首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文采用耗能减震技术,根据建筑结构抗震规范规定的反应谱法,利用CTAB程序对云南省洱源县振戎中学食堂进行了抗震计算分析和设计验算.首先对未加耗能减震装置的空框架结构进行了小震下的位移和强度验算以及大震下的位移验算;其次,介绍了本工程选用的T字芯板摩擦耗能器的工作原理,并对耗能器进行了足尺性能试验;第三,根据工程结构的环境特点和建筑使用功能要求,确定了耗能减震方案;最后,对耗能减震结构进行了抗震验算和分析,结果表明,附加耗能器后的工程结构抗震性能得到了明显改善.  相似文献   

2.
振戎中学食堂楼耗能减震分析与设计(Ⅰ)-反应谱法   总被引:2,自引:0,他引:2  
本文采用耗能减震技术,根据建筑结构抗震规范规定的反应谱法,利用CTAB程序对云南省洱源县振戎中学食堂进行了抗震计算分析和设计验算。首先对未加耗能减震装置的空框架结构进行了小震下的位移和强度验算以及大震下的位移验算;其次,介绍了本工程选用的T字芯板摩擦耗能器的工作原理,并对耗能器进行了足尺性能试验;第三,根据工程结构的环境特点和建筑使用功能要求,确定了耗能减震方案;最后,对耗能减震结构进行了抗震验算和分析,结果表明,附加耗能器后的工程结构抗震性能得到了明显改善。  相似文献   

