首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The opening of cracks and influx of fluids in the dilatancy zone of impending earthquake is expected to induce short-term changes in physical/chemical/hydrological properties during earthquake build-up cycle, which should be reflected in time-varying geophysical fields. With this rationale, eleven geophysical parameters are being recorded in continuous mode at the Multi-Parametric Geophysical Observatory (MPGO), in Ghuttu, Garhwal Himalaya, for earthquake precursory research. The critical analysis of various geophysical time series indicates anomalous behavior at few occasions; however, the data is also influenced by many external forces. These external influences are the major deterrent for the isolation of precursory signals. The recent work is focused on the data adoptive techniques to estimate and eliminate effects of solar-terrestrial and hydrological/environmental factors for delimiting the data to identify short-term precursors. Although any significant earthquake is not reported close to the observatory, some weak precursory signals and coseismic changes have been identified in few parameters related to the occurrence of moderate and strong earthquakes.  相似文献   

2.
Despite their obvious environmental, societal and economic importance, our understanding of the causes and magnitude of the variations in the global water cycle is still unsatisfactory. Uncertainties in hydrological predictions from the current generation of models pose a serious challenge to the reliability of forecasts and projections across time and space scales. This paper provides an overview of the current issues and challenges in modelling various aspects of the Earth’s hydrological cycle. These include: the global water budget and water conservation, the role of model resolution and parametrisation of precipitation-generating processes on the representation of the global and regional hydrological cycle, representation of clouds and microphysical processes, rainfall variability, the influence of land–atmosphere coupling on rainfall patterns and their variability, monsoon processes and teleconnections, and ocean and cryosphere modelling. We conclude that continued collaborative activity in the areas of model development across timescales, process studies and climate change studies will provide better understanding of how and why the hydrological cycle may change, and better estimation of uncertainty in model projections of changes in the global water cycle.  相似文献   

3.
ABSTRACT

The critical need for hydrological observations in support of water resources management, particularly during extreme events, has transformed traditional methods of hydrological data management. This transformation has given rise to a framework of e-monitoring the hydrological cycle, the aim of which is to improve understanding of the nature of water. New trends in data science, coupled with increasing technological evolution, make the new generation of data systems more agile and responsive to the needs and expectations for efficient and effective data sharing and service delivery. The WMO Hydrological Observing System was designed around the integration of observations, data exchange, research, data processing, modelling and forecasting, in such a way that societal needs for disaster risk reduction, improved sustainability of environmental resources, climate resilience and economic growth can be effectively met. With its implementation of conceptual functionalities for sustainable data management, the WHOS operational architecture is hydrology’s system for the future.  相似文献   

4.
This paper reviews the conceptual problems limiting our current knowledge of the hydrological cycle over land. We start from the premise that to understand the hydrological cycle we need to make observations and develop dynamic models that encapsulate our understanding. Yet, neither the observations nor the models could give a complete picture of the hydrological cycle. Data assimilation combines observational and model information and adds value to both the model and the observations, yielding increasingly consistent and complete estimates of hydrological components. In this review paper we provide a historical perspective of conceptual problems and discuss state-of-the-art hydrological observing, modelling and data assimilation systems.  相似文献   

5.
The East River basin is the major source of water supply for megacities in the Pearl River Delta and Hong Kong. Intensifying development of water resources and reservoir-induced hydrological alterations negatively affect ecological hydrological requirements. In this study, hydrological alterations and environmental flow variation are determined. Results indicate that: (1) multi-day maxima have reduced, while multi-day minima have increased, due to hydrological regulations of water reservoirs; (2) hydrological regimes of the East River have also been severely affected by hydropower generation, leading to a greater frequency of high and low pulses of lesser duration, and these effects are increasingly evident from the upper to lower East River basin; (3) owning to the water being released rapidly for hydropower generation or flood protection, the number of hydrologic reversals have increased after reservoir operations, also with increasing rise and fall rate; and (4) the alteration of three different types of environmental flow components have been shown in the study, which can be used to support the determination of environmental flow requirements in the East River basin.  相似文献   

