首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The HY-2A satellite, which is equipped with a radar altimeter and was launched on August 16, 2011, is the first Chinese marine dynamic environmental monitoring satellite. Extracting ocean tides is one of the important applications of the radar altimeter data. The radar altimeter data of the HY-2A satellite from November 1, 2011 to August 16, 2014 are used herein to extract global ocean tides. The constants representing the tidal constituents are extracted by HY-2A RA data with harmonic analysis ...  相似文献   

2.
利用东印度洋海域周边长期验潮站实测数据、TOPEX/Poseidon等系列卫星测高反演结果,评估了DTU10,EOT11a,FES2014,GOT4.8,OSU12和TPXO8六种全球潮汐模型精度,根据卫星测高结果给出了浅水分潮改正量和长周期分潮改正量的经验模型,又在此基础上分析并构建了研究区域精度最优的深度基准面模型。考虑到全球潮汐模型在近岸的影响因素及验潮站位置,将13个验潮站分成开阔海域与近海海域两类,与潮汐模型的对比,结果表明,DTU10和FES2014模型分别在开阔海域和近海海域精度最优。根据潮汐模型在不同分潮处的精度,如EOT11a模型在O1和K1分潮处精度较高,DTU10在N2,M2,S2和K2分潮处精度较高等,分别构建了开阔海域与近海海域的组合深度基准面模型,计算得知误差分别为11.33和20.95 cm,其精度显著提高。  相似文献   

3.
Abstract

Spherical harmonic tidal solutions have been obtained at the frequencies of the 32 largest luni‐solar tides using prior theory of the author. That theory was developed for turbulent, nonglobal, self‐gravitating, and loading oceans possessing realistic bathymetry and linearized bottom friction; the oceans satisfy no‐flow boundary conditions at coastlines. In this theory the eddy viscosity and bottom drag coefficients are treated as spatially uniform. Comparison of the predicted degree‐2 components of the Mf, PI, and M2 tides with those from numerical and satellite‐based tide models allows the ocean friction parameters to be estimated at long and short periods. Using the 32 tide solutions, the frequency dependence of tidal admittance is investigated, and the validity of sideband tide models used in satellite orbit analysis is examined. The implications of admittance variability for oceanic resonances are also explored. By extending the theory to include a second constraint derived from tide observations or data‐constrained tide models, it is possible to assess those models from a fluid dynamic perspective. One general conclusion from such exercises is that the large higher‐degree admittances of current short‐period tide models are dynamically incompatible with their degree‐2 admittances. Eventually it may prove possible to produce dynamically sound, observationally consistent tide models by combining the author's tide theory with satellite orbit determination.  相似文献   

4.
中国近岸海域高度计JASON-1测量数据的波形重构算法研究   总被引:3,自引:1,他引:2  
卫星雷达高度计的测量数据目前已被广泛应用于各个领域,但高度计在近海的测量数据却一直不可用,一方面是因为高度计在近岸海域的回波波形测量受陆地回波的影响,另一方面是因为一些校正量对近海不准确,如大气湿对流层校正、海洋潮汐校正以及大气高频因数校正等。通过对高度计在近海测量的回波波形进行重构处理,可以缩短近海数据不可用的距离,提高数据的数量和质量。以我国海域及邻近海域(14°~45°N,105°~130°E)为研究区域,采用四种波形重构算法(海洋算法、重力中心偏离算法、冰层算法二和阈值算法)对JASON-1高度计1 a共31个周期的测量波形重新进行了计算,比较了轨道交叉点处升轨和降轨的海面高度异常值以及海面高度值与验潮站的实测水位,结果表明重力中心偏离法比其他三种算法更适合我国近海的测高波形重构:计算结果精度最高,有效数目最多。  相似文献   

5.
Changes in the height of the ocean can be described through the relative and absolute sea level changes depending on the geodetic reference the sea level records are related to. Satellite altimetry provides absolute sea level (ASL) measurements related to the global geodetic reference, whereas tide gauges provide relative sea level (RSL) measurements related to the adjacent land. This study aims at computing the ASL surfaces for different time epochs from combined satellite altimeter and tide gauge records. A method of sea level data fusion is proposed to enable modeling of the impact of present and future sea level changes on the coast. Sea surface modeling was investigated for ten different gridding methods commonly used for the interpolation of altimeter data over the open ocean and extrapolation over the coastal zones. The performance of gridding methods was assessed based on the comparison of the gridded altimeter data and corrected tide gauge measurements. Finally, the sea level surfaces related to the GRS80 global reference ellipsoid were computed for the Mediterranean Sea over the altimeter period. In addition, the current sea level trends were estimated from both sea level measurements.  相似文献   

