首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中国华北地区壳内低速高导层(体)成因模式的探讨   总被引:5,自引:0,他引:5  
高平 《中国地震》1997,13(3):223-231
依据高温高压下华北地区地壳主要岩石的物理性质-波速,电性测定的结果,提出了华北地区低速高导层可能的成因模式以及不同模式的适应范围。认为;碳酸盐岩在深部一定温度,压力和氧逸度条件下碳的析出会导致高导层体的出现;深部韧性剪切带组成矿物的定向排列,可使岩石的波速,电生产生各向异性行为,导致低速高导层的产生;绿片岩相和角闪岩相石中含水矿物的脱水作用会导致上,中地壳岩石物理力学性质的突变,这可能是该地区低速  相似文献   

2.
We explore the possible relationships between a structural heterogeneity, the hydrothermal system, and the intrusive activity at Piton de la Fournaise volcano. Geological and geophysical data show that as the result of repeated collapses (the last one in 2007), a cylinder of faulted, fractured, and crumbled rocks must exist between the surface and the top of a magma reservoir at about sea level. This structure constitutes a major geological heterogeneity. An obvious spatial correlation exists between this column of fractured and brecciated rock and the location of (1) most of the seismic activity, (2) a low-resistivity dome, (3) a huge self-potential anomaly, (4) thermal evidence of hydrothermal activity, and (5) the root of magma intrusions. The dominant factors that make this structural heterogeneity a trap for the activity are probably its higher permeability and its weaker mechanical strength. Evidence exists for the presence of an active hydrothermal system confined in this permeable zone. The long-term stability of the activated zone above sea level and the similarity of the pre-eruptive crises, in spite of the inferred large perturbation of the magmatic system in 1998, suggest a common triggering mechanism for all the eruptions since at least the first data recorded by the observatory in 1980. This mechanism can be purely magmatic, resulting from the pressurization of a reservoir, but we also propose that the hydrothermal system may play a role in the development of volcanic instabilities. A qualitative model is proposed to explain the triggering of magma intrusions by hydrothermal processes, and its speculative aspects are discussed. This work represents a first attempt to integrate the structural and dynamic information in a unified framework at Piton de la Fournaise.  相似文献   

3.
A rhyolitic ash-flow tuff in a hydrothermally active area within the Yellowstone caldera was drilled in 1967, and cores were studied to determine the nature and distribution of primary and secondary mineral phases. The rocks have undergone a complex history of crystallization and hydrothermal alteration since their emplacement 600,000 years ago. During cooling from magmatic temperatures, the glassy groundmass underwent either devitrification to alkali feldspar + α-cristobalite ± tridymite or granophyric crystallization to alkali feldspar + quartz. Associated with the zones of granophyric crystallization are prismatic quartz crystals in cavities similar to those termed miarolitic in plutonic rocks. Vapor-phase alkali feldspar, tridymite, magnetite, and sporadic α-cristobalite were deposited in cavities and in void spaces of pumice fragments. Subsequently, some of the vapor-phase alkali feldspar crystals were replaced by microcrystalline quartz, and the vapor-phase minerals were frosted by a coating of saccharoidal quartz.Hydrothermal minerals occur primarily as linings and fillings of cavities and fractures and as altered mafic phenocrysts. Chalcedony is the dominant mineral related to the present hydrothermal regime and occurs as microcrystalline material mixed with various amounts of hematite and goethite. The chalcedony displays intricate layering and was apparently deposited as opal from silica-rich water. Hematite and goethite also replace both mafic phenocrysts and vapor-phase magnetite. Other conspicuous hydrothermal minerals include montmorillonite, pyrite, mordenite, calcite, and fluorite. Clinoptilolite, erionite, illite, kaolinite, and manganese oxides are sporadic. The hydrothermal minerals show little correlation with temperature, but bladed calcite is restricted to a zone of boiling in the tuff and clearly was deposited when CO2 was lost during boiling.Fractures and breccias filled with chalcedony are common throughout Y-5 and may have been produced by rapid disruption of rock caused by sudden decrease of fluid pressure in fractures, most likely a result of fracturing during resurgent doming in this part of the Yellowstone caldera. The chalcedony probably was deposited as opal or β-cristobalite from a pre-existing silica floc that moved rapidly into the fractures and breccias immediately after the sudden pressure drop.  相似文献   