3.
This paper describes a new seismic protection system for timber platform frame buildings, either for new construction or retrofit. The system consists in connecting the timber frame to a steel structure that includes hysteretic energy dissipators designed to absorb most of the seismic input energy thus protecting the timber frame and the other steel members; alternatively, the system might use other types of dissipative devices. The steel structure consists of four steel stacks (located at each of the four façades) and steel collectors embracing each slab; the stacks and the collectors are connected, at each floor level, through the energy dissipators. The steel structure is self‐supporting, that is, the timber frame is not affected by horizontal actions and can be designed without accounting for any seismic provision; in turn, the steel members do not participate in the main load‐carrying system. The timber‐steel interface is designed to avoid any stress concentration in the transfer of horizontal forces and to guarantee that the yielding of the dissipators occurs prior to any timber failure. The energy dissipation capacity of the suggested system is discussed, and an application example on a six‐story timber building is presented; this case corresponds to highly demanding conditions because of the relatively large building height and weight, the high local seismicity, and the soft soil condition. This research belongs to a wider project aiming to promote the structural use of timber by improving the seismic capacity of wooden buildings; this research includes experiments and advanced numerical simulation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Multi‐storey main buildings constructed with a low‐rise podium structure possess some architectural merits but the setback features of such a building complex may lead to seismic response enlargement of the main buildings. This paper explores the possibility of using passive friction dampers to connect the podium structure to the main buildings to prevent their seismic response enlargement without violating the architectural features. A series of shaking table tests were carried out on one 3‐storey and one 12‐storey building models in fully‐separated, rigidly connected, and friction damper‐linked configurations. Four sets of seismic ground motions were selected as inputs to the shaking table. The control competence of two buildings linked with friction damper was evaluated by comparison of their responses with those from fully‐separated and rigidly connected cases. Experimental results showed that unfavourable seismic response amplification did occur in the building complex in the rigidly connected case. By contrast, friction damper showed effectiveness in reducing absolute acceleration and interstorey drift responses of both buildings if friction force level was appropriately applied. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a two-dimensional numerical study on the nonlinear seismic response of buildings equipped with two types of energy dissipators: Constant Friction Slip Braces (CFSB) and Adding Damping and Stiffness (ADAS). Three types of reinforced concrete buildings with 3, 7 and 15 storeys, representatives of the short-medium- and long-period ranges, are considered. Dissipators are placed in steel diagonal braces in all the floors. The sliding threshold (or yielding) forces for each mechanism are selected using two different criteria: (i) they are taken as 50, 75 and 100 per cent of those generated by the equivalent static lateral forces recommended by the UBC-91 for a ductile moment resisting frame and (ii) they are constant in the whole building (this constant value is chosen equal to the maximum forces obtained with the previous criterion). The input consists of ten recorded earthquakes (normalized with respect to their Housner intensity) corresponding to medium and stiff local soil conditions. Average values on the ten registers are given for the maximum horizontal displacement, the base shear, the energy dissipated and the interstorey drift. The possibility of failure in some devices has been numerically simulated to assess the robustness of the system. The obtained results show that both devices are useful to reduce the response compared to the bare frame and that CFSB is more efficient than ADAS; for 7- and 15-storey frames the lateral displacement with CFSB is even smaller than the one for the braced frame (rigid connections instead of dissipators). The conclusions are expected to provide simple design guidelines. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
Tuned mass dampers for response control of torsional buildings   总被引:1,自引:0,他引:1  
This paper presents an approach for optimum design of tuned mass dampers for response control of torsional building systems subjected to bi‐directional seismic inputs. Four dampers with fourteen distinct design parameters, installed in pairs along two orthogonal directions, are optimally designed. A genetic algorithm is used to search for the optimum parameter values for the four dampers. This approach is quite versatile as it can be used with different design criteria and definitions of seismic inputs. It usually provides a globally optimum solution. Several optimal design criteria, expressed in terms of performance functions that depend on the structural response, are used. Several sets of numerical results for a torsional system excited by random and response spectrum models of seismic inputs are presented to show the effectiveness of the optimum designs in reducing the system response. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
This paper deals with the optimal design of yielding metallic dampers and friction dampers together as they both have similar design characteristics and parameters. Ample tests and analytical studies have confirmed the effectiveness of these energy dissipation devices for seismic response control and protection of building structures. Since these devices are strongly non‐linear with several parameters controlling their behaviour, their current design procedures are usually cumbersome and not optimal. In this paper, a methodology is presented to determine the optimal design parameters for the devices installed at different locations in a building for a desired performance objective. For a yielding metallic damper, the design parameters of interest are the device yield level, device stiffness, and brace stiffness. For a friction device, the parameters are the slip load level and brace stiffness. Since the devices and the structures installed with these devices behave in a highly non‐linearly manner, and thus must be evaluated by a step‐by‐step time history approach, the genetic algorithm is used to obtain the globally optimal solution. This optimal search approach allows an unusual flexibility in the choice of performance objectives. For demonstration purposes, several sets of numerical examples of optimal damper designs with different performance objectives are presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The paper deals with the seismic reliability of elastic structural systems equipped with friction pendulum isolators (friction pendulum system). The behavior of these systems is analyzed by employing a two‐degree‐of‐freedom model accounting for the superstructure flexibility, whereas the friction pendulum system device behavior is described by adopting a widespread model that considers the variation of the friction coefficient with the velocity. With reference to medium soil condition, the uncertainty in the seismic inputs is taken into account by considering a set of artificial records, obtained through Monte Carlo simulations within the power spectral density method, with different frequency contents and characteristics depending on the soil dynamic parameters and scaled to increasing intensity levels. The sliding friction coefficient at large velocity is also considered as random variable modeled through a uniform probability density function. Incremental dynamic analyses are developed in order to evaluate the probabilities exceeding different limit states related to both r.c. superstructure and isolation level defining the seismic fragility curves through an extensive parametric study carried out for different structural system properties. Finally, considering the seismic hazard curves related to a site near L'Aquila (Italy), the seismic reliability of the r.c. superstructure systems is evaluated, and seismic reliability‐based design abacuses are derived with the aim to define the radius in plan of the friction pendulum devices in function of the structural properties and reliability level expected. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Probabilistic risk analysis is an effective tool for risk-informed decision-making related to the building facilities. All sources of the uncertainties should be considered in seismic risk assessment framework. Not only the levels of these uncertainties but also the effects on the performance of the buildings should be clearly identified. This paper aims to assess the impacts of the potential uncertainties on the seismic risk of steel frame equipped with steel panel wall (SPWF). Firstly, the performance limits of the SPWF structures are determined according to cyclic test results of two SPWF specimens. Then a validated numerical model of a 12-story SPWF building is modeled and used to perform the nonlinear time-history analysis, and the record-to-record uncertainty is identified by a set of ground motions derived from SAC project. Furthermore, comparisons are made on fragility curves for the building with or without considering the combining uncertainties in structural system, in defining performance limits and modeling technology. Finally, the annual probability and probability in 50 years for each performance limit is calculated and compared. The impacts of such uncertainties on seismic risk of SPWF building are quantified for risk-informed evaluation of the SPWF buildings.  相似文献   

