首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extreme sea-level events (e.g. caused by storm surges) can cause coastal flooding, and considerable disruption and damage. To understand the impacts or hazards expected by different sea levels, waves and defence failures, it is useful to monitor and analyse coastal flood events, including generating numerical simulations of floodplain inundation. Ideally, any such modelling should be calibrated and validated using information recorded during real events, which can also add plausibility to synthetic flood event simulations. However, such data are rarely compiled for coastal floods. This paper demonstrates the capture of such a flood event dataset, and its integration with defence and floodplain modelling to reconstruct, archive and better understand the regional impacts of the event. The case-study event comprised a significant storm surge, high tide and waves in the English Channel on 10 March 2008, which resulted in flooding in at least 37 distinct areas across the Solent, UK (mainly due to overflow and outflanking of defences). The land area flooded may have exceeded 7 km2, with the breaching of a shingle barrier at Selsey contributing to up to 90 % of this area. Whilst sea floods are common in the Solent, this is the first regional dataset on flood extent. The compilation of data for the validation of coastal inundation modelling is discussed, and the implications for the analysis of future coastal flooding threats to population, business and infrastructure in the region.  相似文献   

2.
Catastrophic flooding associated with sea-level rise and change of hurricane patterns has put the northeastern coastal regions of the United States at a greater risk. In this paper, we predict coastal flooding at the east bank of Delaware Bay and analyze the resulting impact on residents and transportation infrastructure. The three-dimensional coastal ocean model FVCOM coupled with a two-dimensional shallow water model is used to simulate hydrodynamic flooding from coastal ocean water with fine-resolution meshes, and a topography-based hydrologic method is applied to estimate inland flooding due to precipitation. The entire flooded areas with a range of storm intensity (i.e., no storm, 10-, and 50-year storm) and sea-level rise (i.e., current, 10-, and 50-year sea level) are thus determined. The populations in the study region in 10 and 50 years are predicted using an economic-demographic model. With the aid of ArcGIS, detailed analysis of affected population and transportation systems including highway networks, railroads, and bridges is presented for all of the flood scenarios. It is concluded that sea-level rise will lead to a substantial increase in vulnerability of residents and transportation infrastructure to storm floods, and such a flood tends to affect more population in Cape May County but more transportation facilities in Cumberland County, New Jersey.  相似文献   

3.
This paper examines flood frequencies in three coastal sectors of Britain and analyses the associated storm tracks and their principal pathways. The results indicate that the east coast of Britain has suffered most floods over the last 200 years. The frequencies of flood incidents in the south and southwest coast of Britain have increased, particularly during the 20th century, whereas on the west coast flood frequencies have declined. Three distinctive pathways of storm track are identified, related to flood incidents in each coastal sector. A southern pathway in a corridor along the 55° N parallel is associated with flood incidents recorded on the south and southwest coast, whilst storms that are associated with floods on the west coast concentrate along the 60° N parallel. The relationship between the frequencies of floods and climatic variations needs to be explored further. However, the development of coastal settlements has certainly increased vulnerability, and hence the risk of flood disasters.  相似文献   

4.
This study investigated contributory factors to flood hazard around Scotland. There is a need to develop preliminary assessments of areas potentially vulnerable to flooding for compliance with the European Union Directive on the Assessment and Management of Flood Risks (2007/60/EC). Historical accounts of coastal flood events in Scotland, notably in a storm in January 2005, had shown that estimates of risk based on still water levels required further information to identify sites at which waves and surges could combine. Additionally, it was important to add the effect of future sea-level rise and other drivers from published sources. Analysis of multiple years’ tidal data at seven sites, including estuaries, compared recorded water levels at high-return periods to those derived from a spatially interpolated numerical model contained within a publicly available flood risk map. For gauges with the longest records, increases were seen over time that reflected rises in mean sea level. Exposure to wave energy was computed from prevailing wind strength and direction at 36 stations, related to wave fetch and incident wind direction. Although the highest wave exposure was at open coast locations exposed to the long Atlantic fetch, GIS analysis of coastal rasters identified other areas in or close to estuaries that also had high exposure. Projected sea-level change, when added to the surge and wave analyses, gives a spatially extensive structured variable flood risk assessment for future coastal flood hazard to complement the public flood risk map. Such tools can help fulfil the requirements of the EC Directive and may be a useful approach in other regions with high spatial variability in coastal flood risk related to exposure to waves and wind.  相似文献   

