首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Through the analysis and 2-D inversion for the 5 profiles in Haiyuan arcuate tectonic region (105°~107°E,36°~37.5°N) in the northeastern margin of Qinghai-Xizang Plateau, we have obtained the electric structure within a range of 160 km in width (east-west) and 60 km in depth in the studied area. The results show that the crustal electric structure can be divided into 6 sections, corresponding respectively to Xiji basin (Ⅰ), Xihuashan-Nanhuashan uplift (Ⅱ), Xingrenbu-Haiyuan basin (Ⅲ), Zhongwei-Qingshuihe basin (Ⅳ), Zhongning-Hongsibu basin (Ⅴ) and west-margin zone of Ordos (Ⅵ) from the southwest to the northeast. The crustal electric structure is characterized by a broom-shaped pattern, which scatters to the northwest and shrinks to the southeast. The structures in the top part of Haiyuan arcuate tectonic region are complete and large, however, they diminish from the arc top to the northwest and southeast ends. In the depth from 0 km to 10 km, the resistivity is high in the sections Ⅱ and Ⅵ, but relatively low in the other four sections, showing a similar pattern of basin depression. The electrical basement in the section Ⅲ is the deepest, displaying a "dustpan" shape that is deep in the southwest and shallow in the northeast. A series of discontinuous zones with high conductivity exist in the middle-lower crust in Haiyuan arcuate tectonic region, which is possibly related to the moderate and strong earthquakes in the region. The resistivity distribution in the focal area of the 1920 Haiyuan earthquake is significantly heterogeneous with an obviously high conductivity zone near the hypocenter regime.  相似文献   

2.
Field experimental seismic sounding permitted us to obtain optimal shallow seismic reflection sounding parameters. In process of data processing, we obtained a high-qualitative shallow seismic reflection sounding profile by using the techniques such as filtering, edition surgical blanking, prediction deconvolution, fitting static correlation of first arrival time, and velocity analysis. Comprehensive analysis on the information of reflection wave groups along the seismic sounding profile and the stratigraphic and neogeochronological data obtained from many drills near the sounding line reveals that the upper termination of the detected fault zone is located at depth of 75–80 m, in the Middle Pleistocene deposits dated to be about 220 ka BP. The continuity, discontinuity, increasing and decreasing amount of reflection wave groups and change of their configurations, in combination with geological columns of drills, permitted us to know that the width of upper termination of the fault zone is 100 m. It can be inferred from the variation of number of reflection wave groups along the profile that the scarp of hidden fault is 200 m wide and the fault is a synsedimentary active fault in the Early Pleistocene and the early stage of Middle Pleistocene. No tectonic movement, which offset the covering deposits, had occurred since the late stage of Middle Pleistocene. Foundation item: A High-new Technique Project by State Development and Planning Commission of China (2001977).  相似文献   

3.
The Phan Si Pan zone in northwest Vietnam is an important tectonic unit for understanding the geological evolution of the southeast Asian Block. Numerous late Permian A‐type granites outcrop in this zone. In this study, new geochemical and geochronological data derived from the Muong Hum alkaline granitic pluton in the Phan Si Pan zone were investigated for its petrogenesis and tectonic setting. Zircon U–Pb analyses of three samples yielded 206Pb/238U ages of (251.1 ±3.5) Ma, (251.2 ±3.8) Ma, and (253.9 ±1.5) Ma, respectively, coinciding with the ages of the acid member of magma from Emeishan large igneous province, southwest China. The Muong Hum granite has 10 000 × Ga/Al and A/CNK values of 4.70–4.93 and 0.87–0.90, respectively, as well as negative Eu anomalies. It shows significant depletion of Ba, Sr, Ti, and P, similar to features of A‐type granite. Zircons have positive εHf(t) values (+1.9 to +8.6) and Hf model ages (TDM1) of 595–846 Ma, originating a mantle source. Compared with the Panzhihua A‐type granite of the southwest China domain and other A‐type plutons of the Phan Si Pan zone, including Ye Yen Sun, Phu Sa Phin, Nam Xe, Tam Duong Phan Si Pan, and Taihe, the geochemical characteristics and zircon Hf isotopic compositions of the Muong Hum granite demonstrate an affinity of mantle magma. It is believed that the Phan Si Pan zone is an important part of Emeishan large igneous province. It was reworked by the Cenozoic Aillaoshan‐Red River shear fault to its present location.  相似文献   

