首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This study presents a synthesis of the geomorphology, facies variability and depositional architecture of ice‐marginal deltas affected by rapid lake‐level change. The integration of digital elevation models, outcrop, borehole, ground‐penetrating radar and high‐resolution shear‐wave seismic data allows for a comprehensive analysis of these delta systems and provides information about the distinct types of deltaic facies and geometries generated under different lake‐level trends. The exposed delta sediments record mainly the phase of maximum lake level and subsequent lake drainage. The stair‐stepped profiles of the delta systems reflect the progressive basinward lobe deposition during forced regression when the lakes successively drained. Depending on the rate and magnitude of lake‐level fall, fan‐shaped, lobate or more digitate tongue‐like delta morphologies developed. Deposits of the stair‐stepped transgressive delta bodies are buried, downlapped and onlapped by the younger forced regressive deposits. The delta styles comprise both Gilbert‐type deltas and shoal‐water deltas. The sedimentary facies of the steep Gilbert‐type delta foresets include a wide range of gravity‐flow deposits. Delta deposits of the forced‐regressive phase are commonly dominated by coarse‐grained debrisflow deposits, indicating strong upslope erosion and cannibalization of older delta deposits. Deposits of supercritical turbidity currents are particularly common in sand‐rich Gilbert‐type deltas that formed during slow rises in lake level and during highstands. Foreset beds consist typically of laterally and vertically stacked deposits of antidunes and cyclic steps. The trigger mechanisms for these supercritical turbidity currents were both hyperpycnal meltwater flows and slope‐failure events. Shoal‐water deltas formed at low water depths during both low rates of lake‐level rise and forced regression. Deposition occurred from tractional flows. Transgressive mouthbars form laterally extensive sand‐rich delta bodies with a digitate, multi‐tongue morphology. In contrast, forced regressive gravelly shoal‐water deltas show a high dispersion of flow directions and form laterally overlapping delta lobes. Deformation structures in the forced‐regressive ice‐marginal deltas are mainly extensional features, including normal faults, small graben or half‐graben structures and shear‐deformation bands, which are related to gravitational delta tectonics, postglacial faulting during glacial‐isostatic adjustment, and crestal collapse above salt domes. A neotectonic component cannot be ruled out in some cases.  相似文献   

2.
Differentiating between forced regressive deposits from deglacial periods in high latitude domains and forced regressive deposits from the onset of glacial periods in low latitude domains is fundamental for the accurate interpretation of glacial cycles within the geological record and then for the reconstruction of palaeogeography and palaeo‐climate. A forced regressive deglacial sequence is documented from the Lake Saint‐Jean basin (Québec, Canada). In this area, the Late Pleistocene to Holocene sediments have recorded the Laurentide ice sheet retreat accompanied by the invasion of marine waters (Laflamme Gulf) from ca 12·9 cal kyr bp . Subsequently, fluvio‐deltaic and coastal prograding wedges were deposited; they followed the base‐level fall due to glacio‐isostatic rebound. This succession, representing a transition from glacial to post‐glacial periods within a previously glaciated area, was investigated through recent mapping, preserved landforms, facies analysis, and new optical stimulated luminescence and radiocarbon dates. Three basin‐scale geological sections share a common lower part made of isolated ice‐contact fan deposits overlying bedrock. Throughout the entire basin, ice‐contact fans are capped by glacimarine muds. Above, fluvial and coastal prograding systems were deposited and evolved through four steps: (i) deltaic systems progressively increased in width; (ii) coastal influence on sedimentation increased; (iii) hydrographic drainage systems became more organised; and (iv) deltas graded from steep (Gilbert delta) to low‐angle foresets (mouth‐bar delta). Deposited during the base‐level fall from glacio‐isostatic rebound, the complete succession has been designated as a single falling stage system tract referred to as a deglacial falling stage system tract. It is representative of a deglaciation sequence in areas previously covered by ice during glacial periods (i.e. medium to high latitude domains). Diagnostic criteria are provided to identify such a deglacial falling stage system tract in the geological record, which may aid identification of previously unknown glacial cycles.  相似文献   