10.
摩擦型与软钢屈服型耗能器的性能与减振效果的试验比较   总被引:20,自引:5,他引:20  
本文通过两类四种百余个耗能器(其中摩擦类型的两种,普遍摩擦型和Pall摩擦型;软钢屈服类型的两种:X钢板和三角钢板屈服型)的静力反复加载和低周疲劳试验,进一步了解这些耗能器的滞回特性和疲劳性能。其次,通过分别安装上述四种耗能器的单层剪切型钢框架模型在输入地震动分别为EICentro、Taft和天津记录等五十余种工况下的振动台试验,较全面地揭示了这些耗能器的减振效果。最后,在试验的基础上较好地建立了  相似文献   

11.
12.
The study of two motion control-based seismic retrofit solutions for a low-rise reinforced concrete school building is presented in this paper. The building was assumed as a benchmark structure for a Research Project financed by the Italian Department of Civil Protection, and is representative of several similar public edifices designed with earlier Technical Standards editions, in Italy as well as in other earthquake-prone European countries. The two solutions refer to the alternative earthquake protection strategies based on the concepts of supplemental damping and seismic isolation, respectively. Namely, they consist in the installation of: (1) a dissipative bracing system incorporating pressurized fluid viscous spring-dampers; and (2) a base isolation system including double friction pendulum sliding bearings. The structural characteristics of the building, and a synthesis of the investigation campaigns developed on it, are initially presented. The mechanical parameters, dimensions, locations and installation details of the constituting elements of the two protective systems are then illustrated, along with the performance assessment analyses carried out in original and rehabilitated conditions according to a full non-linear dynamic approach. The results of the analyses show a remarkable enhancement of the seismic response capacities of the structure for both retrofit hypotheses. This allows reaching the mutual high performance levels postulated in the two rehabilitation designs with remarkably lower costs and architectural intrusion as compared to traditional rehabilitation interventions designed for the same objectives.  相似文献   

13.
This study deals with the seismic fragility of elastic structural systems equipped with single concave sliding (friction pendulum system (FPS)) isolators considering different soil conditions. The behavior of these systems is analyzed by employing a two-degree-of-freedom model, whereas the FPS response is described by means of a velocity-dependent model. The uncertainty in the seismic inputs is taken into account by considering artificial seismic excitations modelled as timemodulated filtered Gaussian white noise random processes of different intensity within the power spectral density method. In particular, the filter parameters, which control the frequency content of the random excitations, are calibrated to describe stiff, medium and soft soil conditions. The sliding friction coefficient at large velocity is also considered as a random variable modelled through a uniform probability density function. Incremental dynamic analyses are developed in order to evaluate the probabilities of exceeding different limit states related to both the reinforced concrete (RC) superstructure and isolation level, defining the seismic fragility curves within an extensive parametric study carried out for different structural system properties and soil conditions. The abovementioned seismic fragility curves are useful to evaluate the seismic reliability of base-isolated elastic systems equipped with FPS and located in any site for any soil condition.  相似文献   

14.
A simplified procedure is proposed to predict the largest peak seismic response of an asymmetric building to horizontal bi-directional ground motion, acting at an arbitrary angle of incidence. The main characteristics of the proposed procedure is as follows. (1) The properties of two independent equivalent single-degree-of-freedom models are determined according to the principal direction of the first modal response in each nonlinear stage, rather than according to the fixed axis based on the mode shape in the elastic stage; the principal direction of the first modal response in each nonlinear stage is determined based on pushover analysis results. (2) The bi-directional horizontal seismic input is simulated as identical spectra of the two horizontal components, and the contribution of each modal response is directly estimated based on the unidirectional response in the principal direction of each. (3) The drift demand at each frame is determined based on four pushover analyses considering the combination of bi-directional excitations. In the numerical example, nonlinear time-history analyses of six four-story torsionally stiff (TS) asymmetric buildings are carried out considering various directions of seismic inputs, and these results are compared with the predicted results. The results show that the proposed procedure satisfactorily predicts the largest peak response displacement at the flexible-side frame of a TS asymmetric building.  相似文献   

15.
Several reinforced concrete frames with different dissipator distributions, and a conventional moment-resisting frame, are compared in order to select the best dissipator distribution from the point of view of seismic response and structural design. The structures with dissipators are designed according to a criterion proposed in the present paper. Each frame is excited with a set of eleven simulated accelerograms. The choice of the best dissipation distribution is based mainly on the differences between the mean of the maximum overturning moments developed at the base of the frames and between the weights of steel reinforcement and concrete resulting from the structural design of each frame. A comparison of initial construction costs of a building with dissipators and a conventional building shows that the former is 3·5 per cent more expensive.  相似文献   

