首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
简述了深度基准面的概念,分析了海图深度基准面不统一造成的误差及其形成原因。针对海图深度基准面的使用现状,探讨了深度基准面不统一对海洋测绘成果应用的影响,提出了统一海图深度基准面的方案和建议。  相似文献   

2.
基于神经网络响应面的结构可靠性分析方法研究   总被引:19,自引:1,他引:19  
针对二次多项式响应面法存在的缺点 ,建立了神经网络响应面 ,进而提出了基于神经网络响应面的结构可靠性分析方法。通过多种数值试验表明 ,神经网络响应面可以快速、精确地拟合结构的极限状态函数 ,为结构的系统可靠性分析开辟了新的途径  相似文献   

3.
由于预载下土体固结,海底浅基础的承载力会随作业时间的增加而改变,其时变效应评估困难。基于修正剑桥模型,采用水土耦合有限元方法研究了预载作用下浅基础在正常固结黏土海床中承载力破坏包络面的时变规律。在验证数值模型准确性后,通过位移探针测试获取复合加载模式下浅基础的破坏包络面,揭示了预载和固结程度对基础承载力和破坏包络面的影响,给出了预载作用下浅基础承载力包络面计算方法。结果表明:随着预载比增加,固结单轴承载力呈现线性增长,固结承载力增幅在水平向最大;部分固结承载力相对增幅与预载比无关,而随固结度变化;破坏包络面形状由预载比控制,而包络面大小由预载比和固结度共同控制。研究结果可为海洋浅基础的时变承载力评估提供参考依据。  相似文献   

4.
波浪引起的海床不稳定性是海洋工程中需要考虑的重要问题。在对现有波致海床滑动稳定性计算方法进行分析的基础上,提出了一种波致海床滑动稳定性计算的全应力状态法,将其与现有计算方法进行了对比分析,并进一步研究了波致砂土海床和软土海床的滑动失稳特征。结果分析表明,全应力状态法在波致海床滑动稳定性分析中具有较好的适用性。对于砂土海床,其滑动稳定性受饱和度的影响较大,且当海床计算厚度约为0.2倍波长时对应的滑动深度最大。波浪作用下坡度不超过2°的均质软土海床,其最危险滑动面的位置仅与波长有关,其滑动深度约为0.21倍波长,滑动面半弦长约为0.33倍波长;海床表面的波压力数值只影响其安全系数的大小,而不影响其滑动深度。  相似文献   

5.
自升式平台插桩是地基土在桩靴荷载作用下发生连续塑性破坏的过程,当地基极限承载力等于桩靴荷载时插桩完成。经典土力学极限承载力理论对土体潜在滑动面做了假设,无法有效分析土体内部的破坏过程。因而,研究采用有限元极限分析法对单一地层中插桩时地基土渐进破坏过程进行了模拟,并与Skempton、Terzaghi公式计算的极限承载力进行了对比,取得了较为一致的结果,同时对插桩深度进行了预测。  相似文献   

6.
波致海底缓倾角无限坡滑动稳定性计算分析探讨   总被引:1,自引:1,他引:0  
波浪作用下海底无限坡滑动稳定性计算的极限平衡法中,忽略了坡体水平向应力状态的影响,为此,针对波浪作用下海底缓倾角无限边坡的特点,提出直接基于滑动面处土体应力状态的滑动稳定性计算方法(简称应力状态法),并分析了其适用范围。对具体算例的分析表明,应力状态法计算得出的安全系数大于极限平衡法的安全系数,且随着滑动面深度的增加、土体泊松比以及边坡坡角的增大,两种计算方法得出的安全系数的差异会逐渐增大;对于波浪作用下的海底缓倾角无限边坡,在失稳时极可能沿具有一定厚度的滑动带而不是单一的滑动面而滑动,且波致最大剪应力所在的深度,常常不是斜坡体最易失稳滑移的深度。  相似文献   