6.
In this study, to meet the need for accurate tidal prediction, the accuracy of global ocean tide models was assessed in the South China Sea (0°–26°N, 99°–121°E). Seven tide models, namely, DTU10, EOT11a, FES2014, GOT4.8, HAMTIDE12, OSU12 and TPXO8, were considered. The accuracy of eight major tidal constituents (i.e., Q1, O1, P1, K1, N2, M2, S2 and K2) were assessed for the shallow water and coastal areas based on the tidal constants derived from multi-mission satellite altimetry (TOPEX and Jason series) and tide gauge observations. The root mean square values of each constituent between satellite-derived tidal constants and tide models were found in the range of 0.72–1.90 cm in the deep ocean (depth>200 m) and 1.18–5.63 cm in shallow water area (depth<200 m). Large inter-model discrepancies were noted in the Strait of Malacca and the Taiwan Strait, which could be attributable to the complicated hydrodynamic systems and the paucity of high-quality satellite altimetry data. In coastal regions, an accuracy performance was investigated using tidal results from 37 tide gauge stations. The root sum square values were in the range of 9.35–19.11 cm, with the FES2014 model exhibiting slightly superior performance.  相似文献   

7.
The constant and harmonic parts of the global ocean tide are modeled by up to nine major tidal constituents, namely, S2, M2, N2, K1, P1, O1, Mf, Mm, and Ssa. Our computations start with the Fourier sine and cosine series expansion for the tidal constituents, including the constant Mean Sea Level (MSL). Although the frequencies of the tidal constituents are considered known, the coefficients of the sine and cosine functions are assumed to be unknown. Subsequently, the coefficients of the sine and cosine functions, as well as the constant part of the Fourier expansion, were expanded into spherical harmonics up to degree and order n, where n corresponds to the number of linearly independent spherical harmonic base functions needed to model the tidal constituents, determined via independent columns of the Gram matrix. The unknown coefficients of the spherical harmonic expansions are computed using sea level observations within cycles #1–#350 of the TOPEX/Poseidon satellite altimetry over 11 years of its mission. A set of orthonormal base functions was generated for the marine areas covered by TOPEX/Poseidon observations from the spherical harmonics using a Gram-Schmidt orthogonalization process. These were used for modeling the dominant tidal constituents. The computed models based on orthonormal base functions for the nine tidal constituents and the constant part of the Fourier expansion, were tested numerically for their validity and accuracy, proving centimeter accuracy.  相似文献   

8.
E.D. Zaron  G.D. Egbert   《Ocean Modelling》2007,18(3-4):210-216
We use a synthetic data experiment to assess the accuracy of ocean tides estimated from satellite altimetry data, with emphasis on the impact of the phase-locked internal tide, which has a surface expression of several centimeters near its sites of genesis. Previous tidal estimates have regarded this signal as a random measurement error; however, it is deterministic and not scale-separated from the barotropic (surface) tide around complex bathymetric features. The synthetic data experiments show that the internal tide has a negligible impact on the barotropic tidal fields inferred under these circumstances, and the barotropic dissipation (a quadratic functional of the tidal fields) is in good agreement with the energetics of the three-dimensional regional primitive equations model which is the source of the synthetic data.  相似文献   

9.
Abstract

A set of time‐averaged sea surface heights at 1° intervals, derived from the adjusted SEASAT altimeter data, and the GEML2 gravity field are used to estimate the long‐wavelength stationary sea surface topography. In order to reduce the leakage of energy in the estimated sea surface topography, the GEML2 field is augmented by the Rapp81 gravity field to generate geoidal undulations with wavelengths consistent with the ones of sea surface heights. These undulations are subtracted from the sea surface heights, and the resulting differences are subjected to filtering in order to recover sea surface topography with minimum wavelengths of 6000 km and an estimated accuracy of 20–25 cm. These estimates agree well with oceanographic and other satellite‐derived results.