6.
We first quantify the influence of aquifers on gravity variations by considering local, regional and continental scales. We show that locally only the direct attraction of the underlying aquifer has to be taken into account. At continental (or global scales), the underground water masses act by direct attraction (due to the earth curvature), loading flexure and potential redistribution. We show that at the intermediate regional scale (saying a few kilometres to a few hundreds of kilometres), groundwater contributions can be neglected in practice. Afterwards, we illustrate the difficulties in tackling the local hydrological context by studying comparatively the geological and hydrogeological surroundings of three European Global Geodynamics Project (GGP) superconducting gravimeter stations (Strasbourg, Moxa, and Vienna). Finally, it appears clearly that hydrological variability and cycle characterisations constitute the up-to-date challenge while studying gravity variations in a large spectral range. That is why, gravity is used to quantify hydrological transfers, and overall when seeking for small signals from the Earth's deep interior or other environmental signals (atmosphere, oceans) where groundwater influence can be seen as a disturbance.  相似文献   

7.
Lake water levels change under the influences of natural and/or anthropogenic environmental conditions. Among these influences are the climate change, greenhouse effects and ozone layer depletions which are reflected in the hydrological cycle features over the lake drainage basins. Lake levels are among the most significant hydrological variables that are influenced by different atmospheric and environmental conditions. Consequently, lake level time series in many parts of the world include nonstationarity components such as shifts in the mean value, apparent or hidden periodicities. On the other hand, many lake level modeling techniques have a stationarity assumption. The main purpose of this work is to develop a cluster regression model for dealing with nonstationarity especially in the form of shifting means. The basis of this model is the combination of transition probability and classical regression technique. Both parts of the model are applied to monthly level fluctuations of Lake Van in eastern Turkey. It is observed that the cluster regression procedure does preserve the statistical properties and the transitional probabilities that are indistinguishable from the original data.  相似文献   

8.
The quantification of the various components of hydrological processes in a watershed remains a challenging topic as the hydrological system is altered by internal and external drivers. Watershed models have become essential tools to understand the behaviour of a catchment under dynamic processes. In this study, a physically based watershed model called Soil Water Assessment Tool was used to understand the hydrologic behaviour of the Upper Tiber River Basin, Central Italy. The model was successfully calibrated and validated using observed weather and flow data for the period of 1963–1970 and 1971–1978, respectively. Eighteen parameters were evaluated, and the model showed high relative sensitivity to groundwater flow parameters than the surface flow parameters. An analysis of annual hydrological water balance was performed for the entire upper Tiber watershed and selected subbasins. The overall behaviour of the watershed was represented by three categories of parameters governing surface flow, subsurface flow and whole basin response. The base flow contribution has shown that 60% of the streamflow is from shallow aquifer in the subbasins. The model evaluation statistics that evaluate the agreement between the simulated and the observed streamflow at the outlet of a watershed and other three different subbasins has shown a coefficient of determination (R2) from 0.68 to 0.81 and a Nash–Sutcliffe efficiency (ENS) between 0.51 and 0.8 for the validation period. The components of the hydrologic cycle showed variation for dry and wet periods within the watershed for the same parameter sets. On the basis of the calibrated parameters, the model can be used for the prediction of the impact of climate and land use changes and water resources planning and management. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Water is our most precious and arguably most undervalued natural resource. It is essential for life on our planet, for food production and economic development. Moreover, water plays a fundamental role in shaping weather and climate. However, with the growing global population, the planet’s water resources are constantly under threat from overuse and pollution. In addition, the effects of a changing climate are thought to be leading to an increased frequency of extreme weather causing floods, landslides and drought. The need to understand and monitor our environment and its resources, including advancing our knowledge of the hydrological cycle, has never been more important and apparent. The best approach to do so on a global scale is from space. This paper provides an overview of the major components of the hydrological cycle, the status of their observations from space and related data products and models for hydrological variable retrievals. It also lists the current and planned satellite missions contributing to advancing our understanding of the hydrological cycle on a global scale. Further details of the hydrological cycle are substantiated in several of the other papers in this Special Issue.  相似文献   