4.
The Luonan-Luanchuan tectonic belt lies between the North China Block and Qinling Mountains, including the Luonan-Luanchuan fault zone and the strong deformation zone to the north of the fault. The ductile shear zone, imbricate brittle fault and duplex structure in the fault zone now are the expression of the same tectonic event in different depth. Such lineation structure exists in the tectonic belts as mineral lineation, elongation lineation, crenulation lineation, sheath folds and so on, indicating NE-directed plate motion. Fold axes and thrusts in the strong deformation zone are inclined to the Luonan-Luanchuan fault zone at small angles. The structures with different natures show a regular pattern, produced during oblique convergence of plates. The convergence factors are as follows: The direction of plate convergence is 22°, 31° and the angle between the plate convergence direction and plate boundary is 73°, 82° respectively in the west and east segment. The Luonan-Luanchuan tectonic belt was deformed strongly in 372 Ma, resulted from Erlangping back-arc ocean basin subduction sinistrally and obliquely to North China Block during the collision of North China Block and South China Block. Supported by National Natural Science Foundation of China (Grant Nos. 40372097 and 40772131)  相似文献   

5.
IntroductionThenortheasternregionofQinghai-Xizangplateauisthejunctionregionofthethreeblocks,ie.,Qinghai-Xizang,AIxaandordosblock.TianandDing(l998)studiedtheclockwisetypequasi-trijunctionaroundHaiyuan-YinchuaninnortheasternregionofQinghai-Xizangplateau.Thethreet6ctonicbranchesofthequasi4rjunctionareQiIianshanfaultzone,Yinchuan-Jedai-Linhe(YJL)fractureddepressionbasinandLiupanshanfaultzone.TheQilianshanfaultzoneshowssin-istraIandcompressionalmovement,themovementofYJLbasinisofdextraland…  相似文献   

6.
A garnet-pyroxene bearing amphibolite as a xenolith hosted by the Mesozoic igneous rocks from Xuzhou-Suzhou area was dated by zircon SHRIMP U-Pb method, which yields a metamorphic age of 1918 ± 56 Ma. In addition, the zircons from a garnet amphibolite as a lens interbedded with marble in the Archean metamorphic complex named Wuhe group in the Bengbu uplift give a metamorphic U-Pb age of 1857 ± 19 Ma, and the zircons from Shimenshan deformed granite in the eastern margin of the Bengbu uplift give a magma crystallization U-Pb age of 2054 ± 22 Ma. Both the Xuzhou-Suzhou area and Bengbu uplift are located in the southeastern margin of the North China Craton. Therefore, these ages indicate that there is a Paleoproterozoic tectonic zone in the southeastern margin of the North China Craton, and its metamorphic and magmatic ages are consistent with those of the other three Paleoproterozoic tectonic zones in the North China Craton. In view of the large scale sinistral strike-slip movement occurred at the Mesozoic along the Tan-Lu fault zone, the position of the eastern Shandong area, which is a south section of the Paleoproterozoic Jiao-Liao-Ji Belt, was correlated to Xuzhou-Suzhou-Bengbu area prior to movement of the Tan-Lu fault zone. This suggests that the Xuzhou-Suzhou-Bengbu Paleoproterozoic tectonic zone might be a southwest extension of the Paleoproterozoic Jiao-Liao-Ji Belt. Supported by National Natural Science Foundation of China (Grant No. 40634023)  相似文献   

