-rift basin existed, divided by the Santander Floresta horst or high. The location of small mafic intrusions coincides with areas of thin crust (crustal stretching factors >1.4) and maximum stretching of the subcrustal lithosphere. During the Aptian–early Albian, the basin extended toward the south in the Upper Magdalena Valley. Differences between crustal and subcrustal stretching values suggest some lowermost crustal decoupling between the crust and subcrustal lithosphere or that increased thermal thinning affected the mantle lithosphere. Late Cretaceous subsidence was mainly driven by lithospheric cooling, water loading, and horizontal compressional stresses generated by collision of oceanic terranes in western Colombia. Triassic transtensional basins were narrow and increased in width during the Triassic and Jurassic. Cretaceous transtensional basins were wider than Triassic–Jurassic basins. During the Mesozoic, the strike-slip component gradually decreased at the expense of the increase of the extensional component, as suggested by paleomagnetic data and lithosphere stretching values. During the Berriasian–Hauterivian, the eastern side of the extensional basin may have developed by reactivation of an older Paleozoic rift system associated with the Guaicáramo fault system. The western side probably developed through reactivation of an earlier normal fault system developed during Triassic–Jurassic transtension. Alternatively, the eastern and western margins of the graben may have developed along older strike-slip faults, which were the boundaries of the accretion of terranes west of the Guaicáramo fault during the Late Triassic and Jurassic. The increasing width of the graben system likely was the result of progressive tensional reactivation of preexisting upper crustal weakness zones. Lateral changes in Mesozoic sediment thickness suggest the reverse or thrust faults that now define the eastern and western borders of the EC were originally normal faults with a strike-slip component that inverted during the Cenozoic Andean orogeny. Thus, the Guaicáramo, La Salina, Bitúima, Magdalena, and Boyacá originally were transtensional faults. Their oblique orientation relative to the Mesozoic magmatic arc of the Central Cordillera may be the result of oblique slip extension during the Cretaceous or inherited from the pre-Mesozoic structural grains. However, not all Mesozoic transtensional faults were inverted.  相似文献   

6.
B. Sundvoll  B.T. Larsen   《Tectonophysics》1994,240(1-4):173-189
A revised assessment of architecture and pre-rift fabric connections of the Oslo Rift has been undertaken and linked to a new appraisal of observations and data related to the initial phase of the rift evolution. In addition to half-graben segmentation, accommodation zones and transfer faults are readily identified in the linking sectors between the two main grabens and between graben segments. Axial flexures are proposed between facing half-grabens. The accommodation zones were generally sites of volcanism during rifting. Pre-rift tectonic structures played an influential role in the rift location and development. The deviant N-S axis of the Vestfold graben segment is viewed as related to pre-rift structural control through faults and shear zones. This area was probably a site of Proterozoic/Palaeozoic crustal and lithospheric attenuation.

Field evidence suggests that the rift started as a crustal sag with no apparent surface faulting in a flat and low-lying land at a time about 305–310 Ma. Volcanism, sub-surface sill intrusion and faulting started about simultaneously some time after the initial sag (300–305 Ma). Faulting and basaltic volcanism were initially localized to transfer faults along accommodation zones and a NNW-SSE transtensional zone along the eastern margin of the incipient Vestfold graben segment. This transtensional zone was probably created by right-lateral simple shear tracing pre-rift structures in response to a regional stress field with the tensional axis normal and the maximum compressional axis parallel to the NNE-SSW-trending rift axis.  相似文献   