10.
Physical properties of cores taken from sediments in the channel zone of the Volga Stretch in the Rybinsk Reservoir are studied. The physical properties of the sediments are shown to be related to the evolution of geomorphological processes and the amount of organic matter in the sediment. Variations in the physical properties were used to recognize synchronous formation of sediment horizons corresponding to certain formation stages of the reservoir soil complex and anomalous environmental and climatic events. Three stages of channel sedimentation are established based on characteristic behavior of magnetic parameters and organic matter content. The magnetic parameters of sediments are shown to allow data reconstruction on some environmental and hydrological processes.  相似文献   

11.
Carbonates capping Neoproterozoic glacial deposits contain peculiar sedimentological features and geochemical anomalies ascribed to extraordinary environmental conditions in the snowball Earth aftermath. It is commonly assumed that post-snowball climate dominated by CO2 partial pressures several hundred times greater than modern levels, would be characterized by extreme temperatures, a vigorous hydrological cycle, and associated high continental weathering rates. However, the climate in the aftermath of a global glaciation has never been rigorously modelled. Here, we use a hierarchy of numerical models, from an atmospheric general circulation model to a mechanistic model describing continental weathering processes, to explore characteristics of the Earth system during the supergreenhouse climate following a snowball glaciation. These models suggest that the hydrological cycle intensifies only moderately in response to the elevated greenhouse. Indeed, constraints imposed by the surface energy budget sharply limit global mean evaporation once the temperature has warmed sufficiently that the evaporation approaches the total absorbed solar radiation. Even at 400 times the present day pressure of atmospheric CO2, continental runoff is only 1.2 times the modern runoff. Under these conditions and accounting for the grinding of the continental surface by the ice sheet during the snowball event, the simulated maximum discharge of dissolved elements from continental weathering into the ocean is approximately 10 times greater than the modern flux. Consequently, it takes millions of years for the silicate weathering cycle to reduce post-snowball CO2 levels to background Neoproterozoic levels. Regarding the origin of the cap dolostones, we show that continental weathering alone does not supply enough cations during the snowball melting phase to account for their observed volume.  相似文献   

12.
Interactions between lakes and groundwater are of increasing concern for freshwater environmental management but are often poorly characterized. Groundwater inflow to lakes, even at low rates, has proven to be a key in both lake nutrient balances and in determining lake vulnerability to pollution. Although difficult to measure using standard hydrometric methods, significant insight into groundwater–lake interactions has been acquired by studies applying geochemical tracers. However, the use of simple steady‐state, well‐mixed models, and the lack of characterization of lake spatiotemporal variability remain important sources of uncertainty, preventing the characterization of the entire lake hydrological cycle, particularly during ice‐covered periods. In this study, a small groundwater‐connected lake was monitored to determine the annual dynamics of the natural tracers, water stable isotopes and radon‐222, through the implementation of a comprehensive sampling strategy. A multilayer mass balance model was found outperform a well‐mixed, one‐layer model in terms of quantifying groundwater fluxes and their temporal evolution, as well as characterizing vertical differences. Water stable isotopes and radon‐222 were found to provide complementary information on the lake water budget. Radon‐222 has a short response time, and highlights rapid and transient increases in groundwater inflow, but requires a thorough characterization of groundwater radon‐222 activity. Water stable isotopes follow the hydrological cycle of the lake closely and highlight periods when the lake budget is dominated by evaporation versus groundwater inflow, but continuous monitoring of local meteorological parameters is required. Careful compilation of tracer evolution throughout the water column and over the entire year is also very informative. The developed models, which are suitable for detailed, site‐specific studies, allow the quantification of groundwater inflow and internal dynamics during both ice‐free and ice‐covered periods, providing an improved tool for understanding the annual water cycle of lakes.  相似文献   