7.
On the basis of a newly-constructed record of magnetic susceptibility (SUS) and the depositional rate change of eolian loess-red clay sequences in the last 7.2 Ma BP from the hea Plateau, together with a cornperison of a record of °18O values from the equatorial East Pacific Ocean and eolian Quartz flux variations fmm the North Pacific Ocean, the evolutiomuy process of the Late Cenozoic Great Glaciation in the Northern Hemisphere can be divided into three stages: the arrival stage around 7.2–3.4 Ma BP, the initial stage at about 3.4—2.6 Ma BP, and the Great Ice Age since 2.6 Ma BP. The evolution of the East Asian monsoon is characterized by paid winter and summer monsoons, and it is basically composed of the initial stage of weak winter and summer monsoons, the transitional stage of simultaneous increase in intensity of winter and summer monsoons, and the prevailing stage of strong winter and week summer monsoons, or weak winter and strong summer monsoons. The Late Cenowic global tectonic uplift, paaicdarly the Qinghai-Xizang Plateau uplift and the associated CO2 concentration variation, controls the dng processes of the onset of Great Glaciation and the long-term changes of East Asian monsoom climate in the Northern Hemisphere to a large extent. The accelerating uplift of the Qinghai-Xizang Plateau between 3.4 and 2.6 Ma BP provided an important driving force to global climiatic change. Project supported by the foundation of Chinese Academy of Sciences (Grant No. KZ951-A1-402), the State Science and Technology Committee (Grant No. 95-pre-40)and the Chinese Nature Science Foundation (Grant No. 49672140)  相似文献   

8.
The Ertix gold belt is located on the boundary of the Kalatongke arc and the Kelan back-arc basin of D-C1. Most scholars used to interpret the formation and distribution of the gold deposits in the Ertix tectonic belt in terms of the petrogenic and metallogenic models for active continental margins. However, enormous data of isotopic dating and geologic research show that the mineralization was obviously later than the oceanic subduction, whereas exactly simultaneous with the collisional orogenesis during C2-P, especially at the transition stage from collisional compression to extension. Based on study of metallogenic time, tectonic background, ore geology, ore fluid nature, ore material source, etc., we reveal that all the gold deposits possess the character of orogenic deposits formed in collisional orogenic system, and that their ore-forming materials mainly have derived from the stratigraphic terranes south to individual deposits. Accordingly, the theoretical tectonic model for collisional metallogenesis and petrogenesis is employed to explain the formation of the Ertix gold belt and to determine the gold exploration directions.  相似文献   

9.
塔里木盆地的高分辨率沉积记录对于理解青藏高原隆升、亚洲内陆干旱化乃至全球气候变化至关重要.建立可靠的地层年代标尺对于研究塔里木盆地晚新生代沉积环境演化、构造运动及古气候变化具有重要意义.本文对塔里木盆地东北缘库尔勒地区的两个全取心钻孔ZK3(深500 m)、ZK5(深300 m)进行详细的磁性地层学研究,结果表明,ZK3孔中更新统底界为54.8 m,下更新统底界为167.0 m,上新统底界为432.0 m,钻孔底部年龄约为6.2 Ma,属上中新统上部;ZK5孔中更新统底界为64.7 m,下更新统底界为241.5 m,钻孔底部年龄约为3.2 Ma,属上上新统.基于上述磁性地层年代标尺,通过沉积速率分析发现ZK3孔在3.0—3.6 Ma之间沉积速率明显增大,反映了塔里木盆地北部天山在此期间的快速隆升.通过东西部多个盆地地质剖面沉积速率的对比分析发现,这期构造活动在区域上具有准同期活动特征,在时代上与晚中新世以来青藏高原快速隆升的时代一致,可能与青藏高原的隆升扩展效应有关.  相似文献   

10.
This paper studies the computation method of two-step inversion of interface and velocity in a region. The 3-D interface is described by a segmented incomplete polynomial; while the reconstruction of 3-D velocity is accomplished by the principle of least squares in functional space. The computation is carried out in two steps. The first step is to inverse the shape of 3-D interface; while the second step is to do 3-D velocity inversion by distributing the remaining residual errors of travel time in accordance with their weights. The data of seismic sounding in the Tangshan-Luanxian seismic region are processed, from which the 3-D structural form in depth of the Tangshan seismic region and the 3-D velocity distribution in the crust below the Tangshan-Luanxian seismic region are obtained. The result shows that the deep 3-D structure in the Tangshan seismic region trends NE on the whole and the structure sandwiched between the NE-trending Fengtai-Yejituo fault and the NE-trending Tangshan fault is an uplifted zone of the Moho. In the 3-D velocity structure of middle-lower crust below that region, there is an obvious belt of low-velocity anomaly to exist along the NE-trending Tangshan fault, the position of which tallies with that of the Tangshan seismicity belt. The larger block of low-velocity anomaly near Shaheyi corresponds to a denser earthquake distribution. In that region, there is an NW-trending belt of high-velocity anomaly, probably a buried fault zone. The lower crust below the epicentral region of the Tangshan M S=7.8 earthquake is a place where the NE-trending belt of low-velocity anomaly meets the NW-trending belt of high-velocity anomaly. The two sets of structures had played an important role in controlling the preparation and occurrence of the M S=7.8 Tangshan earthquake. Contribution RCEG97006, Research Center of Exploration Geophysics, China Seismological Bureau, China. This project is supported by the Chinese Joint Seismological Science Foundation.  相似文献   