4.
Abstract The Solund‐Stavfjord ophiolite complex (SSOC) in western Norway represents a remnant of the Late Ordovician oceanic lithosphere, which developed in an intermediate‐ to fast‐spreading Caledonian back‐arc basin. The internal architecture and magmatic features of its crustal component suggest that the SSOC has a complex, multistage sea floor spreading history in a supra‐subduction zone environment. The youngest crustal section associated with the propagating rift tectonics consists of a relatively complete ophiolite pseudostratigraphy, including basaltic volcanic rocks, a transition zone between the sheeted dyke complex and the extrusive sequence, sheeted dykes, and high‐level isotropic gabbros. Large‐scale variations in major and trace element distributions indicate significant remobilization far beyond that which would result from magmatic processes, as a result of the hydrothermal alteration of crustal rocks. Whereas K2O is strongly enriched in volcanic rocks of the extrusive sequence, Cu and Zn show the largest enrichment in the dyke complex near the dyke–volcanic transition zone or within this transition zone. The δ18O values of the whole‐rock samples show a general depletion structurally downwards in the ophiolite, with the largest and smallest variations observed in volcanic rocks and the transition zone, respectively. δ18O values of epidote–quartz mineral pairs indicate 260–290°C for volcanic rocks, 420°C for the transition zone, 280–345°C for the sheeted dyke complex and 290–475°C for the gabbros. The 87Sr/86Sr isotope ratios show the widest range and highest values in the extrusive rocks (0.70316–0.70495), and generally the lowest values and the narrowest range in the sheeted dyke complex (0.70338–0.70377). The minimum water/rock ratios calculated show the largest variations in volcanic rocks and gabbros (approximately 0–14), and generally the lowest values and range in the sheeted dyke complex (approximately 1–3). The δD values of epidote (?1 to ?12‰), together with the δ18O calculated for Ordovician seawater, are similar to those of present‐day seawater. Volcanic rocks experienced both cold and warm water circulation, resulting in the observed K2O‐enrichment and the largest scatter in the δ18O values. As a result of metal leaching in the hot reaction zone above a magma chamber, Zn is strongly depleted in the gabbros but enriched in the sheeted dyke complex because of precipitation from upwelling of discharged hydrothermal fluids. The present study demonstrates that the near intact effect of ocean floor hydrothermal activity is preserved in the upper part of the SSOC crust, despite the influence of regional lower greenschist facies metamorphism.  相似文献   

5.
Lode gold deposits are among the most economically important types of gold deposits in the world. Globally, they formed mainly in three time intervals, 2.8 to 2.5 Ga, 2.1 to 1.8 Ga, and 700 Ma to the present. Sources of ore-forming fluids and other components are of critical importance in a better understanding of the genesis and the geodynamic controls of these deposits. Although ore-forming fluids were mostly derived from devolatization of sedimentary and/or volcanic sequences during greenschist to amphibolite facies metamorphism associated with orogenic deformation, magmatic hydrothermal fluids have been increasingly shown to be important in many gold deposits in various regions. In this review paper, we summarize the major features of lode gold deposits, possible sources of ore-forming fluids, and mechanisms of gold mineralization. While we acknowledge the critical role of metamorphically derived fluids in the genesis of such deposits worldwide, we emphasize that mantle-or basaltic magma-derived fluids may have been much more important than commonly thought. We use the Liaodong peninsula of the North China Craton as an example to demonstrate the significance of mantle-derived fluids. Integrating earlier studies and new data, we show that some of the late Mesozoic lode gold deposits in the North China Craton may have formed from magmatic hydrothermal fluids due to the extension and partial melting of the hydrated, metasomatized subcontinental lithosphere mantle, as best exemplified by the Wulong gold deposit.  相似文献   