3.
The Cutro Terrace is a mixed marine to continental terrace, where deposits up to 15 m thick discontinuously crop out in an area extending for ca 360 km2 near Crotone (southern Italy). The terrace represents the oldest and highest terrace of the Crotone area, and it has been ascribed to marine isotope stage 7 (ca 200 kyr bp ). Detailed facies and sequence‐stratigraphic analyses of the terrace deposits allow the recognition of a suite of depositional environments ranging from middle shelf to fluvial, and of two stacked transgressive–regressive cycles (Cutro 1 and Cutro 2) bounded by ravinement surfaces and by surfaces of sub‐aerial exposure. In particular, carbonate sedimentation, consisting of algal build‐ups and biocalcarenites, characterizes the Cutro 1 cycle in the southern sector of the terrace, and passes into shoreface and foreshore sandstones and calcarenites towards the north‐west. The Cutro 2 cycle is mostly siliciclastic and consists of shoreface, lagoon‐estuarine, fluvial channel fill, floodplain and lacustrine deposits. The Cutro 1 cycle is characterized by very thin transgressive marine strata, represented by lags and shell beds upon a ravinement surface, and thicker regressive deposits. Moreover, the cycle appears foreshortened basinwards, which suggests that the accumulation of its distal and upper part occurred during forced regressive conditions. The Cutro 2 cycle displays a marked aggradational component of transgressive to highstand paralic and continental deposits, in places strongly influenced by local physiography, whereas forced regressive sediments are absent and probably accumulated further basinwards. The maximum flooding shoreline of the second cycle is translated ca 15 km basinward with respect to that of the first cycle, and this reflects a long‐term regressive trend mostly driven by regional uplift. The stratigraphic architecture of the Cutro Terrace deposits is the result of the interplay between regional uplift and high amplitude, Late Quaternary glacio‐eustatic changes. In particular, rapid transgressions, linked to glacio‐eustatic rises that outpaced regional uplift, favoured the accumulation of thin transgressive marine strata at the base of the two cycles. In contrast, the combined effect of glacio‐eustatic falls and regional uplift led to high‐magnitude forced regressions. The superposition of the two cycles was favoured by a relatively flat topography, which allowed relatively complete preservation of stratal geometries that record large shoreline displacements during transgression and regression. The absence of a palaeo‐coastal cliff at the inner margin of the terrace supports this interpretation. The Cutro Terrace provides a case study of sequence architecture developed in uplifting settings and controlled by high‐amplitude glacio‐eustatic changes. This case study also demonstrates how the interplay of relative sea‐level change, sediment supply and physiography may determine either the superposition of cycles forming a single terrace or the formation of a staircase of terraces each recording an individual eustatic pulse.  相似文献   

4.
The sedimentary record from Lake George provides the longest relatively continuous Quaternary continental sequence yet available from Australia, and may record one of the longest Upper Cainozoic lacustrine records in the world.

Palaeomagnetic analysis of a 36 m core from the lake floor identifies a sequence of deposition extending through the Brunhes and Matuyama, to the Gauss magnetic Chron. A longer core from the same site, but with incomplete recovery, extends to 72 m in lacustrine sediment; the age of the base of this core estimated by extrapolation is between 4.2 and 7 Ma. As there are still older and deeper sediments in the basin, extending to an estimated depth of 134 m, the age of the tectonic formation of the Lake George basin must be reckoned as Middle Miocene or older.

The pattern of facies organisation through time demonstrates a phase of deep water deposition extending from the base of the cored sequence (72 m) up to 51.5 m, at which time a major change took place. A disconformity developed at this level, associated with a period of deep weathering and a prolonged phase of slope mantle deposition (from 51.5 to 30.8 m). A gradual return to lacustrine environments, with diminishing proportion of slope wash detritus, resulted in increased rates of deposition coincident with the Jaramillo Subchron at 21.5 m. Thereafter, throughout the Brunhes magnetic Chron, lacustrine conditions dominated, varying from deep to lake dry conditions in a rhythmic fashion, and reflecting the major climatic oscillations of the past 700 000 years, becoming more regular in the past 400 000 years.

The pollen analytical record of the upper 8.6 m, covering the last 350 000 years, provides the main framework for the reconstruction of climatic history. The pollen and algal records indicate a sequence of vegetation and lake level changes, in which four major glacial/interglacial cycles are correlated with stages 1 to 10 of the 180 marine record. This provides by far the longest continuous biostratigraphic framework for the Quaternary period in Australia.