11.
A combined study using LA-ICP-MS U-Pb dating, Hf isotopes, trace elements and the Ti-in-zircon geo-thermometer was carried out on zircons from the metamorphosed basic-ultrabasic rocks in the meta-morphic basement of the Cathaysia Block, southwestern Zhejiang Province. The formation and meta-morphic ages of the rocks from the metamorphic basement of the Cathaysia Block were determined based on zircon U-Pb geochronology. The age for the magmatic crystalline zircons from the protolith is about 1.85 Ga. The εHf(t) values of the older zircons were from ?7 to ?3, with two-stage model Hf ages (TDM2LC) of about 2.9 to 3.4 Ga, indicating that the source material was derived from anatexis and recy-cling of the Archean crust. The newly formed metamorphic zircons yielded U-Pb ages of 260―230 Ma. The metamorphic temperature calculated using the Ti-in-zircon geothermometer ranged from 610 to 720℃, consistent with the results from petrographic observations, indicating that the Cathaysia Block experienced an amphibolite facies metamorphism during the Indosinian. Results from this study pro-vided an important timeframe for the tectonic evolution in South China and the Southeast Asia during the Late Permian and Early Triassic times.  相似文献   

12.
On the southeast coast of Fujian and its adjacent area, the NE-trending Changle-Zhao′an fault zone and several NW-trending faults that are genetically related to the former are well developed. With micro-relief analysis, the paper deals with the Quaternary activity of the faults and the tectonic stress field since the late Pleistocene in this region. The results indicate that the micro-relief of the NE-trending Changle-Zhao′an fault zone and the genetically related NW-trending faults is characterized by vertical and horizontal movements since the Quaternary; the faults in the region have undergone two active stages since the Quaternary, i.e. early Quaternary and late Pleistocene; since the late Pleistocene, the movement of the NE-trending faults showed a right-lateral strike-slip, while that of NW-trending faults a left-lateral strike-slip, indicating a NWW-SEE oriented horizontal principal stress of the regional tectonic stress field  相似文献   

13.
Characteristics of present-day tectonic movement in the northeastern margin of Qinghai-Xizang plateau (Tibetan) are studied based on earthquake data. Evidence of earthquake activity shows that junctures between blocks in this area consist of complicated deformation zones. Between the Gansu-Qinghai block and Alxa block there is a broad compressive deformation zone, which turns essentially to be a network-like deformation region to the southeast. The Liupanshan region, where the Gansu-Qinghai block contacts the Ordos block, is suffering from NE-SW compressive deformation. Junction zone between the Ordos and Alxa block is a shear zone with sections of variable trend. The northwestern and southeastern marginal region of the Ordos is under NNW-SSE extension. The above characteristics of present-day tectonic deformation of the northeastern Qinghai-Xizang plateau may be attributed to the northeastward squeezing of the plateau and the resistance of the Ordos block, as well as the southeastward extrusion of the plateau materials. Foundation item: State Natural Science Foundation of China (49732090) and the Development Program on National Key Basic Researches under the Project Mechanism and Prediction of Continental Strong Earthquakes (95-13-02-05). Contribution No. 00FE2003, Institute of Geophysics, China Seismological Bureau.  相似文献   