7.
A 1000-km-long lithospheric transect running from the Variscan Iberian Massif (VIM) to the oceanic domain of the Northwest African margin is investigated. The main goal of the study is to image the lateral changes in crustal and lithospheric structure from a complete section of an old and stable orogenic belt—the Variscan Iberian Massif—to the adjacent Jurassic passive margin of SW Iberia, and across the transpressive and seismically active Africa–Eurasia plate boundary. The modelling approach incorporates available seismic data and integrates elevation, gravity, geoid and heat flow data under the assumptions of thermal steady state and local isostasy. The results show that the Variscan Iberian crust has a roughly constant thickness of 30 km, in opposition to previous works that propose a prominent thickening beneath the South Portuguese Zone (SPZ). The three layers forming the Variscan crust show noticeable thickness variations along the profile. The upper crust thins from central Iberia (about 20 km thick) to the Ossa Morena Zone (OMZ) and the NE region of the South Portuguese Zone where locally the thickness of the upper crust is <8 km. Conversely, there is a clear thickening of the middle crust (up to 17 km thick) under the Ossa Morena Zone, whereas the thickness of the lower crust remains quite constant (6 km). Under the margin, the thinning of the continental crust is quite gentle and occurs over distances of 200 km, resembling the crustal attitude observed further north along the West Iberian margins. In the oceanic domain, there is a 160-km-wide Ocean Transition Zone located between the thinned continental crust of the continental shelf and slope and the true oceanic crust of the Seine Abyssal Plain. The total lithospheric thickness varies from about 120 km at the ends of the model profile to less than 100 km below the Ossa Morena and the South Portuguese zones. An outstanding result is the mass deficit at deep lithospheric mantle levels required to fit the observed geoid, gravity and elevation over the Ossa Morena and South Portuguese zones. Such mass deficit can be interpreted either as a lithospheric thinning of 20–25 km or as an anomalous density reduction of 25 kg m−3 affecting the lower lithospheric levels. Whereas the first hypothesis is consistent with a possible thermal anomaly related to recent geodynamics affecting the nearby Betic–Rif arc, the second is consistent with mantle depletion related to ancient magmatic episodes that occurred during the Hercynian orogeny.  相似文献   

8.
Wide-angle seismic and gravity data across the Narmada-Son lineament (NSL) in central India are analyzed to determine crustal structure, velocity inhomogeneities and hence constrain the tectonics of the lineament. We present the 2-D crustal velocity structure from deep wide-angle reflection data by using a ray-trace inverse approach. The main result of the study is the delineation of fault-bounded horst raised to a subsurface depth (1.5 km) and the Moho upwarp beneath the NSL. The crust below the basement consists of three layers with velocities of 6.45–6.7, 6.2–6.5 and 6.7–6.95 km/s and interface depths of about 5.5–8.7, 14–17 and 18–23 km along the profile. The low-velocity (6.2–6.5 km/s) layer goes up to a depth of 5 km and becomes the thickest part (13 km), while the overlying high-velocity (6.45–6.7 km/s) layer becomes the thinnest (3 km) and upper boundary lies at a depth of 1.5 km beneath the NSL. The overall uncertainties of various velocity and boundary nodes are of the order of ±0.12 km/s and ±1.40 km, respectively. The up-lifted crustal block and the up-warping Moho beneath the NSL indicate that the north and south faults bounding the NSL are deeply penetrated through which mafic materials from upper mantle have been intruded into the upper crust. Gravity modeling was also undertaken to assess the seismically derived crustal features and to fill the seismic data gap. The lateral and vertical heterogeneous nature of the structure and velocity inhomogeneities in the crust cause instability to the crustal blocks and played an important role in reactivation of the Narmada south fault during the 1997 Jabalpur earthquake.  相似文献   

9.
Balancing lateral orogenic float of the Eastern Alps   总被引:2,自引:0,他引:2  
Oligocene to Miocene post-collisional shortening between the Adriatic and European plates was compensated by frontal thrusting onto the Molasse foreland basin and by contemporaneous lateral wedging of the Austroalpine upper plate. Balancing of the upper plate shortening by horizontal retrodeformation of lateral escaping and extruding wedges of the Austroalpine lid enables an evaluation of the total post-collisional deformation of the hangingwall plate. Quantification of the north–south shortening and east–west extension of the upper plate is derived from displacement data of major faults that dissect the Austroalpine wedges. Indentation of the South Alpine unit corresponds to 64 km north–south shortening and a minimum of 120 km of east–west extension. Lateral wedging affected the Eastern Alps east of the Giudicarie fault. West of the Giudicarie fault, north–south shortening was compensated by 50 to 80 km of backthrusting in the Lombardian thrust system of the Southern Alps. The main structures that bound the escaping wedges to the north are the Inntal fault system (ca. 50 km sinistral offset), the Königsee–Lammertal–Traunsee (KLT) fault (10 km) and the Salzach–Ennstal–Mariazell–Puchberg (SEMP) fault system (60 km). These faults, as well as a number of minor faults with displacements less than 10 km, root in the basal detachment of the Alps. The thin-skinned nature of lateral escape-related structures north of the SEMP line is documented by industry reflection seismic lines crossing the Northern Calcareous Alps (NCA) and the frontal thrust of the Eastern Alps. Complex triangle zones with passive roof backthrusts of Middle Miocene Molasse sediments formed in front of the laterally escaping wedges of the northern Eastern Alps. The aim of this paper is a semiquantitative reconstruction of the upper plate of the Eastern Alps. Most of the data is published elsewhere.  相似文献   