16.
The paper analyzes the influence of friction pendulum system (FPS) isolator properties on the seismic performance of base‐isolated building frames. The behavior of these systems is analyzed by employing a two‐degree‐of‐freedom model accounting for the superstructure flexibility, whereas the FPS isolator behavior is described by adopting a widespread model that considers the variation of the friction coefficient with the velocity. The uncertainty in the seismic input is taken into account by considering a set of natural records with different characteristics scaled to increasing intensity levels. The variation of the statistics of the response parameters relevant to the seismic performance is investigated through the nondimensionalization of the motion equation and an extensive parametric study carried out for different isolator and system properties. The proposed approach allows to explore a wide range of situations while limiting the required nonlinear response history analyses. Two case studies consisting of base‐isolated building frames described as shear‐type systems are finally investigated in order to demonstrate the capabilities of the proposed simplified model in unveiling the essential characteristics of the performance of buildings isolated with FPS bearings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A procedure for assessing the seismic vulnerability of residential buildings is presented along with the results of its application in an Italian town in Abruzzo (Celano Aq). This procedure is part of a methodological proposal which includes specific studies on expected seismic inputs and site effects analyses. The procedure is based on a simplified collection of data, such as typological features and factors concerning the seismic behaviour of buildings, and provides an estimate of seismic vulnerability and an expected damage forecast using fragility curves. The instruments and methods used for the Celano project are an updated and improved version of those applied to previous vulnerability investigations. This paper demonstrates how this procedure can meet the objectives of the integrated methodology proposed. In fact, the information that can be obtained using this procedure—state of vulnerability, risk analyses and GIS presentations of damage scenarios—could be used in urban planning to reduce seismical risk.  相似文献   

18.
This paper presents a 2-D numerical study on the nonlinear seismic response of buildings equipped with two types of energy dissipators, which dissipate energy activating two different mechanisms. Three types of reinforced concrete buildings with 3, 7 and 15 stories, respectively representative of short, medium and long period ranges, are considered. Dissipators are placed on steel diagonal braces at all the floors; their sliding threshold (or yielding) forces are taken as 100% of those generated by the equivalent static lateral forces recommended by EC8 for a ductile moment resisting frame. The input consists of six recorded earthquakes, 3 representatives of near-field earthquakes and 3 representatives of far-field earthquakes. Each input is considered once from the bedrock and once filtered by a common ground with several layers of different thicknesses. The responses of the buildings are discussed and compared emphasizing the filtering effects produced by the ground.  相似文献   

19.
本文对宝鸡职业技术学院图书馆结构进行分析,对此工程的结构方案进行了优化,讨论了大底盘双塔弱连体结构抗震设计中的若干问题。采用基于性能抗震设计方法,计算了连体滑动支座的滑移控制量并根据滑移量设计了适合本工程的滑动支座。采用SATWE及ETABS软件进行计算比较,通过比较,可以看出此工程各项指标良好,结构抗震性能较好。  相似文献   

20.
A roller seismic isolation bearing is proposed for use in highway bridges. The bearing utilizes a rolling mechanism to achieve seismic isolation and has a zero post‐elastic stiffness under horizontal ground motions, a self‐centering capability, and unique friction devices for supplemental energy dissipation. The objectives of this research are to investigate the seismic behavior of the proposed bearing using parametric studies (1) with nonlinear response history analysis and (2) with equivalent linear analysis according to the AASHTO guide specifications, and by comparing the results from both analysis methods (3) to evaluate the accuracy of the AASHTO equivalent linear method for predicting the peak displacement of the proposed bearing during an earthquake. Twenty‐eight ground motions are used in the studies. The parameters examined are the sloping angle of the intermediate plate of the bearing, the amount of friction force for supplemental energy dissipation, and the peak ground acceleration levels of the ground motions. The peak displacement and base shear of the bearing are calculated. Results of the studies show that a larger sloping angle does not reduce the peak displacement for most of the parametric combinations without friction devices. However, for parametric combinations with friction devices, it allows for the use of a higher friction force, which effectively reduces the peak displacement, while keeping a self‐centering capability. The AASHTO equivalent linear method may underestimate the peak displacement by as much as 40%. Vertical ground motions have little effect on the peak displacement, but significantly increase the peak base shear. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号