6.
Papandayan is a stratovolcano situated in West Java, Indonesia. Since the last magmatic eruption in 1772, only few hydrothermal explosions have occurred. An explosive eruption occurred in November 2002 and ejected ash and altered rocks. The altered rocks show that an advanced argillic alteration took place in the hydrothermal system by interaction between acid fluids and rocks. Four zones of alteration have been defined and are limited in extension and shape along faults or across permeable structures at different levels beneath the active crater of the volcano.  相似文献   

7.
燕山地区早侏罗世岩浆活动热供给的数值模拟   总被引:1,自引:0,他引:1  
刘翠  石耀霖  乔彦超  邓晋福  李宁  段培新 《地震》2013,33(4):257-268
燕山地区燕山期发育大量的岩浆岩, 如此大规模的岩浆活动(热)的来源一直是一个谜。 本文利用有限元的热传导模拟反演可能的热供给。 模型假设温度1250 ℃、 面积905.86 km2半圆面形玄武岩浆底侵到36.6~50 km深的陆壳底部, 陆壳的地温梯度随着克拉通的破坏而逐渐升高。 数值模拟的主要结论: ① 早侏罗世时期的地温曲线表明, 要使围岩发生熔融, 所需要的底侵玄武岩岩浆量是非常大的, 基于燕山地区实际产出的早侏罗世时期的酸性岩, 反演产生81 km2的花岗岩需要的最少底侵玄武岩岩浆量为1053 km2; ② 早侏罗世(J1)的模型温度场表明, 随着时间的演化, 在40~50 km处水平方向的围岩温度升高明显, 形成很明显的一条高温带或熔融带, 该高温带或者熔融带可能成为后期的构造薄弱面, 加上榴辉岩相变造成的密度增加引起下坠, 达到临界值时, 就会出现垮落, 因此本文从数值模拟的角度, 支持拆沉作用的发生。  相似文献   

8.
The oxygen isotope compositions and metamorphic mineral assemblages of hydrothermally altered rocks from the Del Puerto ophiolite and overlying volcaniclastic sedimentary rocks at the base of the Great Valley sequence indicate that their alteration occurred in a submarine hydrothermal system. Whole rock δ18O compositions decrease progressively down section (with increasing metamorphic grade): +22.4‰ (SMOW) to +13.8 for zeolite-bearing volcaniclastic sedimentary rocks overlying the ophiolite; +19.6 to +11.6 for pumpellyite-bearing metavolcanic rocks in the upper part of the ophiolite's volcanic member; +12.3 to +8.1 for epidote-bearing metavolcanic rocks in the lower part of the volcanic member; +8.5 to +5.7 for greenschist facies rocks from the ophiolite's plutonic member; +7.6 to +5.8 for amphibolite facies or unmetamorphosed rocks from the plutonic member.

Modelling of fluid-rock interaction in the Del Puerto ophiolite indicates that the observed pattern of upward enrichment in whole rock δ18O can be best explained by isotopic exchange with discharging18O-shifted seawater at fluid/rock mass ratios near 2 and temperatures below 500°C.18O-depleted plutonic rocks necessarily produced during hydrothermal circulation were later removed as a result of tectonism. Submarine weathering and later burial metamorphism at the base of the Great Valley sequence cannot by itself have produced the zonation of hydrothermal minerals and the corresponding variations in oxygen isotope compositions. The pervasive zeolite and prehnite-pumpellyite facies mineral assemblages found in the Del Puerto ophiolite may reflect its origin near an island arc rather than deep ocean spreading center.  相似文献   