10.
In the westernmost Superior Province of Canada, the east–west alignment of granite–greenstone belts and the adjacent, highly deformed gneiss belts led to the first proposals that plate tectonics existed before 2.5 Ga ago, with the belts thrust against one another by east–west-oriented subduction zones. Here, we present seismic reflection data, which demonstrate that in this region the present juxtaposition of the Uchi granite–greenstone belt and the North Caribou gneiss terrane occurred along a late southeast-dipping extensional shear zone that extends from the surface into the lower crust. The preservation of the Uchi belt and probably the English River metasedimentary belt is directly related to their dropping along extensional shear zones, which limited subsequent erosion. The relative lateral transport of these greenstone rocks implies that they were neither derived from the immediately underlying crust, nor preserved by vertical crustal movements as might occur in the absence of plate tectonics. Extension may have been associated with the emplacement of mantle-derived magmas at 2700 Ma, which has been linked to slab break-off or lithospheric delamination, making the extension approximately coeval with local gold mineralisation. Since crustal-scale faults can facilitate the circulation of gold-bearing fluids, we suggest that greenstone rocks preserved in the hanging walls of syn- to post-accretion extensional shear zones may preferentially host Archean lode-gold deposits. In the westernmost Superior Province, our seismic observations imply that some of the late structures in the well-developed belts defined by surface mapping arose through the collapse of a collage of laterally accreted terranes.  相似文献   

11.
The tectogenesis of the Atlantic Ocean segments is complicated by the axial difference in spreading half-velocities, which causes additional shear displacements between the lithospheric blocks along the transform faults. The intensity of these processes and density of the fault zones iis related to the presence of “cold” sublithospheric lenses along the MAR at a depth of 500 km.  相似文献   

12.
Lake Teletskoye in the northeastern part of the Altai mountain range has attracted the attention of geo-scientists for a long time, because it fills an impressive tectonic depression. The lake is 77 km long and 4 km wide, and it has a maximum water depth of 325 m. The vertical offset of the basement surface is up to 3000 m. A multidisciplinary study of the Teletsk graben was carried out during the last few years, including satellite image and air photo analysis, bathymetric-, structural- and geomorphological mapping, high-resolution seismic profiling and seismic refraction. The structural study revealed that reactivation of preexisting weak basement zones is important in controlling the basin formation. These zones separate different tectonic terranes at the contact of which the Teletsk graben developed.This study identifies the significance of the basin in the regional neotectonic context. It shows that the major vertical movements are restricted to the basin itself, but do not characterize the whole region. Outside of the basin, recent tectonic structures have the same pattern as adjacent areas of Northeast Altai and West-Sayan. Quaternary glaciations have had no major influence on the basin formation.Two stages of faulting are identified. First, transpressive movements restricted to discrete (reactivated) fault zones controlled the opening of the basin. In the second stage, normal faulting is dominant and is responsible for the modern basin outline.An echo-sounding survey led to the recognition of several morphological characteristics of the lake bottom. In the southern part, the uppermost sediments seem slightly disturbed, whereas further north, transverse ridges and slope breaks are increasingly common. The deepest part of the lake is located in a highly disturbed zone of normal fault-bounded blocks. The structural difference between the southern and northern subbasins is supported by the interpretation of a deep seismic refraction profile which indicates a substantial increase of basement isochores in the area where the reactivated Teletsk (Paleozoic) shear zone crosses the lake.Correlation of high-resolution seismic profiles suggests that the Teletsk graben started to evolve during the Pleistocene, and that its present shape was formed in two stages. The first stage was responsible for the opening of the southern basin. It probably started in the Middle Pleistocene. A second kinematic stage induced by a sinistral reactivation of the NE striking West-Sayan fault initiated the opening of the different segments of the northern subbasin due to opposite movements between the reactivated Teletsk and West-Sayan faults. This second stage was active after the end of Late Pleistocene glaciations and during the Holocene. The recent lateral extension and the related N–S-trending normal faults result from a change in tectonic regime, with related extensional movements along the main reactivated fault zones. These recent movements result in the lateral escape of the lake borders and the collapse of the area between them.  相似文献   