The direction of current flow can be computed on a global basis using the spherical harmonic expansion of sea surface topography. This is done not only for the SEASAT/GEML2 estimates, but also using the recent dynamic topography estimates of Levitus. The results of the two solutions are very similar and agree well with the major circulation features of the oceans.  相似文献   

10.
The sea-surface height signatures of internal tides in the deep ocean, amounting to a few centimeters or less, are studied using two complementary measurement types: satellite altimetry and island tide gauges. Altimetry can detect internal tides that maintain coherence with the astronomical forcing; island gauges can monitor temporal variability which, in some circumstances, is due to internal tides varying in response to changes in the oceanic medium. This latter mechanism is at work at Hilo and other stations on the northern coasts of the Hawaiian Islands. By detecting spatially coherent low-frequency internal-tide modulations, the tide gauges, along with inverted echo sounders at sea, suggest that the mean internal tide is also spatially coherent; satellite altimetry confirms this. At Hawaii and in many other places, Topex/Poseidon altimetry detects mean surface waves, spatially coherent and propagating great distances (> 1000 km) before decaying below background noise. When temporal variability is small, the altimetry (plus information on ocean density) sets useful constraints on energy fluxes into internal tides. At the Hawaiian Ridge, 15 GW of tidal power is being converted from barotropic to first-mode baroclinic motion. Examples elsewhere warn that a simplistic interpretation of the altimetry, without regard to variability, noise, or in situ information, may be highly misleading. With such uncertainties, extension of the Hawaiian results into a usefully realistic estimate of the global internal-tide energy balance appears premature at this time.  相似文献   

11.
Satellite altimetry observations and tide gauge data are invaluable tools to diagnose and resolve tidal constituents over the Oceans and Seas. The aim of this study is to introduce a new purely empirical tide model named TM-IR01 in the Persian Gulf, Oman Sea, and North Indian Ocean. The observations of three altimeter sensors including TOPEX/POSIDON, JASON1, and JASON2 and 13 coastal tide gauge (TG) stations are processed and analyzed in this research. First of all, the least square spectral analysis is utilized to recover the significant tide components and consequently the amplitude and phases of the constituents are found during the tide modeling. Finally, the analysis results are interpolated into a grid of 1/4° using the Kriging method. TM-IR01 model is validated by comparing with TG stations and global tide models. It is shown that for main tidal frequencies M2, S2, K1, and O1 the root mean square error (RMSE) between TM-IR01 and TG stations results are 0.372, 0.130, 0.141, and 0.084?m, respectively, and also the RMSE between TM-IR01 and FES2004 models are 0.231, 0.087, 0.027, and 0.042?m, respectively. Validating with FES2012 and Tpxo7.2, the results obtained are close to the above values.  相似文献   

12.
潮汐变化研究对于沿海地区海洋工程、洪涝灾害预防和海洋资源开发利用等各方面都有着非常重要的意义。之前的潮汐变化研究主要基于多年逐时验潮站观测,而验潮站数据无论是站点的个数还是站点的位置,都存在很大的局限性,这对我们研究海盆尺度的潮汐变化规律形成了一定程度的阻碍。前人基于25年的T/P-Jason卫星高度计数据发现南海中央深海海盆主要分潮振幅存在异常大的趋势,这是由于中尺度海洋运动对潮汐调和分析干扰导致的虚假结果。本文首次使用了X-TRACK软件处理过的长达27年的T/P-Jason卫星高度计观测来研究整个南海的主要分潮振幅的长期趋势。经过X-TRACK处理后的卫星观测数据在整个南海的准确性和完整性都有了显著的提升。同时,我们使用了权重最小二乘法来消除长周期采样导致的潮汐混淆的影响。我们发现在南海大部分海域,4大主要分潮的振幅都存在显著的变化趋势。振幅和迟角变化的极值主要分布在吕宋海峡西部、马六甲海峡和台湾海峡等水深和岸线变化剧烈的近海海域,振幅最大的上升趋势可达2.75 mm/a,振幅最大的下降趋势可达–2.16 mm/a。南海主要分潮振幅的长期趋势与河流径流以及人类活动密切相关。  相似文献   