9.
Widespread Mesozoic magmatism occurs in the Korean Peninsula (KP). The status quo is poles apart between the northern and southern parts in characterizing its distribution and nature, with the nearly absence of any related information in North Korea. We have the opportunity to have conducted geological investigations in North Korea and South Korea during the past ten years through international cooperation programs. This led to the revelation of a number of granitoids and related volcanic rocks and thus facilitates the comparison with those in East China and Japan. Mesozoic granitoids in the KP can be divisible into three age groups: the Triassic group with a peak age of ~220 Ma, the Jurassic one of ~190–170 Ma and the late Early Cretaceous one of ~110 Ma. The Triassic intrusions include syenite, calc-alkaline to alkaline granite and minor kimberlite in the Pyeongnam Basin of North Korea. They have been considered to form in post-orogenic settings related to the Central Asian Orogenic Belt (CAOB) or the Dabie-Sulu Orogenic Belt (DSOB). The Jurassic granitoids constitute extensive occurrence in the KP and are termed as the Daebo-period magmatism. They correlate well with coeval counterparts in NE China encompassing the northeastern part of the North China Craton (NCC) and the eastern segment of the CAOB. They commonly consist of biotite or two-mica granites and granodiorites, with some containing small dark diorite enclaves. On one hand, Early Jurassic to early Middle Jurassic magmatic rocks are rare in most areas of the NCC, whilst Middle-Late Jurassic ones are not developed in the KP. On the other hand, both NCC and KP host abundant Cretaceous granites. However, the present data revealed contrasting age peaks, with ~130–125 Ma in the NCC and ~110–105 Ma in the KP. Cretaceous granites in the KP comprise the dominant biotite granites and a few amphibole granites. The former exhibit mildly fractionated REE patterns and zircon ε Hf(t) values from -15 to -25, whereas the latter feature strongly fractionated REE patterns and zircon ε Hf(t) values from -10 to -1. Both granites contain inherited zircons of ~1.8–1.9 or ~2.5 Ga. These geochemical characters testify to their derivation from re-melting distinct protoliths in ancient basement. Another Cretaceous magmatic sub-event has been entitled as the Gyeongsang volcanism, which is composed of bimodal calc-alkaline volcanic rocks of 94–55 Ma and granitic-hypabyssal granitic bodies of 72–70 Ma. Synthesizing the Mesozoic magmatic rocks across the KP, NCC and Japan can lead to the following highlights: (1) All Triassic granites in the NCC, KP and Japan have similar characteristics in petrology, chronology and geochemistry. Therefore, the NCC, KP and Japan tend to share the same tectonic setting during the Triassic, seemingly within the context of Indosinian orogensis. (2) Jurassic to earliest Cretaceous magmatic rocks in the NCC seem to define two episodes: episode A from 175 to 157 Ma and episode B from 157 to 135 Ma. Jurassic magmatic rocks in the KP span in age mainly from 190 to 170 Ma, whereas 160–135 Ma ones are rare. With the exception of ~197 Ma Funatsu granite, Jurassic magmatic rocks are absent in Japan. (3) Cretaceous granites in the KP have a peak age of ~110, ~20 Ma younger than those in the NCC, while Japan is exempt from ~130–100 Ma granites. (4) The spatial-temporal distribution and migratory characteristics of the Jurassic-Cretaceous magmatic rocks in Japan, KP, and NE China-North China indicate that the subduction of the Paleo-Pacific plate might not be operative before Late Cretaceous (~130–120 Ma). (5) Late Cretaceous magmatic rocks (~90–60 Ma) occur in the southwestern corner of the KP and also in Japan, coinciding with the metamorphic age of ~90–70 Ma in the Sanbagawa metamorphic belt of Japan. The magmatic-metamorphic rock associations and their spatial distribution demonstrate the affinities of sequentially subduction zone, island arc and back-arc basin from Japan to Korea, arguing for the Pacific plate subduction during Late Cretaceous. (6) This study raises another possibility that the Mesozoic cratonic destruction in the NCC, which mainly occurred during ~150–120 Ma, might not only be due to the subduction of the Paleo-Pacific Plate, but also owe much to the intraplate geodynamic forces triggered by other adjacent continental plates like the Eurasian and Indian plates.  相似文献   

