首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
液闪法测量水中氚放射性活度的淬灭效应   总被引:3,自引:2,他引:1  
采用液体闪烁计数法进行放射性同位素测量时存在淬灭效应,而且几乎每个样品的淬灭程度都不同,并影响测量精度。采用液体闪烁计数法测量水中氚的放射性活度,淬灭是难以避免的,因此要进行淬灭校正,才能使不同淬灭程度的样品的测量结果具有可比性。淬灭校正的方法有很多,外标准校正法是一种比较可靠的方法。文章采用氚外标准校正法进行实验,得出淬灭校正曲线即探测效率E与淬灭参数SQP(E)的关系式为E=0.001 3SQP(E)-0.707 6,经过样品验证,该曲线是可靠的。采用外标准校正法适合于大批样品的测量。  相似文献   

2.
Sorption and desorption behaviour of methane, carbon dioxide, and mixtures of the two gases has been studied on a set of well-characterised coals from the Argonne Premium Coal Programme. The coal samples cover a maturity range from 0.25% to 1.68% vitrinite reflectance. The maceral compositions were dominated by vitrinite (85% to 91%). Inertinite contents ranged from 8% to 11% and liptinite contents around 1% with one exception (Illinois coal, 5%). All sorption experiments were performed on powdered (−100 mesh), dry coal samples.Single component sorption/desorption measurements were carried out at 22 °C up to final pressures around 51 bar (5.1 MPa) for CO2 (subcritical state) and 110 bar (11 MPa) for methane.The ratios of the final sorption capacities for pure CO2 and methane (in molar units) on the five coal samples vary between 1.15 and 3.16. The lowest ratio (1.15) was found for the North Dakota Beulah-Zap lignite (VRr=0.25%) and the highest ratios (2.7 and 3.16) were encountered for the low-rank coals (VRr 0.32% and 0.48%) while the ratio decreases to 1.6–1.7 for the highest rank coals in this series.Desorption isotherms for CH4 and CO2 were measured immediately after the corresponding sorption isotherms. They generally lie above the sorption isotherms. The degree of hysteresis, i.e. deviation of sorption and desorption isotherms, varies and shows no dependence on coal rank.Adsorption tests with CH4/CO2 mixtures were conducted to study the degree of preferential sorption of these two gases on coals of different rank. These experiments were performed on dry coals at 45 °C and pressures up to 180 bar (18 MPa). For the highest rank samples of this sequence preferential sorption behaviour was “as expected”, i.e. preferential adsorption of CO2 and preferential desorption of CH4 were observed. For the low rank samples, however, preferential adsorption of CH4 was found in the low pressure range and preferential desorption of CO2 over the entire pressure range.Follow-up tests for single gas CO2 sorption measurements consistently showed a significant increase in sorption capacity for re-runs on the same sample. This phenomenon could be due to extraction of volatile coal components by CO2 in the first experiment. Reproducibility tests with methane and CO2 using fresh sample material in each experiment did not show this effect.  相似文献   

3.
Infrared absorption spectrophotometric studies on the altered zones associated with gold mineralization at the Fawakhir gold mine revealed that the ratio of absorbances of the C---O vibration absorption band of carbonates at 1430 ± 10 cm-1, and the Si---O vibration absorption band of silicates at 1090 ± 10 cm-1 (designated “δ”), is a characteristic parameter. The C---O band of carbonates is absent beyond the limits of the alteration zones.This work also evaluates the validity of the coefficient (δ). Its values are correlated with both the gold and CO2 contents of the same samples. This verifies the usefulness of CO2 as an additional pathfinder for gold in the studied locality.  相似文献   

4.
天然放射性碳年代测定(二)   总被引:1,自引:0,他引:1       下载免费PDF全文
本报告公布的系1975年至1976年用乙炔(C2H2)气体计数法和1977年底用液体闪烁计数法测定的部分地质样品年代数据。另外,为了验证液体闪烁计数法的可靠性,用液体闪烁计数法又测定了湖南长沙马王堆两个考古样品,在此也再次公布测定结果。  相似文献   