7.
基于海水热力学局域平衡的假定及Feistel(2003,2005)给出的海水Gibbs热力学势函数表达式,利用全球海洋观测数据,计算了全球海洋网格域的比熵、位温、位密等热力学参数,分析了海水比熵的时-空分布格局及其与位温、位密以及中性面之间的关系。分析结果表明,海洋中的比熵与位温之间具有确定的解析关系,而海洋中的比熵与位密、中性面之间的分布则无明显的一致性;这一结论为文章进一步导出海洋内部近似稳态大尺度地转环流在等熵面上的流函数,证明等熵面与等密面的交线即物理海洋学上经典的动力计算方法中的Montgomery流函数,进而为海洋内部的准地转运动的等熵-等密分析提供了新的热力-动力学依据。  相似文献   

8.
深度基准面的确定是进行海洋测量的基础,准确确定深度基准面是进行海洋测量的有效前提。提出了一种将CORS技术与验潮组网技术进行结合的新传递深度基准面的方法,实现长、短期验潮站同步验潮实现深度基准面的增强传递;提出了采用半参数模型理论来求取潮差比的计算方法;具体阐述了验潮组网通过间接平差求取短期验潮站的深度基准面的计算方法,减少了验潮测量的人力投入,计算潮差比时考虑了系统误差的影响,计算短期验潮站时考虑了观测误差对深度基准面传递的影响。  相似文献   

9.
自升式钻井平台插桩是地基土在桩靴荷载作用下发生连续的塑性破坏的动态过程,当地基极限承载力等于桩靴荷载时插桩完成。经典土力学极限承载力理论对土体潜在滑动面做了假设,无法有效分析土体内部的破坏过程。本研究应用有限元法(FEM )对插桩过程进行了模拟,得到地基土的破坏机制以及中间荷载下土体的应力、应变情况,通过和各理论公式计算的极限承载力进行对比分析,分析影响地基极限承载力的因素。研究表明,基础宽度与硬土层厚度的比值 B/H越大,下卧软土层越容易发生塑性破坏,极限承载力明显下降,当B/H<0.286时,可以忽略下卧软土层对地基承载力的影响。  相似文献   

10.
为了解决海底趋势面的构造问题,提出了利用最小二乘支持向量机(LS-SVM)重构海底趋势面的方法,并将该方法与趋势面滤波方法进行了分析和比较,同时利用定理证明,趋势面滤波所构造的趋势面只是LS-SVM取特定参数时的解。通过实测算例表明,在构造海底趋势面的过程中,可以通过调整LS-SVM的参数,使其构造的趋势面具有更好的适用性及稳定性,更能反应海底地形的实际情况。  相似文献   

11.
Laboratory model test results for the uplift of a shallow circular plate anchor embedded in a soft saturated clay are presented. For all tests the bottom of the anchor plate was vented to eliminate the mud suction force. The tests were divided into two categories: (1) short‐term tests to determine the variation of the net ultimate uplift capacity and hence the breakout factor with embedment ratio, and (2) creep tests with sustained uplift loads at varying embedment ratios. Based on the model test results, the variation with time, has been determined for the rate of strain of the soil located above the plate anchor. Empirical relationships for obtaining the rate of anchor uplift have been proposed.  相似文献   

12.
Uplift response of symmetrical anchor plates with and without grid fixed reinforced (GFR) reinforcement was evaluated in model tests and numerical simulations by Plaxis. Many variations of reinforcement layers were used to reinforce the sandy soil over symmetrical anchor plates. In the current research, different factors such as relative density of sand, embedment ratios, and various GFR parameters including size, number of layers, and the proximity of the layer to the symmetrical anchor plate were investigated in a scale model. The failure mechanism and the associated rupture surface were observed and evaluated. GFR, a tied up system made of fiber reinforcement polymer (FRP) strips and end balls, was connected to the geosynthetic material and anchored into the soil. Test results showed that using GFR reinforcement significantly improved the uplift capacity of anchor plates. It was found that the inclusion of one layer of GFR, which rested directly on the top of the anchor plate, was more effective in enhancing the anchor capacity itself than other methods. It was found that by including GFR the uplift response was improved by 29%. Multi layers of GFR proved more effective in enhancing the uplift capacity than a single GFR reinforcement. This is due to the additional anchorage provided by the GFR at each level of reinforcement. In general, the results show that the uplift capacity of symmetrical anchor plates in loose and dense sand can be significantly increased by the inclusion of GFR. It was also observed that the inclusion of GFR reduced the requirement for a large L/D ratio to achieve the required uplift capacity. The laboratory and numerical analysis results are found to be in agreement in terms of breakout factor and failure mechanism pattern.  相似文献   