Comparison between the palaeoclimatic record and the lake level evidence shows that there is no simple correlation between the lake level fluctuations and the glacial/ interglacial oscillations. In fact, major falls in the lake level occured both at the peak of cold glacials and during the warm interglacials. Though the falls in the lake levels during a warm period (interglacial) can be explained by high rates of evaporation, drying during maximum cold can be explained best in terms of a fall in precipitation. Permanent to deep‐lake conditions generally occurred during intermediate cool periods following warm intervals, when perhaps the seas were still warm and low rates of evaporation on land prevailed. On the other hand, short periods of shallow to deep lake levels also occurred during warm (interglacial) periods, showing that these were associated with reasonably high rates of precipitation.  相似文献   

5.
The stratigraphy of the last deglaciation sequence is investigated in Lake Saint‐Jean (Québec Province, Canada) based on 300 km of echo‐sounder two dimensional seismic profiles. The sedimentary archive of this basin is documented from the Late Pleistocene Laurentidian ice‐front recession to the present‐day situation. Ten seismic units have been identified that reflect spatio‐temporal variations in depositional processes characterizing different periods of the Saint‐Jean basin evolution. During the postglacial marine flooding, a high deposition rate of mud settling, from proglacial glacimarine and then prodeltaic plumes in the Laflamme Gulf, produced an extensive, up to 50 m thick mud sheet draping the isostatically depressed marine basin floor. Subsequently, a closing of the water body due to glacio‐isostatic rebound occurred at 8.5 cal. ka BP, drastically modifying the hydrodynamics. Hyperpycnal flows appeared because fresh lake water replaced dense marine water. River sediments were transferred towards the deeper part of the lake into river‐related sediment drifts and confined lobes. The closing of the water body is also marked by the onset of a wind‐driven internal circulation associating coastal hydrodynamics and bottom currents with sedimentary features including shoreface deposits, sediment drifts and a prograding shelf‐type body. The fingerprints of a forced regression are well expressed by mouth‐bar systems and by the shoreface–shelf system, the latter unexpected in such a lacustrine setting. In both cases, a regressive surface of lacustrine erosion (RSLE) has been identified, separating sandy mouth‐bar from glaciomarine to prodeltaic muds, and sandy shoreface wedges from the heterolithic shelf‐type body, respectively. The Lake Saint‐Jean record is an example of a regressive succession driven by a glacio‐isostatic rebound and showing the transition from late‐glacial to post‐glacial depositional systems.  相似文献   

6.
This article reports on an Early Saalian proglacial lake formed between the Scandinavian Ice Sheet and the front of the Sudeten Mountains, Poland. Sediments investigated at Mys?ów point to a transition from glacifluvial to glaciolacustrine environments. The bulk of the sediments was deposited in deep‐water Gilbert‐type deltas (A–E complexes). A delta plain (topset) gradually passes into a subaerial plateau and then a clastic shoreline and the subaquatic slope of a prograding delta (foreset). The glaciolacustrine lithofacies represent a number of lake‐basin environments, from marginal subaqueous slopes to distal parts of a subaqueous fan. Glaciolacustrine and glaciodeltaic deposits locally reach ?50–70 m in thickness. Analyses of A–E complexes indicate that the lake existed for more than 130 years and that its origin and evolution were closely connected with the ice front. This case study records lake sedimentation at an ice‐sheet margin with cohesionless gravity flows, turbidity currents, debris‐avalanching and, to a much lesser degree, parapelagic suspension fall‐out and ice‐raft dumping. In the initial stage, the lake extended more than 10 km to the south, and the deposition was relatively slow. In the second stage, recession of the ice sheet caused rapid growth of a delta. The third and ultimate stage coincided with the final glacial recession, with rapid deposition occurring only on the lake bottom. The model of the glaciolacustrine environment presented here may also be applicable to many other proglacial lakes in mountain areas.  相似文献   