5.
Coastal inundation and damage exposure estimation: a case study for Jakarta   总被引:2,自引:2,他引:0  
Coastal flooding poses serious threats to coastal areas, and the vulnerability of coastal communities and economic sectors to flooding will increase in the coming decades due to environmental and socioeconomic changes. It is increasingly recognised that estimates of the vulnerability of cities are essential for planning adaptation measures. Jakarta is a case in point, since parts of the city are subjected to regular flooding on a near-monthly basis. In order to assess the current and future coastal flood hazard, we set up a GIS-based flood model of northern Jakarta to simulate inundated area and value of exposed assets. Under current conditions, estimated damage exposure to extreme coastal flood events with return periods of 100 and 1,000 years is high (€4.0 and €5.2 billion, respectively). Under the scenario for 2100, damage exposure associated with these events increases by a factor 4–5, with little difference between low/high sea-level rise scenarios. This increase is mainly due to rapid land subsidence and excludes socioeconomic developments. We also develop a detemporalised inundation scenario for assessing impacts associated with any coastal flood scenario. This allows for the identification of critical points above which large increases in damage exposure can be expected and also for the assessment of adaptation options against hypothetical user-defined levels of change, rather than being bound to a discrete set of a priori scenarios. The study highlights the need for urgent attention to the land subsidence problem; a continuation of the current rate would result in catastrophic increases in damage exposure.  相似文献   

6.
Pasquier  Ulysse  He  Yi  Hooton  Simon  Goulden  Marisa  Hiscock  Kevin M. 《Natural Hazards》2019,98(3):915-937

Coastal regions are dynamic areas that often lie at the junction of different natural hazards. Extreme events such as storm surges and high precipitation are significant sources of concern for flood management. As climatic changes and sea-level rise put further pressure on these vulnerable systems, there is a need for a better understanding of the implications of compounding hazards. Recent computational advances in hydraulic modelling offer new opportunities to support decision-making and adaptation. Our research makes use of recently released features in the HEC-RAS version 5.0 software to develop an integrated 1D–2D hydrodynamic model. Using extreme value analysis with the Peaks-Over-Threshold method to define extreme scenarios, the model was applied to the eastern coast of the UK. The sensitivity of the protected wetland known as the Broads to a combination of fluvial, tidal and coastal sources of flooding was assessed, accounting for different rates of twenty-first century sea-level rise up to the year 2100. The 1D–2D approach led to a more detailed representation of inundation in coastal urban areas, while allowing for interactions with more fluvially dominated inland areas to be captured. While flooding was primarily driven by increased sea levels, combined events exacerbated flooded area by 5–40% and average depth by 10–32%, affecting different locations depending on the scenario. The results emphasise the importance of catchment-scale strategies that account for potentially interacting sources of flooding.

  相似文献   

7.
 Until recently, concepts of coral reef growth and accumulation have been predominantly based on a Darwinian model. In this, the upwards and outwards growth of a reef core (a coral framework) takes place over a foreslope consisting of reef talus, with the simultaneous filling of the back-reef lagoon by reef-derived debris. The principal adaptations of this pattern relate to the influence of relative changes in sea level and commonly ignore oceanographic factors such as storm frequency and severity. Boreholes through the outer edge of a fringing reef in the Seychelles, western Indian Ocean, reveal a record of Holocene sediment accumulation first established approximately 8 ka ago. Faunal and floral associations show that growth of this body began in relatively deep water but that this shallowed to <5 m within 1 ka. Subsequent accumulation was of “keep-up” style but, as the rate of sea-level rise slowed, shoaling became more frequent and aggradation was limited by reducing accommodation space. Constructional facies are characterised either by massive corals, including Leptastrea, Porites and faviids, or by branching corals, typically Acropora of the danai-robusta group. Coral surfaces may be encrusted by red algae, foraminifera and vermetids, and are commonly bored by filamentous algae, clionids and molluscs. However, detrital facies are volumetrically dominant, and the paucity of a constructional framework requires a re-evaluation of models of reef accretion. New models relate the geometry of accretion to the interplay between extreme storm events and fairweather hydrodynamic conditions. These suggest that a contiguous framework forms in areas of moderate fairweather energy without extreme storm events. Severe storms destroy the continuity of reef structures and generate increasing volumes of coarse detritus. Low storm severity, coupled with low fairweather hydrodynamic energy, may promote the accumulation of fine-grained reef-derived sediments that inhibit framework growth. While ecology reflects year-by-year sea conditions, lithology and structure are controlled by exceptional storms, with the effects of changing sea level superimposed. Received: 30 November 1998 / Accepted: 4 November 1999  相似文献   