13.
Analysis of Long-Term Variations in the Volga Annual Runoff   总被引:2,自引:0,他引:2  
Ismaiylov  G. Kh.  Fedorov  V. M. 《Water Resources》2001,28(5):469-477
The stability of sample estimates of statistical parameters was analyzed for segments of the initial time series of annual runoff volumes of the Volga River at Volgograd for 1881/1882–1994/1995. The segments of series considered in this study differ in the extent of anthropogenic impact on the runoff and the type of atmospheric circulation and correspond to characteristic periods in the Caspian Sea level variations. The conclusion is made that there are statistically significant variations in the annual runoff of the Volga, caused by both natural–climatic and anthropogenic variations in the hydrological cycle.  相似文献   

14.
Derek Karssenberg 《水文研究》2002,16(14):2751-2766
An evaluation is made of the suitability of programming languages for hydrological modellers to create distributed, process‐based hydrological models. Both system programming languages and high‐level environmental modelling languages are evaluated based on a list of requirements for the optimal programming language for such models. This is illustrated with a case study, implemented using the PCRaster environmental modelling language to create a distributed, process‐based hydrological model based on the concepts of KINEROS‐EUROSEM. The main conclusion is that system programming languages are not ideal for hydrologists who are not computer programmers because the level of thinking of these languages is too strongly related to specialized computer science. A higher level environmental modelling language is better in the sense that it operates at the conceptual level of the hydrologist. This is because it contains operators that identify hydrological processes that operate on hydrological entities, such as two‐dimensional maps, three‐dimensional blocks and time‐series. The case study illustrates the advantages of using an environmental modelling language as compared with system programming languages in fulfilling requirements on the level of thinking applied in the language, the reusability of the program code, the lack of technical details in the program, a short model development time and learnability. The study shows that environmental modelling languages are equally good as system programming languages in minimizing programming errors, but are worse in generic application and performance. It is expected that environmental modelling languages will be used in future mainly for development of new models that can be tailored to modelling aims and the field data available. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Particular attention is given to the reliability of hydrological modelling results. The accuracy of river runoff projection depends on the selected set of hydrological model parameters, emission scenario and global climate model. The aim of this article is to estimate the uncertainty of hydrological model parameters, to perform sensitivity analysis of the runoff projections, as well as the contribution analysis of uncertainty sources (model parameters, emission scenarios and global climate models) in forecasting Lithuanian river runoff. The impact of model parameters on the runoff modelling results was estimated using a sensitivity analysis for the selected hydrological periods (spring flood, winter and autumn flash floods, and low water). During spring flood the results of runoff modelling depended on the calibration parameters that describe snowmelt and soil moisture storage, while during the low water period—the parameter that determines river underground feeding was the most important. The estimation of climate change impact on hydrological processes in the Merkys and Neris river basins was accomplished through the combination of results from A1B, A2 and B1 emission scenarios and global climate models (ECHAM5 and HadCM3). The runoff projections of the thirty-year periods (2011–2040, 2041–2070, 2071–2100) were conducted applying the HBV software. The uncertainties introduced by hydrological model parameters, emission scenarios and global climate models were presented according to the magnitude of the expected changes in Lithuanian rivers runoff. The emission scenarios had much greater influence on the runoff projection than the global climate models. The hydrological model parameters had less impact on the reliability of the modelling results.  相似文献   

