首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于模板匹配的云底高度估计   总被引:5,自引:3,他引:2  
本文提出一种将主动卫星遥感云底高数据扩展到被动遥感卫星视场的新方法。在分析云顶高度(CTH)和云水路径(CWP)对云垂直分布影响的基础上,提出用CTH和CWP两项参数为基的模板匹配法,结合加权最近邻插值估计云层厚度,并用成熟的CTH反演产品减去云层厚度,得到云底高度(CBH)。然后引入小波去噪的方法抑制对云底高度估计的局部高频涨落。与基于云类型的估计方法相比,该方法在20~300km范围内与其估计效果相当,且在170~240km范围内误差更小。考虑到基于云类型的估计方法在CloudSat卫星和MODIS云分类结果上存在差异,本文方法的适用性更好。  相似文献   

2.
利用青海省东部地区2018年7—9月、2019年4—9月、2020年4—7月FY-2G卫星反演的云特征参量及地面小时降水数据,分析了云顶高度、云顶温度、云光学厚度和云粒子有效半径4种云特征参量对降水频率及降水强度的指示性。结果表明:(1)单云特征参量中,云光学厚度对降水频率指示性最强。中雨、大雨频率分别随云顶温度下降、云顶高度及云光学厚度增加呈明显增加趋势,而小雨频率随之呈减小趋势。(2)双云特征参量(云光学厚度和云顶温度)对降水频率指示性优于单云特征参量,降水频率随云光学厚度增加及云顶温度下降而增大。当云光学厚度为21~30且云顶温度大于0℃时,小雨频率最大。云光学厚度大于40且云顶温度为-45~-31℃时,中雨频率最大。云光学厚度大于40且云顶温度小于-45℃时,大雨频率最大。(3)三云特征参量(云顶温度、云光学厚度和云粒子有效半径)对降水频率指示性优于单云特征参量,但比双云特征参量降水频率指示性弱。  相似文献   

3.
利用FY-2G静止卫星数据反演的云宏微观特征参量(简称“云参量”),对2018—2020年青海全省及3个子研究区云参量时空分布特征进行分析。结果表明:云顶高度(cloud top height,CTH)、云顶温度(cloud top temperature,CTT)、过冷层厚度(overcooled layer depth,OLD)、云光学厚度(cloud op⁃tical depth,COD)、云粒子有效半径(effective radius,ER)及液水路径(liquid water path,LWP)6个云参量全省区域年平均值分别为3.8 km、-9.7℃、2.0 km、7.1、7.1μm及63.7 g∙m^(-2)。纬度相同的柴达木盆地、青海东北部除CTT外,其余云参量月变化大致呈双峰双谷分布,峰值基本出现在5、11月,谷值基本出现在8、9月及12、1月,三江源各云参量大致呈单峰分布,峰值基本在11月。各云参量年平均值空间分布均呈沿地形和山脉走向分布的特征,除CTT外,其余云参量高值区与高大山脉相对应、低值区与沙漠盆地及低海拔地区相对应,柴达木盆地在四季均存在一低值区,夏季低值区范围最大,三江源地区及青海祁连山区在春、冬季存在明显高值区。三江源地区OLD、COD及LWP在春季及秋季较大,青海东北部地区OLD、LWP在春季最大,而春、秋季则是进行以水源涵养、抗旱减灾等为目的的人工增雨作业的较佳时机。  相似文献   

4.
利用河北省、河南省和山西省2013—2014年的每日10—15时逐时FY2E卫星反演得到的云结构特征参数和地面小时降水,统计分析了云顶高度、云顶温度、云光学厚度和云粒子有效半径等4类云结构特征参数与地面降水的关系。主要结论有:随着云光学厚度的增加,降水概率呈增加趋势。云光学厚度比其他云参数对降水更具有指示意义,当云光学厚度大于20时,降水概率显著增大。双参数、多参数组合下,对地面是否出现降水的判断和识别要优于单个云参数的判别结果。4类云参数中,云光学厚度与降水强度呈正相关关系,对降水强度的影响最为显著;云顶温度和云顶高度对降水强度的影响次之;云粒子有效半径与降水强度的关系不明显。地面降水时,当云光学厚度小于20或云光学厚度介于21—30、云顶温度大于-15℃时,出现小雨的概率最大;当云光学厚度介于21—30、云顶温度小于-15℃或云光学厚度大于30、云顶温度大于-30℃时,出现中雨的概率最大;当云光学厚度大于30、云顶温度小于-30℃时,出现大雨或暴雨的可能性最大。云光学厚度、云顶温度、云顶高度和云粒子有效半径等云结构特征参数组合使用,对判断降水概率和降水强度具有较好的指示作用。  相似文献   