8.
Based on the analysis and calculation of the hazard intensity of typhoon rainstorms and floods as well as the vulnerability of flood receptors and the possibility of great losses, risk scenarios are proposed and presented in Wenzhou City, Zhejiang Province, China, using the Pearson-III model and ArcGIS spatial analyst tools. Results indicate that the elements of risk scenarios include time–space scenarios, disaster scenarios, and man-made scenarios. Ten-year and 100-year typhoon rainstorms and flood hazard areas are mainly concentrated in the coastal areas of Wenzhou City. The average rainfall across a 100-year frequency is 450 mm. The extreme water depth of a 100-year flood is 600 mm. High-vulnerability areas are located in Yueqing, Pingyang, Cangnan, and Wencheng counties. The average loss rate of a 100-year flood is more than 50%. The greatest possible loss of floods shows an obvious concentration-diffusion situation. There is an area of about 20–25% flood loss of 6–24 million Yuan RMB/km2 in the Lucheng, Longwan and Ouhai districts. The average loss of a 100-year flood is 12 million Yuan RMB/km2, and extreme loss reaches 49.33 million Yuan RMB/km2. The classification of risk scenario may be used for the choice of risk response priorities. For the next 50 years, the 10-year typhoon rainstorm-flood disaster is the biggest risk scenario faced by most regions of Wenzhou City. For the Yueqing, Ruian, and Ouhai districts, it is best to cope with a 100-year disaster risk scenario and the accompanying losses.  相似文献   

9.
A high-resolution storm surge model of Apalachee Bay in the northeastern Gulf of Mexico is developed using an unstructured grid finite-volume coastal ocean model (FVCOM). The model is applied to the case of Hurricane Dennis (July 2005). This storm caused underpredicted severe flooding of the Apalachee Bay coastal area and upriver inland communities. Accurate resolution of complicated geometry of the coastal region and waterways in the model reveals processes responsible for the unanticipated high storm tide in the area. Model results are validated with available observations of the storm tide. Model experiments suggest that during Dennis, excessive flooding in the coastal zone and the town of St. Marks, located up the St. Marks River, was caused by additive effects of coincident high tides (~10–15% of the total sea-level rise) and a propagating shelf wave (~30%) that added to the locally wind-generated surge. Wave setup, the biggest uncertainty, is estimated on the basis of empirical and analytical relations. The Dennis case is then used to test the sensitivity of the model solution to vertical discretization. A suite of model experiments is performed with varying numbers of vertical sigma (σ) levels, with different distribution of σ-levels within the water column and a varying bottom drag coefficient. The major finding is that the storm surge solution is more sensitive to resolution within the velocity shear zone at mid-depths compared to resolution of the upper and bottom layer or values of the bottom drag coefficient.  相似文献   

10.
Liu  Kai-Wei  Jiang  Ning-Jun  Qin  Jun-De  Wang  Yi-Jie  Tang  Chao-Sheng  Han  Xiao-Le 《Acta Geotechnica》2021,16(2):467-480
Acta Geotechnica - Due to more extreme weather events and accelerating sea-level rise, coastal sand dunes are subjected to more frequent storm wave inundation and surge impacts, which contribute to...  相似文献   