5.
The Daenam mine, which produced over 9250 tons of iron oxide ore from 1958 to 1962, is situated in the Early Cretaceous Yeongyang subbasin of the Gyeongsang basin. It consists of two lens-shaped, hematite-bearing quartz veins that occur along faults in Cretaceous leucocratic granite. The hematite-bearing quartz veins are mainly composed of massive and euhedral quartz and hematite with minor amounts of pyrite, pyrrhotite, mica, feldspar and chlorite.Fluid inclusions in quartz can be divided into three main types: CO2-rich, CO2–H2O, and H2O-rich. Hydrothermal fluids related to the formation of hematite are composed of either H2O–CO2–NaCl ± CH4 (homogenization temperature: 262–455 °C, salinity <7 eq. wt.% NaCl) or H2O–NaCl (homogenization temperature: 182–266 °C, and salinity <5.1 eq. wt.% NaCl), both of which evolved by mixing with deeply circulating meteoric water. Hematite from the quartz veins in the Daenam mine was mainly deposited by unmixing of H2O–CO2–NaCl ± CH4 fluids with loss of the CO2 + CH4 vapor phase and mixing with downward percolating meteoric water providing oxidizing conditions.  相似文献   

6.
Low molecular weight organic acids (LMWOA) are produced in soil by various biological and chemical processes and can exhibit substantial metal complexing and dissolution capacity. The reactivity of these compounds in the soil environment is dependent on their non-complexed concentration in the soil solution. Adsorption of LMWOA has been shown to reduce their concentration in the soil solution; however, little is known about the reduction of LMWOA concentration due to microbial degradation. To examine the extent of microbial degradation in reducing LMWOA concentration in the soil solution, three-biometer methods were used: a soil biometer flask, an in-situ field biometer and a soil column biometer. Four soil horizons were used with each method. To each soil sample, 2.0×10−6 moles of organic acid containing 3.7×104 Bq total activity was applied. The 14C-radiolabeled aliphatic and aromatic acids studied included oxalic, malonic, succinic, and phthalic acid. Evolved 14CO2 was trapped in 0.5 mol l−1 NaOH and measured using liquid scintillation counting. Labeled acids degraded rapidly within the first 5 days for the Ap1, Ap2, and BA horizons, with a generally slower rate of 14CO2 evolution being observed for the Bt1 horizon. The % degradation of labeled acid was substantially greater for the soil biometer flask method, compared to the field and soil column biometer methods. The average % degradation for the soil biometer flask was 67% for all soil horizons and organic acids, compared to 14% for the field biometer and 13% for the soil column biometer. Results indicate that substantial microbial degradation of organic acids can occur within a relatively short time period and the biometer method selected can influence the % acid degraded. Based on primary results, the soil column biometer method better approximated microbial degradation under field conditions, as evaluated using the field biometer.  相似文献   

7.
Rock–Eval pyrolysis is increasingly used for the routine characterization of natural organic matter in soils and sediments. In this work the bulk composition of sedimentary organic matter (SOM) in sandy aquifer sediments is studied, as well as purified samples (isolation of SOM) by HCl/HF treatment. This treatment is necessary to avoid detection limit problems for samples with low SOM contents, but the results presented here indicate that this treatment influences the organic geochemistry of the aquifer sediment samples. The FID and CO2/CO pyrograms show a shift of 10–40 °C of the major peak to a lower temperature. Organic matter alteration or removal of components containing O-bearing groups may explain this. It is also suggested that destruction of the mineral matrix may lead to the reduced retention of the material. For the change of the CO2/CO pyrograms of the RC fraction only organic matter alteration seems to be likely. Concentrated organic matter samples may also accelerate the release of exothermic energy and influence the pyrograms. Results indicate that the organic matter concentration in the sample influences the measured total organic matter (TOM) content and the Tmax of the FID pyrogram, while the sample loading (absolute organic matter amount) up to 80 mg in the Rock–Eval apparatus does not. The FID pyrograms can be deconvoluted into four subpeaks, which allows comparison of samples at various depths. Rock–Eval pyrolysis may only be routinely applied to characterize SOM in aquifer sediments when such systematic and analytical phenomena are taken into account.  相似文献   