10.
High-TiO2, quartz-normative (HTQ) tholeiite sheets of Early Jurassic age have intruded mainly Late Triassic sedimentary rocks in several early Mesozoic basins in the eastern United States. Field observations, petrographic study, geochemical analyses and stable isotope data from three HTQ sheet systems in the Culpeper basin of Virginia and Maryland and the Gettysburg basin of Pennsylvania were used to develop a general model of magmatic differentiation and magmatic-hydrothermal interaction for HTQ sheets. The three sheet systems have remarkably similar major-oxide and trace-element compositions. Cumulus and evolved diabase in comagmatic sheets separated by tens of kilometers are related by igneous differentiation. Differentiated diabase in all three sheets have petrographic and geochemical signatures and fluid inclusions indicating hydrothermal alteration beginning near magmatic temperatures and continuing to relatively low temperatures. Sulfur and oxygen isotope data are consistent with a magmatic origin for the hydrothermal fluid.The three sheet systems examined apparently all had a similar style of crystal-liquid fractionation that requires significant lateral migration of residual magmatic liquid. The proposed magmatic model for HTQ sheets suggests that bronzite-laden magma was intruded in an upper crustal magma chamber, with bronzite phenocrysts collecting in the lower part of the magma chamber near the feeder dike. Early crystallization of augite and Ca-poor pyroxene before significant plagioclase crystallization resulted in density-driven migration of lighter residual magmatic liquids along lateral and vertical pressure gradients towards the upper part of the sheet. The influence of water on the physical properties of the residual liquid, including density, viscosity and liquidus temperature, may have facilitated the lateral movement more than 15 km up dip in the sheets. Exsolution of a Cl- and S-rich metal-bearing aqueous fluid from residual magma resulted in concentration and redistribution of incompatible and aqueoussoluble elements in late-stage differentiated rocks. This proposed hydrothermal mechanism has important economic implications as it exerts a strong control on the final distribution of noble metals in these types of diabase sheets.  相似文献   

11.
We determined the mineralogical and petrological characteristics of ultramafic rocks dredged from two oceanic core complexes: the Mado Megamullion and 23°30′N non-transform offset massif, which are located within the Shikoku back-arc basin in the Philippine Sea. The ultramafic rocks are strongly serpentinized, but can be classified as harzburgite/lherzolite or dunite, based on relict primary minerals and their pseudomorphs. Strongly elongated pyroxene porphyroclasts with undulatory extinction indicate high-temperature (≥700 °C) strain localization on a detachment fault within the upper mantle at depths below the brittle–viscous transition. During exhumation, the peridotites underwent impregnation by magmatic or hydrothermal fluids, lizardite/chrysotile serpentinization at ≤300 °C, antigorite crystallization, and silica metasomatism that formed talc. These features indicate that the detachment fault zones formed a fluid pathway and facilitated a range of fluid–peridotite interactions.  相似文献   

12.
Based on a comprehensive study of hydrothermal magmatic systems at island arcs and a review of available mechanisms that cause elasto-plastic deformation in rocks, we considered the conditions for interaction between a convective magmatic cell and a convective hydrothermal cell in different rheologic zones of the crust. Three models have been developed to describe the generation of hydrothermal circulation systems: (1) the magma chamber is localized in a plastic zone, (2) partial and (3) complete penetration of the chamber into a brittle crust. It is shown that the last of these models is highly consistent with the structure of presentday high-temperature hydrothermal magmatic systems at depths greater than 1.0?C1.5 km and with the structure of Miocene to Pliocene ore-bearing volcano-plutonic complexes that are eroded to different depths in different geologic blocks within these complexes.  相似文献   