14.
This paper selected five typical Mesozoic intrusives from the Tongling metallogenic cluster (Xiaotongguanshan, Fenghuangshan, Xinqiao, Dongguashan, and Shatanjiao plutons), and made a systemic SHRIMP zircon U-Pb dating for the five plutons, which produced an age range of 151.8±2.6- 142.8±1.8 Ma. This work put an accurate constraint on the formation age of the intrusives in the Tongling metallogenic cluster. These age data indicate that magmatic activity reached a peak during Late Jurassic. The intrusive sequence of magma is generally from quartz monzonite (porphyry) through monzonite to granodiorite to quartz monzodiorite to pyroxene monzodiorite to gabbro-diabase. The intrusives of different lithology differed in crystallization age, probably implying the intrusives in the Tongling area underwent an evolutional process of magma, which was closely related to geodynamical setting in the depths of the area. A dynamic model was presented for the origin of the igneous rocks in the study area as follows. The assembly between the Yangtze craton and the North China craton fini- shed at the end of T3, and then the stage of another compressional orogeny began in the Tongling area, i.e., Pacific dynamic system. Along with the subduction of the Izanagi plate underneath the Eurasian plate at J2-J3, NW-trending compression toward the East China continent was produced, and compres- sional deformation also took place, forming NE-trending fold and resulting in thickening of the crust in the Tongling area. High-density eclogite-facies rocks were produced in the low part of the crust, re- sulting in the delamination of mantle lithosphere and lower crust, and upwelling of materials in as- thenosphere. Decompression melting produced basaltic magma, and the materials in lower crust were heated by the underplating of the basaltic magma. Thus, melting of lower crust yielded granitic magma, which intruded along deep and large faults through various geological processes (J3-K1). The SHRIMP U-Pb zircon age of 151.8±2.6-142.8±1.8 Ma for intrusives in the Tongling area suggests that the de- lamination of lithosphere mantle and lower crust at least began at middle-late stage of Late Jurassic, resulting in sharp thinning of lithosphere and intense extension of middle-upper crust. Thus, a lot of decollements were produced between cover and cover, basement and cover, and middle and lower crust. This was structural layering or detachment of lithosphere in the Tongling area. Three concordant ages for old inherited cores of magmatic origin (747-823 Ma) indicated that there were obvious mag- matism in the Tongling area during Neoproterozoic, and a little more of the Neoproterozoic igneous source rocks participated in the formation of Mesozoic intrusives.  相似文献   

15.
Geological mapping data (1:250000) in the Qinghai-Tibet Plateau and its adjacent regions reveal the sediment sequences, distribution and tectonic evolution of the 92 Tertiary remnant basins. Southern Tibet and the Yecheng area in Xinjiang, located at southern and northwestern margins of the Qinghai-Tibet Plateau, respectively, were parts of the Neo-Tethys remnant sea in the Paleogene. In southern Tibet, both the subabyssal and abyssal sequences occur at the Gyangze, Saga, Guoyala, and Sangmai areas. The deep-water facies successions outcrop in the west, whereas the shallow-water facies sequences in the east, indicating the east to the west retreat of the Neo-Tethys Ocean. The retreat of the Neo-Tethys Ocean in the east was contributed to the earlier tectonic uplift of the eastern Qinghai-Tibet Plateau. The uplift process of the Plateau from the Late Cretaceous to Pliocene is described as follows: During the Late Cretaceous, tectonic uplift of the Qinghai-Tibet Plateau occurred in the northeastern part and the configuration of the Qinghai-Tibet Plateau was characterized by rise in the northeast and depression in the west. In the Paleocene-Eocene interval, the Tengchong-Baingoin and Kuyake-Golmud areas experienced local tectonic uplifting, the West Kunlun uplift zone broadened easterly, the Qilian uplift zone broadened southerly, and the Songpan-Garzê uplift zone shrank easterly. The Oligocene configuration of the Qinghai-Tibet Plateau was characterized by mountain chains rising along its margins and sedimentary basins in the central part because of tectonic uplifts of the Gangdisê and the Himalaya blocks. Meanwhile, the Kunlun-Altyn-Qilian uplift zones have also broadened southerly and northerly. In contrast, the great uplift zones of the Gangdisê, the Himalaya, the Karakorum, and the Kunlun blocks characterize the paleogeographic contours of the Qinghai-Tibet Plateau during the Miocene-Pliocene. Additionally, the thermochronological data on tectonic uplift events in southern Tibet, West Kunlun Mountains, Altyn Tagh, eastern Tibet, and western Sichuan all suggest that the most intense deformation occurred at 13-8 Ma and since 5 Ma, respectively, corresponding to two great uplift periods in Neogene. As a result, turnover of paleogeographic configuration of the Qinghai-Tibet Plateau occurred during the Neogene, experiencing a change from high contours in the east in the pre-Oligocene to high contours in the west at the end-Pliocene. The uplift of the Qinghai-Tibet Plateau during the Cenozoic was episodic, and the uplifts of various blocks within the Plateau were spatially and chronologically different.  相似文献   