13.
Sediment subduction versus accretion around the pacific   总被引:2,自引:0,他引:2  
Subducting oceanic plates are typically broken by normal faults as they bend downward into subduction zones, usually forming regular patterns of grabens. The faults strike parallel or subparallel to the trench axes and are most commonly 5–10 km in spacing and width. Rupture occurs initially near the outer topographic high and vertical displacement or graben depth increases as the plate descends, the 400 m or more at many trench axes. It is suggested that the grabens provide void spaces within the surface of the subducting plate, below the plane of subduction, into which the trench sediments are tectonically displaced and thus subducted. Around the Pacific, the only regions of apparent fore-arc sediment accretion are where the graben structures are missing or masked by thick sediment deposits. Even in these cases sediment subduction, by inclusion in subducting plate grabens or by other mechanisms, must be invoked to explain the relatively small fore-arc sediment volumes compared to calculated accretion volumes based on historical convergence. Where trench sediment volumes are small compared to the graben volumes the grabens may abrade the leading edge and underside of the overriding plate and subduct the eroded material. It is concluded that sediment subduction is dominant around the Circum-Pacific and that the bending-induced graben structures of the subducting plates are a major factor for sediment subduction and tectonic erosion.  相似文献   

14.
The Lambert Glacier–Amery Ice Shelf occupies a narrow NNE–SSW-orientated fault-bound depression referred to as the Lambert Graben. Deep faults associated with this structure are recognised geophysically, and are interpreted to extend at least 700 km inland from the Antarctic coast. Kinematic and palaeostress data from quartz- and calcite-bearing faults, inferred to represent the surface expression of these deeper structures, suggest that a single faulting event occurred in response to NW–SE-directed extension, oblique to the axis of the graben. The bulk of the movement along these faults was dextral strike slip, accommodating components of both normal and reverse offset. In the northern Prince Charles Mountains, these faults disrupt the Permo-Triassic Amery Group and juxtapose it against Proterozoic basement. Equivalent strike-slip faults in the southern Prince Charles Mountains produce dextrally offset tectonic boundaries and metamorphic isogrades across the Lambert Glacier. The similarity in orientation between the palaeostress field calculated for these faults and the Cretaceous divergence vector between India and Antarctica strongly supports the inference that faulting was of Cretaceous age, and related to the break-up of Gondwana.  相似文献   

15.
A few long-range airborne magnetic profiles flown at an altitude of 7.5 km a.s.l. across the Indian shield are analysed and interpreted in terms of magnetization in the lower crust. The wavelengths of the crustal anomalies are in the range of 51–255 km and this is used to separate them from signals originating at shallow depths. Spectral analysis of these profiles provided a maximum depth of 34–41 km for the long-wavelength anomalies and 9–10 km for the shallow sources identified as Mohorovic̆ić discontinuity and the basement respectively. The magnetic “high” recorded in satellite observations over the Indian shield is interpreted as due to a bulge of 3–4 km in the Moho under the Godovari graben, with a magnetization of 200 nT in the direction of the Earth's present-day magnetic field. Similarly the magnetic lows observed over the Himalaya are interpreted in terms of thickening of the granitic part of the crust from 18 to 23.5 km with a magnetization contrast of 200 nT in the direction of the Earth's present-day magnetic field.  相似文献   