13.
The global distributions of eight principal tidal constituents, M2 , S2 , K1 , O1 , N2 , K2 , P1 , and Q1 , are derived using TOPEX/Poseidon and JASON-1(T/P-J) satellite altimeter data for 16 a. The intercomparison of the derived harmonics at 7000 subsatellite track crossover points shows that the root mean square (RMS) values of the tidal height differences of the above eight constituents range from 1.19 cm to 2.67 cm, with an average of about 2 cm. The RMS values of the tidal height differences between T/P-J solutions and the harmonics from ground measurements at 152 tidal gauge stations for the above constituents range from 0.34 cm to 1.08 cm, and the relative deviations range from 0.031 to 0.211. The root sum square of the RMS differences of these eight constituents is 2.12 cm, showing the improvement of the present model over the existing global ocean tidal models. Based on the obtained tidal model the global ocean tidal energetics is studied and the global distribution of the tidal power input density by tide-generating force of each constituent is calculated, showing that the power input source regions of semidiurnal tides are mainly concentrated in the tropical belt between 30 S and 30 N, while the power input source regions of diurnal tides are mainly concentrated off the tropic oceans. The global energy dissipation rates of the M2 , S2 , K1 , O1 , N2 , P1 , K2 and Q1 tides are 2.424, 0.401, 0.334, 0.160, 0.113, 0.035, 0.030 and 0.006 TW, respectively. The total global tidal dissipation rate of these eight constituents amounts to 3.5 TW.  相似文献   

14.
An attempt is made to infer the global mean sea level(GMSL) from a global tide gauge network and frame the problem in terms of the limitations of the network. The network,owing to its limited number of gauges and poor geographical distribution complicated further by unknown vertical land movements,is ill suited for measuring the GMSL. Yet it remains the only available source for deciphering the sea level rise over the last 100 a. The poor sampling characteristics of the tide gauge network have necessitated the usage of statistical inference. A linear optimal estimator based on the Gauss-Markov theorem seems well suited for the job. This still leaves a great deal of freedom in choosing the estimator. GMSL is poorly correlated with tide gauge measurements because the small uniform rise and fall of sea level are masked by the far larger regional signals. On the other hand,a regional mean sea level(RMSL) is much better correlated with the corresponding regional tide gauge measurements. Since the GMSL is simply the sum of RMSLs,the problem is transformed to one of estimating the RMSLs from regional tide gauge measurements. Specifically for the annual heating and cooling cycle,we separate the global ocean into 10-latitude bands and compute for each 10-latitude band the estimator that predicts its RMSL from tide gauges within. In the future,the statistical correlations are to be computed using satellite altimetry. However,as a first attempt,we have used numerical model outputs instead to isolate the problem so as not to get distracted by altimetry or tide gauge errors. That is,model outputs for sea level at tide gauge locations of the GLOSS network are taken as tide gauge measurements,and the RMSLs are computed from the model outputs. The results show an estimation error of approximately 2 mm versus an error of 2.7 cm if we simply average the tide gauge measurements to estimate the GMSL,caused by the much larger regional seasonal cycle and mesoscale variation plaguing the individual tide gauges. The numerical model,Los Alamos POP model Run 11 lasting 3 1/4 a,is one of the best eddy-resolving models and does a good job simulating the annual heating and cooling cycle,but it has no global or regional trend. Thus it has basically succeeded in estimating the seasonal cycle of the GMSL. This is still going to be the case even if we use the altimetry data because the RMSLs are dominated by the seasonal cycle in relatively short periods. For estimating the GMSL trend,longer records and low-pass filtering to isolate the statistical relations that are of interest. Here we have managed to avoid the much larger regional seasonal cycle plaguing individual tide gauges to get a fairly accurate estimate of the much smaller seasonal cycle in the GMSL so as to enhance the prospect of an accurate estimate of GMSL trend in short periods. One should reasonably expect to be able to do the same for longer periods during which tide gauges are plagued by much larger regional interannual(e. g.,ENSO events) and decadal sea level variations. In the future,with the availability of the satellite altimeter data,we could use the same approach adopted here to estimate the seasonal variations of GMSL and RMSL accurately and remove these seasonal variations accordingly so as to get a more accurate statistical inference between the tide gauge data and the RMSLs(therefore the GMSL) at periods longer than 1 a,i. e.,the long-term trend.  相似文献   

15.
Abstract

The ocean mean dynamic topography (MDT) is the surface representation of the ocean circulation. The MDT may be determined by the ocean approach, which involves temporal averaging of numerical ocean circulation model information, or by the geodetic approach, wherein the MDT is derived using the ellipsoidal height of the mean sea surface (MSS), or mean sea level (MSL) minus the geoid as the geoid. The ellipsoidal height of the MSS might be estimated either by satellite or coastal tide gauges by connecting the tide gauge datum to the Earth-centred reference frame. In this article we present a novel approach to improve the coastal MDT, where the solution is based on both satellite altimetry and tide gauge data using new set of 302 tide gauges with ellipsoidal heights through the SONEL network. The approach was evaluated for the Northeast Atlantic coast where a dense network of GNSS-surveyed tide gauges is available. The typical misfit between tide gauge and satellite or oceanographic MDT was found to be around 9?cm. This misfit was found to be mainly due to small scale geoid errors. Similarly, we found, that a single tide gauge places only weak constraints on the coastal dynamic topography.  相似文献   