11.
Estimates of return periods of extreme sea level events along the coast are useful for impact assessment. In this study, a vertically integrated 2D model was developed for the simulation of storm surges in the Bay of Bengal. The bathymetry for the model was derived from an improved ETOPO-5 data set, which was prepared in our earlier work. The meteorological forcing for the model was obtained from the cyclone model of Holland using the data available for 136 low-pressure systems that occurred during 1974–2000 in the Bay of Bengal. The simulated total sea level and the surge component were obtained for each event. The simulated peak levels showed good agreement with the observations available at few stations. The annual maxima of sea levels, extracted from the simulations, were fitted with Gumbel distribution using r-largest annual maxima method to estimate the 5- and 50-year return periods of extreme events at 26 stations along the east coast of India. The return periods estimated from simulated sea levels showed good agreement with those obtained from observations. The 5- and 50-year return levels of total sea level along the east coast of India show a considerable increase from south to north, with the 50-year return total sea levels being as high as 6.9 and 8.7 m at stations along the north eastern coast such as Sagar Island and Chandipur, respectively. The high return levels are expected at these stations as the cyclones developed in the Bay of Bengal generally move north or north-west, producing extreme events in the northern part, and moreover, these stations are characterized by high tidal ranges. However, at some regions in the southern part such as Surya Lanka and Machilipatnam, though 50-year return levels of total sea level are not very high (2.98 and 2.97 m, respectively) because of the relatively lower tidal ranges, high return levels of surges (0.84 and 0.57 m, respectively) are found. In addition to the role of shallow depths (5.0 and 6.1 m, respectively) at the two stations, the high return levels of surges are attributed to the effect of geometrical configuration at Surya Lanka and width (100 km) and orientation of continental shelf at Machilipatnam.  相似文献   

12.
《China Geology》2019,2(1):26-39
Bulletins of China’s National Sea Level show that the average rising rate of sea-levels in China is 3.3 mm/a over the past 40 years, with an obviously accelerated rising trend in the last decade. The rate of relative sea-level rise of the Yangtze River Delta reached >10 mm/a after considering the land subsidence, and Bohai Bay is even greater than 25 mm/a. The impact of the sea level rise to the coastal area will be greater in the coming years, so carrying out an assessment of this rising trend is urgent. This paper, taking the coastal area of Tianjin and Hebei as examples, comprehensively evaluates the impact of sea-level rise through multitemporal remote sensing shoreline interpretation, ground survey verification, elevation measurements for both seawall and coastal lowlands. The results show that the average elevation of the measured coastal areas of Tianjin and Hebei is about +4 m, and the total area of >100 km2 is already below the present mean sea level. More than 270 km, ca. 31% of the total length of the seawall, cannot withstand a 1-in-100-year storm surge. Numerical simulations of the storm flooding on the west coast of Bohai Bay, for 1-in-50-years, 1-in-100-years, 1-in-200-years and 1-in-500-years, show that if there were no coastal dykes, the maximum flooding area would exceed 3000 km2, 4000 km2, 5300 km2 and 7200 km2, respectively. The rising sea has a direct and potential impact on the coastal lowlands of Tianjin and Hebei. Based on the latest development in international sea-level rise prediction research, this paper proposes 0.5 m, 1.0 m and 1.5 m as low, middle and high sea level rise scenarios by 2100 for the study area, and combines the land subsidence and other factors to the elevation of the existing seawall. Comprehensive evaluation results indicate that even in the case of a low scenario, the existing seawall will not be able to withstand a 1-in-100-years storm surge in 2030, and the potential flooding areas predicted by the model will become a reality in the near future. Therefore, the seawall design in the coastal areas of Tianjin and Hebei must consider the combined effects of land subsidence, sea level rise and the extreme storm surges caused by it.©2019 China Geology Editorial Office.  相似文献   