16.
福建东南沿海及邻区活动断裂的微地貌研究   总被引:2,自引:0,他引:2       下载免费PDF全文
本文对福建东南沿海及邻区活动断裂进行了微地貌学分析,研究了区内断裂构造第四纪以来的活动特征,并探讨了晚更新世以来的区域构造应力场.结果表明:北东向的长乐—诏安断裂带和与之具有成生联系的北西向断裂,第四纪以来具有垂直运动和水平运动的特征;主要有两个明显的活动期,即早、中更新世和晚更新世;晚更新世以来,北东向断裂具右旋水平滑动,北西向断裂具左旋水平滑动,显示出北西西—南东东向水平挤的区域构造应力场.  相似文献   

17.
Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the Sichuan-Yunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the Sichuan-Yunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below. Foundation item: National Scientific and Technological Development Program (95-973-02-02), the Climb Program (95-S-05-01) of National Scientific and Technological Ministry of China, and the State Natural Sciences Foundation of China (49874021). Contribution No. 02FE2004, Institute of Geophysics, China Seismological Bureau.  相似文献   

18.
IntroductionMore than 30 years has passed since gravity method was used to Study the eanhquake prediction in China in later 1960s (In America, Germany, Japan and the former Soviet Union etC. it haspassed nearly half a century). In this 30 years the most remarkable success achieved are as follows.First, in the cognition aspect, the questions whether the gravity will change or not before earthquake and how much the magnitUde of change has been answered. TO the fial queStion, the answer is p…  相似文献   

19.
Geochronology of the volcanic rocks in the Lu-Zong basin and its significance   总被引:23,自引:0,他引:23  
The Lu-Zong (Lujiang-Zongyang) basin is one of the most important volcanic basins in the middle and lower reaches of the Yangtze River area, China. It comprises four shoshonitic volcanic units, which are, in an ascending order, the Longmenyuan, Zhuanqiao, Shuangmiao and Fushan Groups. The LA-ICP MS U-Pb zircon ages of the four units are: 134.8±1.8 Ma for the Longmenyuan Group, 134.1±1.6 Ma for the Zhuanqiao Group, 130.5±0.8 Ma for the Shuangmiao Group, and 127.1±1.2 Ma for the Fushan Group. The results indicate that all volcanic rocks in the Lu-Zong basin were formed in the Early Cretaceous from about 135 Ma to 127 Ma, lasting 8-10 Ma. There were no Jurassic volcanic activities in all the volcanic basins including the Lu-Zong basin in the middle and lower reaches of the Yangtze River area. This work has provided new chronological results for the further study and understanding of the tec- tonic, magmatic and metallogenic processes of eastern China in the Mesozoic.  相似文献   

20.
The results of seismic deep reflection,high resolution refraction and shallow artificial seismic exploration indicate that the fault on the northern bank of the Weihe river is composed of two faults,one is the Yaodian-Zhangjiawan fault and the other is the Chuanzhang-Zuitou fault.The 22 km long Yaodian-Zhangjiawan fault of EW-striking starts from Chenjiagou via Yaodian town,Qianpai village,Bili village,Wujia town and Zhangjiawan to Jiajiatan.The 15 km long Chuanzhang-Zuitou fault striking near EW starts from Chuanzhang via Mabei to Zuitou.The Weihe fault offset the basement and upper crust,the reflecting layers of TQ,TN,TE and Tg are ruptured at depth of about 15 km.In the deep part,the Weihe fault and the secondary fault form a Y-shaped structure or a synthetic low angle intersection.The Weihe fault is a listric normal fault.The fault has obvious structural characteristics of a reversed-drag normal fault and a normal drag normal fault with the depth of 1 000 m,and also has the characteris-tics of syngenetic sediment.The Weihe fault is one of the faults which control the basin sediment,and it is the boundary fault of Xi’an depression and Xianyang salient.The depth of the fault decreases from the west to east gradually,the deep part intersects with the Lintong-Chang’an fault at the intersection part of Weihe River,Jinghe River and Bahe River and the shallow part connects with the Weinan-Jingyang fault.The seismic exploration re-sults indicate that no fault exists on southern bank of the Weihe River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号