8.
The Mozambique Belt (MB) of the East Africa Orogen contains large areas of granulite-facies migmatitic gneisses with Archaean and Palaeoproterozoic protolith ages and that were recycled during the Neoproterozoic Pan-African orogeny. The study area is situated along the Great Ruaha River and within the Mikumi National Park in central Tanzania where migmatitic gneisses and mafic to intermediate granulites are interlayered with Neoproterozoic granulite-facies migmatitic metapelites. Mineral textures suggest isothermal decompression, with the peak mineral assemblage comprising Grt–Bt–Ky–Kfs–Pl–Qtz ± Phn ± Ti-Oxide ± melt and amphibolite-facies retrograde assemblage Grt–Bt–Sil–Ms–Kfs–Pl–Qtz ± Fe–Ti-Oxide. The near isothermal retrograde overprint is seen in well-developed formation of pseudomorphs after garnet. The HP granulite-facies assemblages record PT conditions of 13–14 kbar at 760–800 °C. Retrogression and the release of fluids from crystallizing melts occurred at 7 kbar and 650–700 °C. A fluid inclusion study shows three types of fluid inclusion consisting of nearly pure CO2, as well as H2O–NaCl and H2O–CO2 mixtures. We suggest that a immiscible CO2-bearing brine represents the fluid composition during high-grade peak metamorphism, and that the fluid inclusions containing H2O–NaCl or nearly pure CO2 represent trapped fluids from in situ crystallised melt. The results suggest strong isothermal decompression, which is probably related to a fast exhumation after crustal thickening in the central part of the Mozambique Belt in Tanzania.  相似文献   

9.
14C measurements of CH4 in environmental samples (e.g. soil gas, lake water, gas hydrates) can advance understanding of C cycling in terrestrial and marine systems. The measurements are particularly useful for detecting the release of old C from climate sensitive environments such as peatlands and hydrate fields. However, because 14C CH4 measurements tend to be complex and time consuming, they are uncommon. Here, we describe a novel vacuum line system for the preparation of CH4 and CO2 from environmental samples for 14C analysis using accelerator mass spectrometry (AMS). The vacuum line is a flow-through system that allows rapid preparation of samples (1 h for CH4 and CO2, 30 min for CH4 alone), complete separation of CH4 and CO2 and is an easy addition to multipurpose CO2 vacuum lines already in use. We evaluated the line using CH4 and CO2 standards with different 14C content. For CH4 and CO2, respectively, the total line blank was 0.4 ± 0.2 and 1.4 ± 0.6 μg C, the 14C background 51.1 ± 1.2 and 48.4 ± 1.5 kyr and the precision (based on pooled standard deviation) 0.9‰ and 1.3‰. The line was designed for sample volumes of ca. 180 ml containing 0.5–1% CH4 and CO2, but can be adjusted to handle lower concentration and larger volume samples. This rapid and convenient method for the preparation of CH4 and CO2 in environmental samples for 14C AMS analysis should provide more opportunities for the use of 14C CH4 measurements in C cycle studies.  相似文献   