13.
We investigated the relationship between volcano-seismic events, recorded at La Fossa crater of Vulcano (Aeolian Islands, Italy) during 2004-2006, and the dynamics of the hydrothermal system. During the period of study, three episodes of increasing numbers of volcano-seismic events took place at the same time as geothermal and geochemical anomalies were observed. These geothermal and geochemical anomalies have been interpreted as resulting from an increasing deep magmatic component of the hydrothermal fluids. Three classes of seismic events (long period, high frequency and monochromatic events), characterised by different spectral content and various similarity of the waveforms, have been recognised. These events, clustered mainly below La Fossa crater area at depths of 0.5–1.1 km b.s.l., were space-distributed according to the classes. Based on their features, we can infer that such events at Vulcano are related to two different source mechanisms: (1) fracturing processes of rocks and (2) resonance of cracks (or conduits) filled with hydrothermal fluid. In the light of these source mechanisms, the increase in the number of events, at the same time as geochemical and geothermal anomalies were observed, was interpreted as the result of an increasing magmatic component of the hydrothermal fluids, implying an increase of their flux. Indeed, such variation caused an increase of both the pore pressure within the rocks of the volcanic system and the amount of ascending fluids. Increased pore pressures gave rise to fracturing processes, while the increased fluid flux favoured resonance and vibration processes in cracks and conduits. Finally, a gradual temporal variation of the waveform of the hybrid events (one of the subclasses of long period events) was observed, likely caused by heating and drying of the hydrothermal system.  相似文献   

14.
An analysis of local seismicity within the Klyuchevskoi Volcanic Cluster and Shiveluch Volcano for the period 2000–2017 revealed a sequence of plane-oriented earthquake clusters that are interpreted here as the emplacement of dikes and sills (magmatic fracking). The geometry of magma bodies reflects the geomechanical conditions in volcanic plumbing systems and at the bases of the volcanoes. Magmatic fracking within active magmatic plumbing systems results in the formation of permeable reservoirs whose vertical extent can reach 35 km (Klyuchevskoi) and can be as wide as 15 km across (Shiveluch), depending on the geomechanical condition of the host rocks. These reservoirs will be the arena of subsequent hydrothermal circulation, producing geothermal and ore fields, as well as hydrocarbon fields. TOUGH2-EOS1sc simulation tools were used to estimate the conditions for the formation of hydrothermal reservoirs at temperatures below 1200°С and pressures below 1000 bars.  相似文献   

15.
广东潮安四望坪铜矿以岩浆期后热液交代充填成矿为特征,在其三位一体(岩浆岩、断裂/层间滑动破碎带、围岩)的控矿组合中,以流纹斑岩、晶屑凝灰岩的层间滑动破碎带为最佳。本文从矿区资料的综合研究入手,深入剖析了岩浆岩、断裂、围岩圈闭条件与矿体规模、富集程度的关系;旨在通过对矿区地质环境与矿床成因的深入分析,建立火山期后热液矿床的断裂控矿模式,为粤东火山岩地区该类矿床的发现提供理论上的启示。  相似文献   

16.
The Dabie-Sulu orogenic belt was formed by the Triassic continental collision between the South China Block and the North China Block. There is a large area of Mesozoic magmatic rocks along this orogenic belt, with emplacement ages mainly at Late Triassic, Late Jurassic and Early Cretaceous. The Late Triassic alkaline rocks and the Late Jurassic granitoids only crop out in the eastern part of the Sulu orogen, whereas the Early Cretaceous magmatic rocks occur as massive granitoids, sporadic intermedi- ate-ma...  相似文献   