16.
Since the advent of Global Navigation Satellite Systems, it has been possible to perform hydrographic survey reductions through the ellipsoid, which has the potential to simplify operations and improve bathymetric products. This technique requires a spatially continuous separation surface connecting chart datum (CD) to a geodetic ellipsoid. The Canadian Hydrographic Service (CHS), with support from the Canadian Geodetic Survey, has developed a new suite of such surfaces, termed Hydrographic Vertical Separations Surfaces, or HyVSEPs, for CD and seven tidal levels. They capture the spatial variability of the tidal datum and levels between tide gauges and offshore using semiempirical models coupling observations at tide stations with relative sea-level rise estimates, dynamic ocean model solutions, satellite altimetry, and a geoid model. HyVSEPs are available for all tidal waters of Canada, covering over seven million square kilometers of ocean and more than 200,000 kilometers of shoreline. This document provides an overview of the CHS's modeling approach, tools, methods, and procedures.

The HyVSEP for CD defines the new hydrographic datum for the tidal waters of Canada. HyVSEPs for other tidal levels are fundamental for coastal studies, climate change adaptation and the definition of the Canadian shoreline and offshore boundaries. HyVSEPs for inland waters are not discussed.  相似文献   


17.
Topex/Poseidon (T/P) altimetry has reopened the problem of how tidal dissipation is to be allocated. There is now general agreement of a M2 dissipation by 2.5 Terawatts (1 TW = 1012 W), based on four quite separate astronomic observational programs. Allowing for the bodily tide dissipation of 0.1 TW leaves 2.4 TW for ocean dissipation. The traditional disposal sites since (1920) have been in the turbulent bottom boundary layer (BBL) of marginal seas, and the modern estimate of about 2.1 TW is in this tradition (but the distribution among the shallow seas has changed radically from time to time). Independent estimates of energy flux into the marginal seas are not in good agreement with the BBL estimates.T/P altimetry has contributed to the tidal problem in two important ways. The assimilation of global altimetry into Laplace tidal solutions has led to accurate representations of the global tides, as evidenced by the very close agreement between the astronomic measurements and the computed 2.4 TW working of the Moon on the global ocean. Second, the detection by and (1996) of small surface manifestation of internal tides radiating away from the Hawaiian chain has led to global estimates of 0.2 to 0.4 TW of conversion of surface tides to internal tides. Measurements of ocean microstructure yields 0.2 TW of global dissipation by pelagic turbulence (away from topography). We propose that pelagic turbulence is maintained by topographic scattering of barotropic into baroclinic tidal energy, via internal tides and internal waves. Previous estimates by (1974); , (1982)) of this conversion along 150,000 km of continental coastlines gave a negligible 0.02 TW; evidently the important conversion takes place along mid-ocean ridges.The maintenance of the abyssal global stratification requires a much larger expenditure of power. 2 TW versus 0.2 TW. This is usually attributed to wind forcing. If tidal power is to play a significant role here, then the BBL estimates need to be reduced. The challenge is to estimate dissipation from the energy flux divergence in the T/P adjusted tidal models, without prior assumptions concerning the dissipation processes.  相似文献   

18.
Due to limit of coverage in TOPEX/Poseidon (T/P) satellite and sparseness of in-situ tide gauges around Antarctica, the accuracy of global ocean tide models in Antarctic seas is relatively poorer than in low- and mid-latitude regions. To better understand ocean tides in Prydz Bay, east Antarctica, a GPS receiver was deployed on floating sea ice to measure tide-induced ice motion in multiple campaigns. Four online Precise Point Positioning (PPP) services are used to process the GPS data in the kinematic PPP mode, and UTide software is used to separate the major tidal constituents. Comparison between results from different processing methods (relative processing solutions from Track, kinematic PPP solutions from online services) and with bottom pressure gauge (BPG) shows that, high-accuracy tidal information can be obtained from GPS observations on floating sea ice, the root-sum-square (RSS) for the eight major constituents (O1, K1, P1, Q1, M2, S2, N2, K2) is below 4 cm. We have also studied the impacts of data span and filter edge effects at daily boundaries on the accuracy of tide estimates, and found that to obtain reliable tide estimates and neglect the filter edge effects, continuous observation longer than 30 days is necessary. Our study suggests that GPS provides an independent method to estimate tides in Prydz Bay, and can be an alternative to tidal gauges, which are costly and hard to maintain in Antarctica.  相似文献   