10.
杨会  蓝高勇  唐伟  吴夏  应启和  王华 《中国岩溶》2018,37(1):154-158
放射性同位素14C测年技术广泛应用于第四纪地质学、考古学、海洋学和古气候等学科。常规14C测年,是采用β衰变低本底液体闪烁计数仪记录一定时间间隔内一定量样品中14C原子衰变数目的方法,由于仪器操作简单、方便,在不受样品量限制的情况下,测试的精度能够满足测年的要求。14C测年液闪法样品制样前处理系统主要在真空玻璃系统中完成,但真空玻璃系统容易出现破碎、断裂,每个实验室需要配备专门的玻璃焊接师傅维护和维修真空玻璃系统,制约着14C测年技术的发展。文章探讨了常规14C制样系统的升级改造,建立了一套金属系统、不用玻璃焊接,无油污染、安装方便、拆卸灵活的常规14C测年样品制备系统,该套系统解决了常规14C发展中遇到的难点问题,使得常规14C测年技术得到更好的推广和应用。   相似文献   

11.
The 1.27 Ga old Ivigtut (Ivittuut) intrusion in South Greenland is world-famous for its hydrothermal cryolite deposit [Na3AlF6] situated within a strongly metasomatised A-type granite stock. This detailed fluid inclusion study characterises the fluid present during the formation of the cryolite deposit and thermodynamic modelling allows to constrain its formation conditions.Microthermometry revealed three different types of inclusions: (1) pure CO2, (2) aqueous-carbonic and (3) saline-aqueous inclusions. Melting temperatures range between − 23 and − 15 °C for type 2 and from − 15 to − 10 °C for type 3 inclusions. Most inclusions homogenise between 110 and 150 °C into the liquid.Stable isotope compositions of CO2 and H2O were measured from crushed inclusions in quartz, cryolite, fluorite and siderite. The δ13C values of about − 5‰ PDB are typical of mantle-derived magmas. The differences between δ18O of CO2 (+ 21 to + 42‰ VSMOW) and δ18O of H2O (− 1 to − 21.7‰ VSMOW) suggest low-temperature isotope exchange. δD (H2O) ranges from − 19 to − 144‰ VSMOW. The isotopic composition of inclusion water closely follows the meteoric water line and is comparable to Canadian Shield brines. Ion chromatography revealed the fluid's predominance in Na, Cl and F. Cl/Br ratios range between 56 and 110 and may imply intensive fluid–rock interaction with the host granite.Isochores deduced from microthermometry in conjunction with estimates for the solidification of the Ivigtut granite suggest a formation pressure of approximately 1–1.5 kbar for the fluid inclusions. Formation temperatures of different types of fluid inclusions vary between 100 and 400 °C. Thermodynamic modelling of phase assemblages and the extraordinary high concentration in F (and Na) may indicate that the cryolite body and its associated fluid inclusions could have formed during the continuous transition from a volatile-rich melt to a solute-rich fluid.  相似文献   