16.
Jinfeng, previously known as Lannigou, is the largest Carlin-type gold deposit in the Yunnan–Guizhou–Guangxi region in southwestern China. Gold mineralization in the Jinfeng deposit is almost entirely fault-hosted and structurally controlled, with very little disseminated ore occurring in the adjacent host rocks. The structural elements in the Jinfeng deposit can be subdivided into 3 groups comprising NS-, NW-, and NE-striking faults and folds, with NW-striking structures controlling the overall framework of the deposit. Four tectonic stages have been recorded in the Jinfeng area, i.e., rifting, orogenic compression, lateral transpression, and lithospheric extension. A series of contemporaneous normal faults, such as the N-striking and east-dipping F1 and F7 faults developed along the edges of a carbonate platform during basin rifting (D2–T2). These structures provided an initial framework for subsequent basin evolution, and also represent the principal hydrothermal conduits. A gradual change of the compression direction during the orogenic stage (T3) from E→W to NE→SW, gave rise to the NW-striking structures, including large, tight to overturned folds such as the Huangchanggou synclinorium and associated thrusts such as the F3 fault. The development of these orogenic, predominantly NE-dipping structures, as well as accompanying NE-striking dextral shear and transform faults (such as the F2 fault) along the margin of the Laizishan Dome established the structural pattern of the deposit area. The NW-striking folds were refolded by NE-striking superimposed folds during post-collisional lateral transpression (J1) and NW–SE directed compression. Oblique stress distribution gave rise to NS-trending compression and EW-trending extension, with dilational zones developing at the intersection of the F2 and the F3 faults east of the Laizishan dome. It is these dextral- and sinistral-normal dilational zones in which gold was precipitated during the main ore-forming event at Jinfeng. Following the main ore stage lithospheric extension occurred during the Yanshan stage (J2–K) resulting in minor reverse faults that in places cut pre-existing structures. The above four main structural deformation stages mirror the evolution of the Youjiang Basin from inception to basin inversion and post-orogenic collapse and renewed extension. Significant gold metallogenesis at Jinfeng occurred during the transition from collisional compression to extensional tectonics in the early Jurassic, and is focussed into intersections of F2 and F3 and fault splays adjacent to F3. This structurally controlled gold metallogenic model is likely to be applicable to analogous settings elsewhere in the Yunnan–Guizhou–Guangxi triangle area, and has implications for the targeting of Carlin-type gold mineralization in this region.  相似文献   

17.
Giacomo Corti   《Tectonophysics》2004,384(1-4):191-208
Centrifuge analogue experiments are used to model the reactivation of pre-existing crustal fabrics during extension. The models reproduced a weakness zone in the lower crust whose geometry was varied in order to investigate its role in controlling the architecture of rift segments and related transfer zones. The typical rift system geometry was characterised by two offset rift segments connected by a major transfer zone in which boundary faults were oblique to the extension vector and displayed a significant transcurrent component of movement. The transfer zone was also characterised by cross-basin faults with both trend and strike-slip component of movement opposite to that displayed by the master faults. Typically, different structural patterns were obtained by changing the offset angle φ between the rift segments, supporting that the structural pattern at transfer zones is strongly influenced by the orientation of pre-existing discontinuities with respect to the stretching vector. In the models, the aspect ratio (ratio of length vs. width) of the transfer zone shows a positive correlation with the offset angle (i.e., the more the inherited fabric is parallel to the extension direction, the longer and narrower the transfer zones). In case of staircase offset of the rift segments (φ=90°), the structural pattern was characterised by two isolated rift depressions linked by a narrow transfer zone in which border faults with alternating polarity overlapped. Prominent rise of the ductile lower crust was also observed at the transfer zone. Many of these geometrical features display striking similarities with natural rift systems. The results of the current experiments provide useful insights into the mechanics of continental rift architecture, supporting that rift propagation, width and along-axis segmentation may be strongly controlled by the reactivation of pre-existing pervasive crustal fabrics.  相似文献   

18.
青藏铁路风火山段晚第四纪断裂活动分析   总被引:2,自引:2,他引:0  
地表地质调查发现,第四纪期间在风火山逆冲-褶皱构造带以发生近东西向的伸展变形为特征。在该构造带中形成切割早期近东西向挤压变形构造带、指示近东西向伸展变形、整体沿北60°东向展布的二道沟断陷盆地。断裂活动的地质、地貌证据表明,控制该盆地晚第四纪断陷的主边界断裂位于其北缘,是一条断续延伸达24 km左右、可能兼具左旋走滑性质的正断层。根据该区晚第四纪沉积物的分布和时代,并对断裂所错动的晚第四纪地质-地貌体进行初步的年代学分析,可以初步断定该断裂的晚第四纪垂直活动速率应该介于0.2~0.4 mm/a之间。  相似文献   