7.
Falling‐stage deltas are predicted by sequence stratigraphic models, yet few reliable criteria are available to diagnose falling‐stage deltaic systems in surface exposures. Recent work on the Upper Cretaceous (Turonian) Ferron Sandstone in the western Henry Mountains Syncline of south‐central Utah has established its environment of deposition as a series of modest‐sized (5 to 20 km wide), probably asymmetrical, mixed‐influence deltas (‘Ferron Notom Delta’) that dispersed sediment eastwards from the rising Sevier orogenic hinterland into the Western Cordilleran Foreland Basin. Analysis of sandstone body stacking patterns in a 67 km long, depositional strike‐parallel (north–south) transect indicates that the growth of successive deltas was strongly forced by synsedimentary growth of a long wavelength (ca 100 km), 50 m amplitude fold structure. Herein, two discrete areas within this transect, superbly exposed in three dimensions, are documented in order to determine the details of stratal stacking patterns in the depositional dip direction, and thereby to assess the stratigraphic context of the Ferron Notom Delta. In the two study areas, dip transects expose facies representing river mouth bar to distal delta front environments over distances of 2 to 4 km. Key stratal packages are clinothems that offlap, downlap, and describe descending regressive trajectories with respective to basal and top datums; they are interpreted as the product of relative sea‐level fall. The vertical extent of clinoforms suggests that deltas prograded into <30 m of water. Furthermore, these deltaic successions preserve abundant evidence of delta front slope failure, growth faulting, and incision and filling of deep (<15 m) slope gullies. Gully fills are composed of chaotic intraformational breccia and/or massive sandstone, and constitute linear, ‘shoestring’ sandbodies in the distal portions of individual palaeodelta systems. They are interpreted to have been cut and filled during the late falling‐stage and lowstand of relative sea‐level cycles. The north–south distribution of the stratal style described above seems to be focused on the flanks of the growth anticline, and so the numerous falling‐stage systems tracts preserved within the Ferron Notom Delta probably owe their origin to synsedimentary structural growth, and the unstable fluid pressure regime that this growth imposed on the sea floor and shallow subsurface.  相似文献   

8.
Geomorphic evidence suggests that shorelines of 100–200 m above the modern lake levels were common across the Tibetan Plateau during late Marine Isotope Stage (MIS) 3. The timing of this lake‐level highstand is mainly based on radiocarbon ages. Problems surrounding the ages of lacustrine sediments at or beyond the limit of the radiocarbon‐dating method have created a need for alternative geochronometers. Chronological advances during the last decade have renewed interest in the timing of events beyond the limit of radiocarbon dating. Here, we synthesize published data for elevated lacustrine landforms of 48 lakes on the Tibetan Plateau, in order to provide a thorough perspective on the timing and pattern of lake‐level changes in this alpine area during the late Quaternary. The ages of these elevated shore features reveal a long‐term trend of relative lake‐level fall from at least MIS 5, instead of a peak in MIS 3, as previously thought. Dating lacustrine terrace sequences reveals that the rate of lake‐level fall ranged from ~1 to 3 mm a?1, comparable with that of related river downcutting across the plateau. Palaeoclimatic proxy records point to a sustained drying since the Last Interglacial, suggesting that long‐term aridification might be the culprit for this widespread and progressive lake‐level fall.  相似文献   

9.
This paper presents a detailed analysis of the high‐resolution facies architecture of the Middle Pleistocene Porta subaqueous ice‐contact fan and delta complex, deposited on the northern margin of glacial Lake Weser (North‐west Germany). A total of 10 sand and gravel pits and more than 100 wells were examined to document the complex facies architecture. The field study was supplemented with a ground‐penetrating radar survey and a shear‐wave seismic survey. All collected sedimentological and geophysical data were integrated into a high‐resolution three‐dimensional geological model for reconstructing the spatial distribution of facies associations. The Porta subaqueous fan and delta complex consist of three fan bodies deposited on a flat lake‐bottom surface at the margin of a retreating ice lobe. The northernmost fan complex is up to 55 m thick, 6·2 km wide and 6·5 km long. The incipient fan deposition is characterized by high‐energy flows of a plane‐wall jet. Very coarse‐grained, highly scoured jet‐efflux deposits with an elongate plan shape indicate a high Froude number, probably >5. These jet‐efflux sediments are deposited in front of a large ~3·2 km long, up to 1·2 km wide, and up to 25 m deep flute‐like scour, indicating the most proximal erosion and bypass area of the jet that widens and deepens with distance downstream to the region of maximum turbulence (approximately five times the conduit diameter). Evidence for subsequent flow splitting is given by the presence of two marginal gravel fan lobes, deposited in front of 1·3 to 2·5 km long flute‐like scours, that are 0·8 to 1 km wide and 7 to 20 m deep. In response to continued aggradation, small jets developed at the periphery of these bar‐like deposits and filled in the low areas adjacent to the original superelevated regions, locally raising the depositional surface and characterized by large‐scale trough cross‐stratified sand and pebbly sand. The incision of an up to 1·2 km wide and up to 35 m deep channel into the evolving fan is attributed to a catastrophic drainage event, probably related to a lake outburst and lake‐level fall in the range of 40 to 60 m. At the mouth of this channel, highly scoured jet‐efflux deposits formed under hydraulic‐jump conditions during flow expansion. Subsequently, Gilbert‐type deltas formed on the truncated fan margin, recording a second lake‐level drop in the range of 30 to 40 m. These catastrophic lake‐level falls were probably caused by rapid ice‐lobe retreat controlled by the convex‐up bottom topography of the ice valley.  相似文献   