12.
Tin-polymetallic greisen-type deposits in the Itu Rapakivi Province and Rondônia Tin Province, Brazil are associated with late-stage rapakivi fluorine-rich peraluminous alkali-feldspar granites. These granites contain topaz and/or muscovite or zinnwaldite and have geochemical characteristics comparable to the low-P sub-type topaz-bearing granites. Stockworks and veins are common in Oriente Novo (Rondônia Tin Province) and Correas (Itu Rapakivi Province) deposits, but in the Santa Bárbara deposit (Rondônia Tin Province) a preserved cupola with associated bed-like greisen is predominant. The contrasting mineralization styles reflect different depths of formation, spatial relationship to tin granites, and different wall rock/fluid proportions. The deposits contain a similar rare-metal suite that includes Sn (±W, ±Ta, ±Nb), and base-metal suite (Zn–Cu–Pb) is present only in Correas deposit. The early fluid inclusions of the Correas and Oriente Novo deposits are (1) low to moderate-salinity (0–19 wt.% NaCl eq.) CO2-bearing aqueous fluids homogenizing at 245–450 °C, and (2) aqueous solutions with low CO2, low to moderate salinity (0–14 wt.% NaCl eq.), which homogenize between 100 and 340 °C. In the Santa Bárbara deposit, the early inclusions are represented by (1) low-salinity (5–12 wt.% NaCl eq.) aqueous fluids with variable CO2 contents, homogenizing at 340 to 390 °C, and (2) low-salinity (0–3 wt.% NaCl eq.) aqueous fluid inclusions, which homogenize at 320–380 °C. Cassiterite, wolframite, columbite–tantalite, scheelite, and sulfide assemblages accompany these fluids. The late fluid in the Oriente Novo and Correas deposit was a low-salinity (0–6 wt.% NaCl eq.) CO2-free aqueous solution, which homogenizes at (100–260 °C) and characterizes the sulfide–fluorite–sericite association in the Correas deposit. The late fluid in the Santa Bárbara deposit has lower salinity (0–3 wt.% NaCl eq.) and characterizes the late-barren-quartz, muscovite and kaolinite veins. Oxygen isotope thermometry coupled with fluid inclusion data suggest hydrothermal activity at 240–450 °C, and 1.0–2.6 kbar fluid pressure at Correas and Oriente Novo. The hydrogen isotope composition of breccia-greisen, stockwork, and vein fluids (δ18Oquartz from 9.9‰ to 10.9‰, δDH2O from 4.13‰ to 6.95‰) is consistent with a fluid that was in equilibrium with granite at temperatures from 450 to 240 °C. In the Santa Bárbara deposit, the inferred temperatures for quartz-pods and bed-like greisens are much higher (570 and 500 °C, respectively), and that for the cassiterite-quartz-veins is 415 °C. The oxygen and hydrogen isotope composition of greisen and quartz-pods fluids (δ18Oqtz-H2O=5.5–6.1‰) indicate that the fluid equilibrated with the albite granite, consistent with a magmatic origin. The values for mica (δ18Omica-H2O=3.3–9.8‰) suggest mixing with meteoric water. Late muscovite veins (δ18Oqtz-H2O=−6.4‰) and late quartz (δ18Omica-H2O=−3.8‰) indicate involvement of a meteoric fluid. Overall, the stable isotope and fluid inclusion data imply three fluid types: (1) an early orthomagmatic fluid, which equilibrated with granite; (2) a mixed orthomagmatic-meteoric fluid; and (3) a late hydrothermal meteoric fluid. The first two were responsible for cassiterite, wolframite, and minor columbite–tantalite precipitation. Change in the redox conditions related to mixing of magmatic and meteoric fluids favored important sulfide mineralization in the Correas deposit.  相似文献   

13.
The Rushan gold deposit in the Jiaodong Peninsula is currently the largest lode gold in China. Gold occurs mainly in pyrite- and polymetallic sulfide–quartz vein/veinlet stockworks. Fluid inclusions in the deposit are divided into three main types, namely CO2–H2O, H2O–CO2 ± CH4 and aqueous ones. Microthermometric data show that the pre-gold fluids were CO2-dominant (XCO2 up to 0.53), and the total homogenization temperatures fall in the range of 298377 °C. These fluids, modified by fluid/wallrock reactions, gradually evolved into fluids with less CO2 (XCO2 = 0.010.19) in the main ore-forming stage, and the total homogenization temperatures range from 170 to 324 °C. Hydrogen and oxygen stable isotope data suggest that ore-forming fluids were mixture of magmatic and meteoritic origin. Co-occurrence of gold and sulfides implies that gold was most likely transported in the form of gold–sulfide complexes. The wide distribution of CO2 inclusions means that the pH variation during gold transportation was controlled by CO2 buffering.  相似文献   