19.
Inversion of the magnetotelluric data across the southwestern Taurides reveals two subzones of crust with varying thicknesses: conductive lower crust (<75 Ω m), overlain by resistive (>350 Ω m) upper crust, with four resistive cores (>2000 Ω m) separated by three relatively conductive vertical zones. The first and second vertical zones coincide with surface faults interpreted in Anatolia, such as Fethiye Burdur Fault Zone. The third one is the most conductive and lies in continuity with the Strabo Fault Zone in the Mediterranean Sea. A hypocentral cross section of earthquakes along the profile shows more dense seismic activity in the second resistive core where the conductive crust is not present beneath it. The depth of the crust/upper mantle boundary varies between 30 and 50 km and has an undulating character. The resistivity of the upper mantle reaches 500–1000 Ω m.  相似文献   

20.
The understanding of the intraplate tectonics of Central Europe requires a detailed picture of how stress is transferred from the interaction of the Eurasian, Nubian and Anatolian plates to the Alpine, Carpathian, Pannonian and Dinaric regions. Recent strain distribution is controlled by the Adria horizontal push, by the Vrancea vertical slab pull and associated horizontal displacements, and by the Aegean/Anatolia extension and slab-roll back. We present a horizontal velocity field for the Alpine-Carpathian-Pannonic-Dinaric and Balkan regions resulting from a new combination of seven different GPS networks formed from permanent and campaign stations. Dedicated velocity profiles in two specific regions are studied in detail. One is the Alpine Pannonian region, with a detailed picture of the NS indentation of the Adria microplate into the Southern Alps, in NE Italy, the deformation in the Tauern Window and the eastwards kinematics of a Pannonian plate fragment. The second study region includes Transylvania, the Southern Carpathians up to the Aegean sea and Albania, where a major right lateral shear deformation exists as a consequence of the NE convergence of the Apulia platform towards the Dinarids, and the SSW motion of Macedonia, Western Bulgaria and Rumania, related to the Hellenic arc dynamics in the Eastern Mediterranean. The profiles in the Alpine–Pannonian area indicate that a velocity drop of 2.5 +/− 0.4 mm/yr associated with the Adria indentation concentrates on a segment of some 50 km south of the Periadriatic fault. The deformation becomes extensional by a similar amount just north of the Periadriatic fault, in the Tauern Window, where the updoming of the Tauern Window implies vertical motion which could well be associated with surface extension. In the EW profile, we observe a sudden velocity change of 1.5 +/− 0.2 mm/yr in 20 km, corresponding to the right lateral Lavant fault, which seems to mark the border between dominant indentation kinematics to the West and dominant extrusion kinematics to the East.Three profiles are considered in Southern and Eastern Europe: one across the lower Adriatic sea from Apulia in Italy to the southern Dinarides, which enables it to constrain the velocity drop associated with the subduction of the Adria microplate into the Dinarides to 3.2 +/− 0.5 mm/yr in 140 km. The second profile is longitudinal and constrains the velocity inversion of 7.4 +/− 1.0 mm/yr in 350 km associated with right lateral shear faults in Albania. The third profile crosses the Transylvania region with a shortening of 2.3 +/− 1.0 mm/yr in 220 km, and the Wallachian–Moesian region up to the Chalcidic peninsula in N Greece. This lower part of the profile implies an extensional stretch of the upper crust of 3.2 +/− 0.9 mm/yr in 440 km, culminating in the Hellenic arc. Strain rate maps are presented in this regional scale, showing the excellent agreement between fault plane solutions of crustal earthquakes and the eigenvectors of the GPS derived two dimensional strain rate tensor.Three profiles are considered in the Balkan and SE Carpathians: one across the lower Adriatic sea from Apulia in Italy to the southern Dinarides, which enables to constrain the velocity drop associated to the subduction of the Adria microplate into the Dinarides to 3.2 +/− 0.5 mm/yr in 140 km. The second profile is longitudinal and constrains the velocity inversion of 7.4 +/− 1.0 mm/yr in 350 km associated to right lateral shear faults in Macedonia, a highly seismic region. The third profile crosses the Transylvania with a shortening2.3 +/− 1.0 mm/yr in 220 km, and the Wallachian–Moesian region up to the Chalcidic peninsula in N Greece. This lower part of the profile implies an extensional stretch of the upper crust of 3.2 +/− 0.9 mm/yr in 440 km, culminating in the Hellenic arc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号