10.
《Quaternary Science Reviews》2007,26(22-24):2701-2723
The Seine, Yonne and Somme are the main rivers draining northwestern France and flowing into the Channel. During Pleistocene cold stages they were tributaries of the “Fleuve Manche”. They are characterised by well-developed stepped terrace systems showing up to 10 incision steps for the last 1 Ma. After 15 years of research and the synthesis of stratigraphical, sedimentological, bioclimatical data and numerical dating, these terrace systems are interpreted as the response of the fluvial environments to climatic cyclicity, superimposed on a background of slow tectonic uplift. The comparison of these three terrace systems shows that the incision budget is similar within the studied area (about 55–65 m/1 Ma), implying relative homogeneity of uplift. In the main part of the area, beyond marine influence, the analysis of each stepped alluvial formation shows regular sediment balance generally composed of coarse periglacial gravels (pleniglacial), covered by fine-grained sediments locally overlain by calcareous tufa (interglacial). However, in the Lower Seine valley, close to the present coast, the low terrace includes two estuarine interglacial units interbedded within periglacial gravel units. Nevertheless, until recently evidence of full interglacial conditions remained elusive in fluvial contexts, especially in the Somme. To address these issues a new research programme has been launched on tufa deposits that are the best candidate to register the climatic optimum. Initial results from la Celle (Seine), Saint-Acheul and Caours (Somme) allow palaeoenvironmental reconstructions of MIS 11 and 5e, and thus confirm the importance of calcareous tufa to define a reference record of Pleistocene Interglacials for northern France. Moreover, it has been previously demonstrated that the main incision leading to terrace formation can be attributed to the transition between interglacial and glacial (during early glacial phases). The new results from interglacial records have important implications concerning the precise occurrence of the major incision phases within the climatic cycle as they provide the starting point immediately preceding downcutting.  相似文献   