14.
Two samples of Pliocene lignites from the Ptolemais basin of Greece, one from the upper and one from the lower lignite seams, were heated and dried in air at 50°C intervals from 50 to 1200°C. The two lignite samples initially contained the same minerals, namely calcite, dolomite, quartz, kaolinite, illite, pyrite and gypsum, but in different proportions. The lignite sample from the upper lignite seam is rich in Fe2O3, CaO and SO3, while that from the lower lignite seam is rich in SiO2 and Al2O3.Hematite, periclase, melilites, calcium ferrite and brownmillerite are constituents of the 1200°C lignite ash from both samples. The heating conditions and the chemistry of the samples lowered the formation temperatures of brownmillerite, which appeared in both samples at 950°C. In the Fe2O3, CaO- and SO3-rich sample, magnesioferrite is present from 850 to 1100°C and hematite appears at 300°C. In the SiO2- and Al2O3-rich sample, magnesioferrite was not detected at any temperature and hematite appeared at 600°C.Anhydrite, which normally decomposes in air at 1638°C, is the main constituent at 1150°C, on heating the lignite sample that was rich in Fe2O3, CaO and SO3. Anhydrite diminishes at 1200°C. In the SiO2- and Al2O3-rich lignite sample, anhydrite is main constituent at 1100°C, but diminishes considerably at 1150°C and decomposes at 1200°C.  相似文献   

15.
Cleats and fractures in southwestern Indiana coal seams are often filled with authigenic kaolinite and/or calcite. Carbon- and oxygen-stable isotope ratios of kaolinite, calcite, and coalbed CO2 were evaluated in combination with measured values and published estimates of δ18O of coalbed paleowaters that had been present at the time of mineralization. δ18Omineral and δ18Owater values jointly constrain the paleotemperature of mineralization. The isotopic evidence and the thermal and tectonic history of this part of the Illinois Basin led to the conclusion that maximum burial and heat-sterilization of coal seams approximately 272 Ma ago was followed by advective heat redistribution and concurrent precipitation of kaolinite in cleats at a burial depth of < 1600 m at  78 ± 5 °C. Post-Paleozoic uplift, the development of a second generation of cleats, and subsequent precipitation of calcite occurred at shallower burial depth between  500 to  1300 m at a lower temperature of 43 ± 6 °C. The available paleowater in coalbeds was likely ocean water and/or tropical meteoric water with a δ18Owater  − 1.25‰ versus VSMOW. Inoculation of coalbeds with methanogenic CO2-reducing microbes occurred at an even later time, because modern microbially influenced 13C-enriched coalbed CO2 (i.e., the isotopically fractionated residue of microbial CO2 reduction) is out of isotopic equilibrium with 13C-depleted calcite in cleats.  相似文献   

16.
A large suite of natural gases (93) from the North West Shelf and Gippsland and Otway Basins in Australia have been characterised chemically and isotopically resulting in the elucidation of two types of gases. About 26% of these gases have anomalous stable carbon isotope compositions in the C1–C4 hydrocarbons and CO2 components, and are interpreted to have a secondary biogenic history. The characteristics include unusually large isotopic separations between successive n-alkane homologues (up to +29‰ PDB) and isotopically heavy CO2 (up to +19.5‰ PDB). Irrespective of geographic location, these anomalous gases are from the shallower accumulations (600–1700 m) where temperatures are lower than 75°C. The secondary biogenic gases are readily distinguishable from thermogenic gases (74% of this sample suite), which should assist in the appraisal of hydrocarbons during exploration where hydrocarbon accumulations are under 2000 m. While dissolution effects may have contributed to the high 13C enrichment of the CO2 component in the secondary biogenic gases, the primary signature of this CO2 is attributed to biochemical fractionation associated with anaerobic degradation and methanogenesis. Correlation between biodegraded oils and biodegraded “dry” gas supports the concept that gas is formed from the bacterial destruction of oil, resulting in “secondary biogenic gas”. Furthermore, the prominence of methanogenic CO2 in these types of accumulations along with some isotopically-depleted methane provides evidence that the processes of methanogenesis and oil biodegradation are linked. It is further proposed that biodegradation of oil proceeds via a complex anaerobic coupling that is integral to and supports methanogenesis.  相似文献   