17.
银山里铅锌银多金属矿区在大地构造上隶属于华南褶皱带,地处东南沿海中生代火山岩浆活动带的南部。矿体主要赋存于下侏罗统海陆交互相碎屑岩与岩浆岩的接触带上。本文从区域成矿地质背景人手,着重研究了地层、构造、岩浆岩与成矿的关系,分析了成矿物质来源,总结了矿化富集规律,提出了找矿标志。作为一个与侵入岩浆活动有关的矿床,本文旨在通过对其成矿地质环境的深入分析,提出矿床的成矿模式,为粤东地区该类矿床的寻找提供理论上的启示。  相似文献   

18.
Lake Pernatoe is located on Paramushir Island, Kuril Arc, in the area of sand dunes. The 7-m-thick sediments of this lake pertain to the Holocene and contain palustrine, marine, and lacustrine facies. The rock magnetic properties of the sediments are analyzed for tracking the changes in sedimentation conditions. Marine facies are noted with low content of magnetic minerals; their magnetization is dominated by the paramagnetic component; pseudo-single-domain particles of magnetic material and iron sulfides (pyrite) are present. Pyrite frequently occurs in diatoms in the form of chains, spherules, and crystals. The lacustrine facies show high values of the magnetic parameters; they contain multidomain particles, mostly titanomagnetite and magnetite. Sands and sandy silts have the maximum values of magnetic parameters and reflect the stages of aeolian activity, corresponding to climatic cooling and marine regressions. On the basis of magnetic properties, four stages of active aeolian sedimentation are identified in the Holocene.  相似文献   

19.
The Proterozoic anorogenic magmatic rocks are well developed in the Bayan Obo deposit region. They are composed of trachyte, magnesioarfvedesonite-feldspatite, potash-rhyolite, dacite, rhyolite, quartz porphyry and trachy basalt. A lot of high-K diabase veins (dykes) are also found. These anorogenic magmatic rocks are derived from the mantle. They have lowerεNd (t) (4.52-5.88) with T(Nd DM)=1.54-1.92 Ga. Their Nd isotopic compositions and T(Nd DM)are consistent with those of ores, implying that the ore-forming materials were derived from these anorogenic magmatic rocks. The zircon U-Pb ages of the rocks are 1.8 Ga. Research results indicate that the Bayan Obo Group was replaced by the hydrothermal solution related to the anorogenic magmatic rocks, resulting in the formation of the deposit.  相似文献   

20.
Garnet grains in Sanbagawa quartz eclogites from the Besshi region, central Shikoku commonly show a zoning pattern consisting of core and mantle/rim that formed during two prograde stages of eclogite and subsequent epidote–amphibolite facies metamorphism, respectively. Garnet grains in the quartz eclogites are grouped into four types (I, II, III, and IV) according to the compositional trends of their cores. Type I garnet is most common and sometimes coexists with other types of garnet in a thin section. Type I core formed with epidote and kyanite during the prograde eclogite facies stage. The inner cores of types II and III crystallized within different whole‐rock compositions of epidote‐free and kyanite‐bearing eclogite and epidote‐ and kyanite‐free eclogite at the earlier prograde stage, respectively. The inner core of type IV probably formed during the pre‐eclogite facies stage. The inner cores of types II, III, and IV, which formed under different P–T conditions of prograde metamorphism and/or whole‐rock compositions, were juxtaposed with the core of type I, probably due to tectonic mixing of rocks at various points during the prograde eclogite facies stage. After these processes, they have shared the following same growth history: (i) successive crystal growth during the later stage of prograde eclogite facies metamorphism that formed the margin of the type I core and the outer cores of types II, III, and IV; (ii) partial resorption of the core during exhumation and hydration stage; and (iii) subsequent formation of mantle zones during prograde metamorphism of the epidote–amphibolite facies. The prograde metamorphic reactions may not have progressed under an isochemical condition in some Sanbagawa metamorphic rocks, at least at the hand specimen scale. This interpretation suggests that, in some cases, material interaction promoted by mechanical mixing and fluid‐assisted diffusive mass transfer probably influences mineral reactions and paragenesis of high‐pressure metamorphic rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号