11.
Relative sea‐level (RSL) change is reconstructed for central Cumbria, UK, based on litho‐ and biostratigraphical analysis from the Lateglacial to the late Holocene. The RSL curve is constrained using ten new radiocarbon‐dated sea‐level index points in addition to published data. The sea‐level curve identifies a clear Lateglacial sea‐level highstand approximately 2.3 m OD at c. 15–17 k cal a BP followed by rapid RSL fall to below ?5 m OD. RSL then rose rapidly during the early Holocene culminating in a mid‐Holocene highstand of approximately 1 m OD at c. 6 k cal a BP followed by gradual fall to the present level. These new data provide an important test for the RSL predictions from glacial isostatic adjustment models, particularly for the Lateglacial where there are very little data from the UK. The new RSL curve shows similar broad‐scale trends in RSL movement predicted by the models. However, the more recent models fail to predict the Lateglacial sea level highstand above present reconstructed by the new data presented here. Future updates to the models are needed to reduce this mismatch. This study highlights the importance for further RSL data to constrain Lateglacial sea level from sites in northern Britain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
We present evidence of a large lake (Glacial Lake Victoria) that existed in Victoria Valley in the dry valleys region of Antarctica between at least 20 000 and 8600 14C yr BP. At its highstands, Glacial Lake Victoria covered 100 km2 and was ca. 200 m deep. The chronology for lake‐level changes comes from 87 AMS radiocarbon dates of lacustrine algae preserved in deltas and glaciolacustrine deposits that extend up to 185 m above present‐day lakes on the valley floor. The existence of Glacial Lake Victoria, as well as other large lakes in the dry valleys, indicates a climate regime significantly different from that of today at the last glacial maximum and in the early Holocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Lake El'gygytgyn, located in central Chukotka, Russian Arctic, was the subject of an international drilling project that resulted in the recovery of the longest continuous palaeoclimatic and palaeoenvironmental record for the terrestrial Arctic covering the last 3.6 million years. Here, we present the reconstruction of the lake‐level fluctuations of Lake El'gygytgyn since Marine Isotope Stage (MIS) 7 based on lithological and palynological as well as chronological studies of shallow‐water sediment cores and subaerial lake terraces. Reconstructed lake levels show an abrupt rise during glacial–interglacial terminations (MIS 6/5 and MIS 2/1) and during the MIS 4/3 stadial–interstadial transition. The most prominent lowstands occurred during glacial periods associated with a permanent lake‐ice cover (namely MIS 6, MIS 4 and MIS 2). Major triggering mechanisms of the lake‐level fluctuations at Lake El'gygytgyn are predominantly changes in air temperature and precipitation. Regional summer temperatures control the volume of meltwater supply as well as the duration of the lake‐ice cover (permanent or seasonal). The duration of the lake‐ice cover, in turn, enables or hampers near‐shore sediment transport, thus leading to long‐term lake‐level oscillations on glacial–interglacial time scales by blocking or opening the lake outflow, respectively. During periods of seasonal ice cover the lake level was additionally influenced by changes in precipitation. The discovered mechanism of climatologically driven level fluctuations of Lake El'gygytgyn are probably valid for large hydrologically open lakes in the Arctic in general, thus helping to understand arctic palaeohydrology and providing missing information for climate modelling.  相似文献   

14.
Maar lake Laguna Potrok Aike is located north of the Strait of Magellan (south‐eastern Patagonia). Seismic reflection profiles revealed a highly dynamic palaeoclimate history. Dunes were identified in the eastern part of the lake at approximately 30 to 80 m below the lake floor, overlying older lacustrine strata, and suggest that the region experienced dry conditions probably combined with strong westerly winds. It is quite likely that this can be linked to a major dust event recorded in the Antarctic ice cores during Marine Isotope Stage 4. The dunes are overlain by a series of palaeo‐shorelines indicating a stepwise water‐level evolution of a new lake established after this dry period, and thus a change towards wetter conditions. After the initial, rapid and stepwise lake‐level rise, the basin became deeper and wider, and sediments deposited on the lake shoulder at approximately 33 m below present‐day lake level point towards a long period of lake‐level highstand between roughly 53·5 ka cal. bp and 30 ka cal. bp with a maximum lake level some 200 m higher than the desiccation horizon. This highstand was then followed by a regressional phase of uncertain age, although it must have happened some time between approximately 30 ka cal. bp and 6750 yrs cal. bp . Dryer conditions during the Mid‐Holocene are evidenced by a dropping lake level, resulting in a basin‐wide erosional unconformity on the lake shoulder. A second stepwise transgression between ca 5·8 to 5·4 ka cal. bp and ca 4·7 to 4 ka cal. bp with palaeo‐shorelines deposited on the lake shoulder unconformity again indicates a change towards wetter conditions.  相似文献   

15.
We synthesize a new fluvial terrace chronostratigraphy of the Bidente and Musone Rivers cast within a broader European framework, which forms the basis of a terrace genesis and river incision model for the northern Apennines, Italy. Our model, supported by terrace long profiles, correlation to Po foreland sediments, 15 new radiocarbon dates, and published numeric and relative stratigraphic ages, highlights how drainage basin substrate drives concurrent formation of strath terraces in the Bidente basin and fill terraces in the Musone basin. Quaternary climate change paces the formative geomorphic processes through unsteady discharges of water and sediment. In the weathering-limited setting represented by the Bidente basin, siliciclastic detritus carves broad strath surfaces during glacial climates that are preserved as terraces as the river incises during the transition to an interglacial climate. In contrast, the transport-limited and carbonate detritus dominated Musone basin sees valleys deeply buried by aggradation during glacial climates followed by river incision during the transition to an interglacial climate. Incision of these rivers over the past ~1 million years has been both unsteady and non-uniform. These and all Po-Adriatic draining rivers are proximal to a base level defined by mean sea level and have little room for increasing their longitudinal profile concavities through incision, particularly in their lower reaches despite periodic glacio-eustatic drawdowns. As a result, the observed incision is best explained by rock uplift associated with active local fault or fold growth embedded in the actively thickening and uplifting Apennine foreland.  相似文献   