17.
“Hard” carbon-based Pennsylvania anthracite was deformed in the steady-state at high temperatures and pressures in a series of coaxial and simple shear experiments designed to constrain the role of shear strain and strain energy in the graphitization process. Graphitization did not occur in coaxially deformed anthracite. Nonetheless, dramatic molecular ordering occurs at T 700°C, with average bireflectance values (%) increasing from 1.68 at 700°C to 6.36 at 900°C. Romin is lowest and bireflectance is highest in zones of high strain (e.g., kink bands) at all temperatures.In anthracite samples deformed in simple shear over the 600°–900°C range at 1.0 GPa, average Romax (%) values increase up to 11.9, whereas average bireflectance (%) values increase up to 10.7. Bireflectance increases with increasing shear strain and locally exceeds 12.5%. Graphitization occurs in several anthracite sample deformed in simple shear at 900°C. X-ray diffraction and transmission electron microscopy confirms the presence of graphite with d002=0.3363 nm. These data strongly suggest that shear strain is the dominant factor responsible for the natural transformation of anthracite to graphite at temperatures far below the 1600°C required for graphitization of other hard carbons in earlier hydrostatic heating experiments at 0.5 GPa pressure.  相似文献   

18.
Electron spin resonance (ESR) is evaluated as a method to study the thermal degradation of sedimentary organic matter which consists mainly of kerogen. Whole rock and separated kerogen samples were pyrolysed stepwise (ambient to 700°C at 50°C increments), extracted and analysed for elemental composition and ESR spectra at each step. Whole rock samples give rise to complex spectra which include those of paramagnetic metals and are therefore unsuitable in most cases for this purpose.The ESR parameters g value, ΔH and Ng differ for different types of immature organic matter. An increase in Ng,shift of g value to 2.0026–2.0028 and reduction in h are the main trends during pyrolysis and in natural heating of sedimentary organic matter.The peak generations of liquid and gaseous hydrocarbons coincide with maxima of free radical density. ESR spectroscopy in combination with complementary geochemical characterization of the sedimentary organic matter can serve to indicate maturity with respect to peak oil-gas generation.  相似文献   

19.
A. Proyer  E. Mposkos  I. Baziotis  G. Hoinkes 《Lithos》2008,104(1-4):119-130
Four different types of parageneses of the minerals calcite, dolomite, diopside, forsterite, spinel, amphibole (pargasite), (Ti–)clinohumite and phlogopite were observed in calcite–dolomite marbles collected in the Kimi-Complex of the Rhodope Metamorphic Province (RMP). The presence of former aragonite can be inferred from carbonate inclusions, which, in combination with an analysis of phase relations in the simplified system CaO–MgO–Al2O3–SiO2–CO2 (CMAS–CO2) show that the mineral assemblages preserved in these marbles most likely equilibrated at the aragonite–calcite transition, slightly below the coesite stability field, at ca. 720 °C, 25 kbar and aCO2 ~ 0.01. The thermodynamic model predicts that no matter what activity of CO2, garnet has to be present in aluminous calcite–dolomite-marble at UHP conditions.  相似文献   

20.
The prevailing theory for the formation of trona [Na3(CO3)(HCO3) · 2(H2O)] relies on evaporative concentration of water produced by silicate hydrolysis of volcanic rock or volcaniclastic sediments. Given the abundance of closed drainage basins dominated by volcanics, it is puzzling that there are so few trona deposits and present-day lakes that would yield dominantly Na–CO3 minerals upon evaporation. Groundwater in the San Bernardino Basin (southeastern Arizona, USA and northeastern Sonora, Mexico) would yield mainly Na–CO3 minerals upon evaporation, but waters in the surrounding basins would not. Analysis of the chemical evolution of this groundwater shows that the critical difference from the surrounding basins is not lithology, but the injection of magmatic CO2. Many major deposits of trona and Na–CO3-type lakes appear to have had “excess” CO2 input, either from magmatic sources or from the decay of organic matter. It is proposed that, along with the presence of volcanics, addition of “excess” CO2 is an important pre-condition for the formation of trona deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号