19.
Abstract

In this paper the author presents the NSWC ocean tide model of the semidiurnal principal lunar (M2) tide in an atlas of ocean tidal charts and maps. The model is the computer result of a unique combination of mathematical and empirical techniques, which was introduced, extensively tested, and evaluated by Schwiderski (1978a, 1980a, b, 1983e). The computed M2 amplitudes and phases are tabulated along with all specially labeled empirical input data on a 1° × 1 ° grid system in 42° × 71° overlapping charts covering the whole oceanic globe. Corresponding global and arctic corange and cotidal maps are included to provide a quick overview of the major tidal phenomena. Significant qualitative and quantitative features are explained and discussed for proper application. In particular, the charted harmonic constants may be used to compute instantaneous M2 ocean tides with an accuracy of better than 5 cm any time and anywhere in the open oceans. Limitations of this accuracy in coastal waters and border seas are mentioned.

The following four sections of this paper deal with brief reviews, detailed evaluations, and simple improvements of general and special applications of the NSWC ocean tide model. In spite of the numerous and diverse applications with potential possibilities of erroneous interpretations, the results are gratifying without exceptions. For instance, it is concluded that the computed low‐degree spherical harmonic coefficients of the M2 ocean tide model agree with recent empirical satellite solutions as closely as one could wish for within the elaborated nonmodel error bounds. Detailed computations of all significant tidal energy terms produced the following noteworthy results: The rate of supplied tidal energy of 3.50Z1012 Watt matches Cartwright's (1977) estimate of 3.5Z1012 Watt. The rate of energy loss by bottom friction and displacement over the shelves is 1.50Z1012 Watt, which fits into Miller's (1966) estimated range of (1.4–1.7)Z1012 Watt, with a clear bias toward his preferred lower bound. Perhaps most remarkably, the computed range (0.41–0.60)Z1012 Watt for the rate of deep bottom friction work done by the unresolved fluctuating (internal or baroclinic) currents contains in its center Munk's (1966) estimate of 0.5Z1012 Watt and lies safely below Wunsch's (1975) extreme upper bound of 0.7Z1012 Watt, which both authors derived for the rate of energy needed to sustain the internal tidal circulations. As is commonly believed, the results substantiate the fact that the total rate of ocean eddy dissipation (into heat) by the averaged (surface or barotropic) currents and their fluctuating comotions is negligible within three significant figures. Finally, the total tidal energy budget of the oceans is perfectly balanced in realistic terms. Budget deficits in earlier tide models were traced to the following tacit assumptions: The ocean bottom tide is doing positive work on the oceans against the ocean tide. In fact, the bottom displacement work by the ocean tide against the bottom tide is an energy loss at the rate of 1.64Z1012 Watt. The transfer of G. I. Taylor's quadratic bottom friction term from the Irish Sea to the global oceans without accounting for major differences in area resolution scales is directly responsible for significant budget deficits in semiempirical estimates. In contrast, the hydrodynamically more consistent and realistic linear law of bottom friction encountered no serious transplantation difficulties.  相似文献   

20.
Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018. The range of linear absolute sea level trends were found ?2.00 mm/a to 6.88 mm/a excluding the central Arctic, positive trend rates were predominantly located in shallow water and coastal areas, and negative rates were located in high-latitude areas and Baffin Bay. Satellite-derived results show that the average secular absolute sea level trend was (2.53±0.42) mm/a in the Arctic region. Large differences were presented between satellite-derived and tide gauge results, which are mainly due to low satellite data coverage, uncertainties in tidal height processing and vertical land movement (VLM). The VLM rates at 11 global navigation satellite system stations around the Arctic Ocean were analyzed, among which 6 stations were tide gauge co-located, the results indicate that the absolute sea level trends after VLM corrected were of the same magnitude as satellite altimetry results. Accurately calculating VLM is the primary uncertainty in interpreting tide gauge measurements such that differences between tide gauge and satellite altimetry data are attributable generally to VLM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号