16.
Numerical modelling of depositional sequences in half-graben rift basins   总被引:1,自引:0,他引:1  
ABSTRACT A three‐dimensional numerical model of sediment transport and deposition in coarse‐grained deltas is used to investigate the controls on depositional sequence variability in marine half‐graben extensional basins subject to eustatic sea‐level change. Using rates of sea‐level change, sediment supply and fault slip reported from active rift basins, the evolution of deltas located in three contrasting structural settings is documented: (1) footwall‐sourced deltas in high‐subsidence locations near the centre of a fault segment; (2) deltas fed by large drainage catchments at fault tips; and (3) deltas sourced from drainage catchments on the hangingwall dip slope. Differences in the three‐dimensional form and internal stratigraphy of the deltas result from variations in tilting of the hangingwall and the impact of border fault slip rates on accommodation development. Because subsidence rates near the centre of fault segments are greater than all but the fastest eustatic falls, footwall‐sourced deltas lack sequence boundaries and are characterized by stacked highstand systems tracts. High subsidence and steep bathymetry adjacent to the fault result in limited progradation. In contrast, the lower subsidence rate settings of the fault‐tip and hangingwall dip‐slope deltas mean that they are subject to relative sea‐level fall and associated fluvial incision and forced regression. Low gradients and tectonic tilting of the hangingwall influence the geometry of these deltas, with fault‐tip deltas preferentially prograding axially along the fault, creating elongate delta lobes. In contrast, broad, sheet‐like delta lobes characterize the hangingwall dip‐slope deltas. The model results suggest that different systems tracts may be coeval over length scales of several kilometres and that key stratal surfaces defining and subdividing depositional sequences may only be of local extent. Furthermore, the results highlight pitfalls in sequence‐stratigraphic interpretation and problems in interpreting controlling processes from the preserved stratigraphic product.  相似文献   

17.
The technique of optically stimulated luminescence (OSL) dating applied to fluvial sediments provided a geochronological framework of river terrace formation in the middle part of the Dunajec River basin – a reference area for studies of evolution of river valleys in the northern part of the Carpathians (West Carpathians). Fluvial sediments at 18–90 m above valley bottoms were dated in the valleys of the Dunajec River and one of its tributaries. The resulting ages range from 158.9±8.3 to 12.2±1.3 ka. This indicates that some of the terrace sediments were deposited much later than previously assumed on the grounds of a combined morphostratigraphical and climatostratigraphical approach. The OSL‐based chronostratigraphy of terrace formation consists of seven separate phases of fluvial aggradation, separated by periods of incision and lateral erosion. Some of the ages determined correspond to warm stages of the Pleistocene – Marine Isotope Stage 3 (MIS 3) and MIS 5 – demonstrating that some terraces were formed during interstadial or interglacial periods. The results provide a key for evaluating rates of neotectonic uplift, allowing us to decipher the response of a fluvial system to climate change within the context of the glacial–interglacial scheme.  相似文献   