13.
Based on mesh regeneration and stress interpolation from an old mesh to a new one, a large deformation finite element model is developed for the study of the behaviour of circular plate anchors subjected to uplift loading. For the deterruination of the distributions of stress components across a clay foundation, the Recovery by Equilibrium in Patches is extended to plastic analyses. ABAQUS, a commercial finite element package, is customized and linked into our program so as to keep automatic and efficient running of large deformation calculation. The quality of stress interpolation is testified by evaluations of Tresca stress and nodal reaction forces. The complete pulling-up processes of plate anchors buried in homogeneous clay arc simulated, and typical pulling force-displacement responses of a deep anchor and a shallow anchor are compared. Different from the results of previous studies, large deformation analysis is of the capability of estimating the breakaway between the anchor bottom and soils. For deep anchors, the variation of mobilized uplift resistance with anchor settlement is composed of three stages, and the initial buried depths of anchors affect the separation embedment slightly. The uplift bearing capacity of deep anchors is usually higher than that of shallow anchors.  相似文献   

14.
The results of a number of laboratory model tests for the short‐term ultimate uplift capacity of a circular plate anchor embedded in saturated soft kaolinite and montmorillonite are presented. The tests were conducted with and without venting the bottom of the plate anchor in order to determine the variation of the suction force with embedment ratio. The variation of the suction force is presented in terms of the undrained shear strength of the clay and also the net ultimate uplift capacity.  相似文献   

15.
The uplift behavior of a plate anchor in a structured clay (soft Ariake clay) is investigated through a series of laboratory tests and method of finite element analysis. The tests are adopted to identify the factors influencing the behavior of the anchor, including the thixotropic nature of Ariake clay, consolidation time, and embedment ratio of the anchor. A finite element method (FEM) is used to analyze and predict the uplift behavior of the anchor plate well in the elastic region and the yield load. The results from both the laboratory tests and the FEM analysis suggest that the embedment ratio for a deep anchor in Ariake clay is close to 4. Further increase in embedment ratio improves the capacity to a lesser extent. FEM overestimates the failure load of the uplift anchor in soft Ariake clay by about 20%. This may be ascribed to the hypothesis in the FEM analysis that there is continuous contact between the clay and the anchor until failure. Vesic’s theory for deep anchors, which may be used to predict the ultimate pullout resistance of the plate anchor in reconstituted Ariake clay, is verified to be applicable. In this paper, the plastic flow zone around the anchor is discussed using FEM which makes the behavior of anchor more understandable during the design stage.  相似文献   

16.
重力锚锚固是一种常见的锚固形式。为了能够提供足够的水平承载力,传统型式的重力锚普遍比较笨重,在上拔回收时会产生较大的竖向吸附力,不利于重复利用。针对此问题,设计了一种新型铰接式重力锚,并阐述了其铺设与回收方案。其次采用有限元方法对其整体强度进行了校核,结果均符合规范。最后基于模型试验,对铰接式重力锚在黏土中的运动过程进行了研究,进而确定了其在黏土中的水平承载力和回收时的上拔力。结果表明:相较于传统重力锚,新型铰接式重力锚在确保水平承载性能的基础上,能够大幅减小上拔力,从而有效地降低铺设和回收作业的难度,且可适应多种海底土质,但该锚型仅适用于悬链线式系泊系统。相关研究结果可为实际工程中铰接式重力锚的设计提供参考。  相似文献   