16.
Tropical alpine grasslands, locally known as páramos, are the water towers of the northern Andes. They are an essential water source for drinking water, irrigation schemes and hydropower plants. But despite their high socio‐economic relevance, their hydrological processes are very poorly understood. Since environmental change, ranging from small scale land‐use changes to global climate change, is expected to have a strong impact on the hydrological behaviour, a better understanding and hydrological prediction are urgently needed. In this paper, we apply a set of nine hydrological models of different complexity to a small, well monitored upland catchment in the Ecuadorian Andes. The models represent different hypotheses on the hydrological functioning of the páramo ecosystem at catchment scale. Interpretation of the results of the model prediction and uncertainty analysis of the model parameters reveals important insights in the evapotranspiration, surface runoff generation and base flow in the páramo. However, problems with boundary conditions, particularly spatial variability of precipitation, pose serious constraints on the differentiation between model representations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Awareness of increasing water scarcity has driven efforts to model global water resources for improved insight into water resources infrastructure and management strategies. Most water resources models focus explicitly on water systems and represent socio-economic and environmental change as external drivers. In contrast, the system dynamics-based integrated assessment model employed here, ANEMI, incorporates dynamic representations of these systems, so that their broader changes affect and are affected by water resources systems through feedbacks. Sectors in ANEMI therefore include the global climate system, carbon cycle, economy, population, land use and agriculture, and novel versions of the hydrological cycle, global water use and water quality. Since the model focus is on their interconnections through explicit nonlinear feedbacks, simulations with ANEMI provide insight into the nature and structure of connections between water resources and socio-economic and environmental change. Of particular interest to water resources researchers and modelers will be the simulated effects of a new water stress definition that incorporates both water quality and water quantity effects into the measurement of water scarcity. Five simulation runs demonstrate the value of wastewater treatment and reuse programs and the feedback-effects of irrigated agriculture and greater consumption of animal products.  相似文献   

18.
A model for quantitatively expressing the hydrological cycle in a forested mountain catchment is proposed as a HYCYMODEL. HYCYMODEL is able to predict both short- and long-term hydrographs because the model parameters remain independent of time. It shows a good applicability for ten years of continuous data at both hourly and daily intervals for the Kiryu catchment—a forested mountain basin. Since HYCYMODEL does not need hydrograph separation between storm flow and base flow, it is a particularly attractive model.  相似文献   

19.
Zekai Şen 《水文研究》2007,21(8):1006-1014
Arid and semi‐arid regions expose special hydrological features that are distinctive from humid areas. Unfortunately, humid‐region hydrological empirical formulations are used directly in the arid and semi‐arid regions without care about the basic assumptions. During any storm rainfall in arid regions, rainfall, infiltration and runoff components of the hydrological cycle have impacts on water resources. The basis of the methodology presented in this paper is the ratio of runoff increment to rainfall increment during an infinitesimally small time duration. This is the definition of runoff coefficient for the same infinitesimal time duration. The ratio is obtained through rational, physical and mathematical combination of hydrological thinking and then integrated with the classical infiltration equation for the hydrograph determination. The parameters of the methodology are explained and their empirical estimations are presented. The methodology works for rainfall and runoff from ungauged watersheds where infiltration measurement can be performed. The comparison of the new approach with different classical approaches, such as the rational formula and Soil Conservation Service method, are presented in detail. Its application is performed for two wadis within the Kingdom of Saudi Arabia. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

This investigation presents a new approach to estimate the costs resulting from the introduction of environmental flows in the arid Huasco River basin, located in the Atacama Region of Chile, one of the most sophisticated private water markets worldwide. The aim is to provide information to the water users, who hold the right to decide on water use, and thereby support the inclusion of environmental flows into decision-making. Costs are estimated by calculating the loss of agricultural productivity resulting from a trade-off between users and environmental flow requirements in times of water scarcity. Based on environmental flow requirements calculated by International Union for Conservation of Nature (IUCN), and hydrological supply-and-demand modelling using the Water Evaluation and Planning (WEAP) model, economic parameters of water productivity are calculated for the main economic sectors and then included in hydrological analysis. The study presents concrete costs that might be imposed on the water users during times of water scarcity, and confirms that there are significant variations in water productivity between different sectors.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Wagnitz, P., Núñez, J., and Ribbe, L., 2014. Cost of environmental flow during water scarcity in the arid Huasco River basin, northern Chile. Hydrological Sciences Journal, 59 (3–4), 700–712.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号