18.
Un‐fragmented stratigraphic records of late Quaternary multiple incised valley systems are rarely preserved in the subsurface of alluvial‐delta plains due to older valley reoccupation. The identification of a well‐preserved incised valley fill succession beneath the southern interfluve of the Last Glacial Maximum Arno palaeovalley (northern Italy) represents an exceptional opportunity to examine in detail evolutionary trends of a Mediterranean system over multiple glacial–interglacial cycles. Through sedimentological and quantitative meiofauna (benthic foraminifera and ostracods) analyses of two reference cores (80 m and 100 m long) and stratigraphic correlations, a mid‐Pleistocene palaeovalley, 5 km wide and 50 m deep, was reconstructed. Whereas valley filling is chronologically constrained to the penultimate interglacial (Marine Isotope Stage 7) by four electron spin resonance ages on bivalve shells (Cerastoderma glaucum), its incision is tentatively correlated with the Marine Isotope Stage 8 sea‐level fall. Above basal fluvial‐channel gravels, the incised valley fill is formed by a mud‐prone succession, up to 44 m thick, formed by a lower floodplain unit and an upper unit with brackish meiofauna that reflects the development of a wave‐dominated estuary. Subtle meiofauna changes towards less confined conditions record two marine flooding episodes, chronologically linked to the internal Marine Isotope Stage 7 climate‐eustatic variability. After the maximum transgressive phase, recorded by coastal sands, the interfluves were flooded around 200 ka (latest Marine Isotope Stage 7). The subsequent shift in river incision patterns, possibly driven by neotectonic activity, prevented valley reoccupation guiding the northward formation of the Last Glacial Maximum palaeovalley. The applied multivariate approach allowed the sedimentological characterization of the Marine Isotope Stage 7 and Marine Isotope Stage 1 palaeovalley fills, including shape, size and facies architecture, which revealed a consistent river‐coastal system response over two non‐consecutive glacial–interglacial cycles (Marine Isotope Stages 8 to 7 and Marine Isotope Stages 2 to 1). The recurring stacking pattern of facies documents a predominant control exerted on stratigraphy by Milankovitch and sub‐Milankovitch glacio‐eustatic oscillations across the late Quaternary period.  相似文献   

19.
An integrated interpretation of on‐ and offshore stratigraphical records at Leirfjorden, north Norway, reveals new aspects of the area's palaeoenvironmental history. The study is based on marine sparker data and well‐exposed sections on land that were analysed for their sediment facies, mineralogy and fossil assemblages. Existing research and new radiocarbon dates provide a chronological framework for the interpretation. The late Younger Dryas Nordli substage type locality in the Leirfjorden catchment is revised and found to reflect local glacial activity, maybe a collapse of stagnant ice rather than glacier advance, while late Younger Dryas to Preboreal glacier re‐advances south of Leirfjorden and near Ranfjorden are here named the Bardal substage. The stratigraphical record includes pre‐Younger Dryas, valley‐crossing, glacial striae and old till with provenance of resistant bedrock typical of more elevated mountain areas. It differs from younger till units representing topographically controlled glacier movement. Part of the Leirfjorden fjord‐valley system is located between the main glacial and fluvial drainage paths affecting the sediment supply. As a result, highstand deposits are indistinct and fluvial sediments form only a minor part of the forced‐regressive systems tract. Instead, the valley fill overlying till and subtill sediments is dominated by the deglacial transgressive tract and a forced‐regressive systems tract with composite marine deposits and various marine erosion surfaces. A special event bed is interpreted as a possible tsunami deposit caused by seismicity and/or mass‐wasting in the fjord following glacier retreat. The study highlights the stratigraphical complexity of interconnected fjord and sound systems in a low accretion setting.  相似文献   

20.
The impact of modern cold glaciers on arid periglacial landscapes has received little attention compared with other glacial regimes, and there is a widely held assumption that cold glaciers are not effective geomorphological agents, despite recent studies to the contrary. This paper focuses on the processes operating at the margins of a number of glaciers in the Dry Valleys of Victoria Land, notably the Wright Lower Glacier. The glaciers are entraining primarily older drift deposits and highly weathered regolith which texturally are sandy gravels, as well as well‐sorted sands of fluvial origin. Despite basal temperatures of the order of ?16°C, frozen layers and blocks of sand and gravel are being incorporated into the base of the glaciers by folding and thrusting. The sedimentary products are ridges and aprons several metres high within which the principal lithofacies are sand, gravel, foliated glacier ice, lake ice and snow. These facies are glaciotectonized strongly. Draped over these landforms is a veneer of well‐sorted aeolian sand up to half a metre thick. Supraglacial streams flowing off the glaciers incise these landforms and the sediment is redeposited as alluvial fans, lake deltas and lake‐bottomset deposits. Overall the sediment/landform association differs markedly from those of other glacial regimes, with sand and gravel being the dominant facies, while the usual indicators of glacier working (such as facets and striations on clasts) are lacking. The preservation potential for these landforms on a thousand‐year time scale is high, as modification in this arid regime by slope processes and running water is limited. Sublimation of buried ice is so slow that ridge features are likely to remain ice‐cored almost indefinitely, modified only by wind transport and weathering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号