13.
The blue crab, Callinectes sapidus Rathbun, 1896, represents the second most important fishery for coastal Georgia; yet, little is known about environmental forces that affect planktonic postlarval settlement in the region. Here, we describe a study to examine the physical mechanisms responsible for blue crab settlement in the extensive salt marsh system of coastal Georgia. Bottom and surface samplers were placed at three sites along a salinity gradient from a low-salinity site in the Altamaha River to a high-salinity area of the Duplin River, Sapelo Island, GA, USA during 2005. Megalopae and juvenile monitoring occurred from July through December. The majority of both megalopae (86.8%) and juvenile (89.3%) blue crabs were recovered in bottom samplers at the low-salinity Altamaha River site during August and early September. Few megalopae were collected at the surface of the Altamaha River or at the two higher-salinity sites in the Duplin and North Rivers. Downwelling winds were unable to explain all settlement events; however, winds with an onshore component regularly preceded settlement events. The use of a multiple-regression model revealed a lagged relationship (r = 0.5461, $ lag = 0–2 days $ lag = 0–2 days ) between wind events, temperature, salinity, maximum tidal height, and settlement.  相似文献   

14.
There are few studies of wildlife population dynamics in the wake of natural disasters, and little is known about “normal” rates and trajectories of their recovery. I document the population trajectories of ten urban resident land bird species in New Orleans, USA, over a 30 km network of survey transects in the 3.4 years following the Hurricane Katrina flood of September 2005 and compare them to transects surveyed before the storm in 1994–2000. The avian community in January 2009 differed from that before the storm, chiefly in the increased dominance of European Starlings (Sturnus vulgaris) and the near disappearance of the formerly common Northern Cardinal (Cardinalis cardinalis), Common Grackle (Quiscalis quiscula), and Bronzed Cowbird (Molothrus aeneus; at least through August 2007). In total, resident populations after 3.4 years were at less than half the levels recorded before the storm, having increased only weakly from their post-storm lows. Individual species varied widely in their population changes over the 3 years that followed their initial declines, some declining farther and others increasing by more than threefold. Starlings regained the highest proportion of their pre-storm numbers. The first and probably the second nesting seasons after the storm both saw resident bird populations increase substantially, but then decline again markedly by mid-winter.  相似文献   

15.

Many coastal urban areas and many coastal facilities must be protected against pluvial and marine floods, as their location near the sea is necessary. As part of the development of a Probabilistic Flood Hazard Approach (PFHA), several flood phenomena have to be modelled at the same time (or with an offset time) to estimate the contribution of each one. Modelling the combination and the dependence of several flooding sources is a key issue in the context of a PFHA. As coastal zones in France are densely populated, marine flooding represents a natural hazard threatening the coastal populations and facilities in several areas along the shore. Indeed, marine flooding is the most important source of coastal lowlands inundations. It is mainly generated by storm action that makes sea level rise above the tide. Furthermore, when combined with rainfall, coastal flooding can be more consequent. While there are several approaches to analyse and characterize marine flooding hazard with either extreme sea levels or intense rainfall, only few studies combine these two phenomena in a PFHA framework. Thus this study aims to develop a method for the analysis of a combined action of rainfall and sea level. This analysis is performed on the city of Le Havre, a French urban city on the English Channel coast, as a case study. In this work, we have used deterministic materials for rainfall and sea level modelling and proposed a new approach for estimating the probabilities of flooding.

  相似文献   

16.
Ocean surges onto coastal lowlands caused by tropical and extra tropical storms, tsunamis, and sea level rise affect all coastal lowlands and present a threat to drinking water resources of many coastal residents. In 2005, two such storms, Hurricanes Katrina and Rita struck the Gulf Coast of the US. Since September 2005, water samples have been collected from water wells impacted by the hurricanes’ storm surges along the north shore of Lake Pontchartrain in southeastern Louisiana. The private and public water wells tested were submerged by 0.6–4.5 m of surging saltwater for several hours. The wells’ casing and/or the associated plumbing were severely damaged. Water samples were collected to determine if storm surge water inundated the well casing and, if so, its effect on water quality within the shallow aquifers of the Southern Hills Aquifer System. In addition, the samples were used to determine if the impact on water quality may have long-term implication for public health. Laboratory testing for several indicator parameters (Ca/Mg, Cl/Si, chloride, boron, specific conductance and bacteria) indicates that surge water entered water wells’ casing and the screened aquifer. Analysis of the groundwater shows a decrease in the Ca/Mg ratio right after the storm and then a return toward pre-Katrina values. Chloride concentrations were elevated right after Katrina and Rita, and then decreased downward toward pre-Katrina values. From September 2005 to June 2006, the wells showed improvement in all the saltwater intrusion indicators.  相似文献   