17.
ABSTRACT

The OMNI-Max anchors are newly developed dynamically installed anchors for deep water mooring systems. After installation, the anchor is keyed to a new orientation and position by tensing the attached mooring chain, which is known as the “keying process”. This study conducted 1g model tests to study the trajectories and capacity developments of OMNI-Max anchors in homogeneous and lightly overconsolidated (LOC) clays. A testing arrangement was designed to simulate the anchor keying process with a constant pullout angle at the mudline. A half model anchor which could move against the box glass was used to determine the anchor trajectory in the soil. The effects of padeye offset angle, uplift angle at the mudline, anchor fluke thickness, anchor initial embedment depth, and soil strength on the anchor trajectory and capacity were systematically investigated. Moreover, the critical uplift angle at the padeye and the anchor critical initial embedment depth were discussed. The results indicate that the anchor can dive both in homogeneous and LOC clays under certain conditions. A padeye offset angle of 24–30° is recommended for the OMNI-Max anchor to maintain high capacity and diving trend simultaneously. Besides, the anchor diving trend can be improved with small uplift angles at the mudline and with thick anchor flukes. A critical initial embedment depth of 1.3 times the anchor length is recommended to preclude the anchor from being pulled out.  相似文献   

18.
Numerical solutions have been obtained for the vertical uplift capacity of strip plate anchors embedded adjacent to sloping ground in fully cohesive soil under undrained condition. The analysis was performed using finite element lower bound limit analysis with second-order conic optimization technique. The effect of anchor edge distance from the crest of slope, angle and height of slope, normalized overburden pressure due to soil self-weight, and embedded depth of anchor on the uplift capacity has been examined. A nondimensional uplift factor defined as F owing to the combined contribution of soil cohesion (cu), and soil unit weight (γ) is used for expressing the uplift capacity. For an anchor buried near to a sloping ground, the ultimate uplift capacity is dependent on either pullout failure of anchor or overall slope failure. The magnitude of F has been found to increase with an increase in the normalized overburden pressure up to a certain maximum value, beyond which either the behavior of anchor transfers from shallow to deep anchor or overall slope failure occurs.  相似文献   

19.
Anchors in sand bed: delineation of rupture surface   总被引:4,自引:0,他引:4  
Anchors of very large uplift capacities are required to support offshore structures at great water depths. The capacities of plate and mushroom type anchors are generally estimated based on the shape of rupture surface. An attempt has been made in the present investigation to delineate the rupture surfaces of anchors embedded in submerged and dry sand beds at various depths. The results exhibited two different modes of failure depending on the embedment ratio, namely, shallow and deep anchor behaviour. The load–displacement curves exhibited three- and two-phase behaviours for shallow and deep anchors, respectively. Negative pore water pressures recorded in submerged sand also exhibited variation similar to that of pullout load versus anchor displacement.  相似文献   

20.
Mooring systems typically consist of an anchor and a mooring line and chain that connect the anchor to the floating infrastructure. When the anchor connection point (the ‘padeye’) is below the seabed surface, the interaction between the chain and the seabed will affect the amount of load transferred to the anchor and the load angle at the padeye. Reliable methods are needed therefore to assess these aspects in order to determine appropriate anchor design.Available solutions for the interaction between soil and chain generally ignore any reduction in the undrained shear strength of the soil as it is remoulded under the large strains associated with tensioning of the anchor chain. This is an unconservative assumption for anchor design, hence providing motivation for the study presented here. The system behaviour and the interaction of short chain segments with the seabed have been studied using a coupled Eulerian-Lagrangian (CEL) approach. The findings have led to two new design approaches that encapsulate how remoulding of the soil (which affects sliding resistance more than bearing resistance) affects the chain system response. Calculations using these methods captured the modelled chain system response well. Both the global chain analyses and the proposed design approaches suggest that approximately the entire chain load at the seabed surface (the ‘mudline’) is likely to be transferred to the anchor padeye, challenging conventional design practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号