17.
Phreatomagmatic volcanoes and their sedimentary products can preserve high‐resolution records of earth surface processes because of their high deposition rate. Songaksan, Jeju Island, Korea, is a phreatomagmatic volcano, which erupted c. 3.7 ka BP in a coastal setting. Its tuff ring preserves a record of intertidal to supratidal facies transition in the basal part, which reveals the position of palaeo‐high‐tide level for at least 13 high‐tide events, and a record of a storm‐surge event in the middle part of the tuff ring, which lasted approximately three tidal cycles. Based on these features, the phreatomagmatic eruption of Songaksan is estimated to have taken place over a month. The sea level at the time was almost identical to that at present. This study shows that coastal phreatomagmatic volcanoes can preserve high‐resolution records of eruption duration and palaeo‐sea level, and can provide accurately levelled and dated data points to the Quaternary sea‐level curve.  相似文献   

18.
Coastal flooding is a significant risk on the shores of Languedoc-Roussillon. The storms that periodically hit the coast can generate strong swells and storm surges. Most beach resorts, built on a low elevation dune ridge, are periodically flooded during major storms. Although risks zoning regulations take into consideration coastal flood hazards, the delineation of vulnerable areas is still insufficient and the commonly accepted threshold is regularly exceeded during most severe storms. This paper presents a method to improve the assessment of extreme storm-related water levels. It relies on fieldwork carried out in the Leucate commune (Aude), which is particularly exposed to the risk of sea level rise. It considers both storm surges and wave phenomena that occur within the surf zone (set-up and swash), calculated from the Simulating WAves Nearshore (SWAN®) numerical wave model and the Stockdon formula. Water levels reached during several recent storm events have been reconstructed and simulations of submerged areas were carried out by numerical modelling.  相似文献   

19.
A vibrocore from the sea floor of the southern North Sea provides a ~1,500-year record of early Holocene vegetation history and mire development in a landscape now 33 m below sea-level. Pollen, plant macrofossil and geochemical analyses of an AMS 14C dated sand–peat–marine mud sequence document the paludification on Pleistocene sands ~10,700 cal BP, the subsequent development of eutraphentic carr vegetation and the gradual inundation by the transgressing sea ~9,350 cal BP. PinusCorylus woodland prevailed on terrestrial grounds after hazel had immigrated ~10,700 cal BP. Salix dominated the carr vegetation throughout 1,300 years of peat formation, because Alnus did not spread in the Borkum Riffgrund area until 9,300 BP. Brackish reed vegetation with Phragmites established after inundation and siliciclastic marine sediments were being deposited. This article also examines the detection and suitability of key horizons indicative of marine influence. XRF-Scanning provides the most detailed results in the briefest possible time to pinpoint spectra best suitable for AMS 14C dating of classical key horizons such as start of peat formation and transgressive contact. The combined application of botanical and geochemical methods allows determining new key horizons indicative of marine influence, namely the earliest marine inundation and the onset of sea-level influence on coastal ground water level.  相似文献   

20.
The Bay of Bengal is considered to be a low productive region compared to the Arabian Sea based on conventional seasonal observations. Such seasonal observations are not representative of a calendar year since the conventional approach might miss episodic high productive events associated with extreme atmospheric processes. We examined here the influence of extreme atmospheric events, such as heavy rainfall and cyclone Sidr, on phytoplankton biomass in the western Bay of Bengal using both in situ time-series observations and satellite derived Chlorophyll a (Chl a) and sea surface temperature (SST). Supply of nutrients through the runoff driven by episodic heavy rainfall (234 mm) on 4–5 October 2007 caused an increase in Chl a concentration by four times than the previous in the coastal Bay was observed within two weeks. Similar increase in Chl a, by 3 to 10 times, was observed on the right side of the cyclone Sidr track in the central Bay of Bengal after the cyclone Sidr. These two episodic events caused phytoplankton blooms in the western Bay of Bengal which enhanced ~40% of fishery production during October–December 2007 compared to that in the same period in 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号