5.
基于自动站降水、雷达回波、卫星云图等资料,挑选2017及2018年内蒙古西部地区49次降水过程,利用L波段探空、风云卫星反演以及降水数据分析该地区降水云、无降水云与临近降水云的宏观结构。超过80%的样本统计结果显示降水云云底高度小于等于3.0 km,云顶高度大于等于8.0 km,云层厚度大于等于6.0 km,云夹层数小于等于2且夹层厚度小于等于0.6 km,云夹层分布稀疏。云光学厚度和液水路径作为降水云的指标判据具有一定的优势,近70%的样本表明,降水云光学厚度大于等于20,液水路径大于等于100 g·m~(-2)。一般降水易发生在高光学厚度和高液水含量区及光学厚度大于等于55和液水路径小于等于500 g·m~(-2)的降水云区。  相似文献   

6.
基于Himawari-8卫星的云参数和降水关系研究   总被引:1,自引:1,他引:0  
桂海林  诸葛小勇  韦晓澄  刘伯骏  唐志军  江琪 《气象》2019,45(11):1579-1588
基于日本Himawari-8卫星的云产品,对中国中东部地区2017年夏季(6—8月)每日08—17时的降水资料进行了分析,重点讨论了云光学厚度(COD)、云顶粒子平均尺度(CPS)、云顶温度(CTT)三个云参数与降水的关系。试验表明,降水概率与云参数相关性较高,存在随着COD增加、CPS增加、CTT减小而增加的明显趋势。但是,单个云参数与降水强度相关性则较低;COD、CPS、CTT与小时降雨率的相关系数分别为0.2315、0.1823、-0.2235,均为弱相关。如果综合考虑联合两个或三个云参数形成小时降雨率分布矩阵,则降水过程能得到更为清晰的体现。2017年8月28日的个例表明,相比纯粹基于红外的算法,三参数方法可以明显提高小时降雨率的估计精度。  相似文献   

7.
利用星载激光雷达资料研究东亚地区云垂直分布的统计特征   总被引:23,自引:6,他引:17  
已有研究表明: 云的垂直结构(简称CVS)是一个在卫星资料反演和气候模式预测中很重要的云特征。本文通过利用美国2006年刚发射的卫星CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) 所负载的激光雷达Level 2_05km的云数据, 研究了东亚地区(18°N~53°N, 74°E~144°E) 云的垂直分布特征。结果表明: 东亚地区多层云云量在夏季、秋季、冬季、春季分别为43.6%、29.6%、21.1%、33.3%, 而多层云分布中双层云比例最大。云顶和云底高度除了随季节变化显著外, 还有明显的区域特征。单层云、 双层云以及三层云的云顶和云底高度的数据显示, 三层云中最上层的云顶和云底最高, 并始终高于两层云中最上层云的云顶和云底高度。平均云层厚度季节变化不明显, 其值普遍在0.9~2 km范围之间。而云层间距同样没有明显的季节和区域变化, 其出现的概率随距离的增大而减小。其中, 间距在0.35 km的概率最大, 占到将近50%。而间距在1.45 km附近的概率大约为15%, 高一点的可达到20%。  相似文献   

8.
选用2008年1月—2014年10月的Cloud Sat/CALIPSO卫星资料,对中国北方两个4°×4°区域云垂直结构及其微物理参量进行了对比研究,区域1(114~118°E,37.5~41.5°N)和区域2(110°E~114°E,37.5~41.5°N)纬度相同经度不同。结果表明:1)区域1(E1)和区域2(E2)暖云层、混合云层和冷云层的云出现概率(Cloud Occurrence Probability,COP)差别较大。E1暖云层COP春季最大,E2则在夏、秋季达到较大值;E1混合层COP最大值出现在冬季,E2则出现在春季;2个区域冷云层COP均在春季达到最大。2)2个区域的COP高值区厚度有明显的季节性差异,E1的COP高值主要出现在夏、冬季,E2则主要出现在春、夏季。E1秋、冬季云体雷达回波最大值强于E2,但春、夏季弱于区域1。3)E2在春、秋季的液水含量、冰水含量、云滴有效半径均高于E1。  相似文献   

9.
FY2C/D卫星反演云特性参数与地面雨滴谱降水观测初步分析   总被引:2,自引:1,他引:1  
针对2008年4月11-12日一次北方层状云降水过程,将FY2C/D静止卫星反演的云参数和地面同时段的雨滴谱仪的观测资料进行联合分析,发现反演得到的一些特征云参数对地面降水有一定的指示意义:一般降水发生前,云系发展,云顶抬升,云顶温度和云黑体亮温都降低,云光学厚度增大,云参数先于地面降水变化,两者大概相差2小时。其中,云光学厚度与地面降水量和降水粒子数关系密切,其相关性比云顶高度、云顶温度和云黑体亮温的相关性都好;一般地面降水强,光学厚度一定大,若云层光学厚度较小,即便云顶发展得很高,地面几乎无降水或降水较小,但云光学厚度大时,地面降水强度并不一定都大,可能降水粒子数浓度大,地面多降毛毛雨。  相似文献   

10.
云特征参数与降水相关性的研究   总被引:3,自引:0,他引:3  
利用FY2C卫星和探空反演得到的云结构特征参数,结合地面降水,研究了云顶高度、光学厚度、云粒子有效半径和云厚度等云结构参数与降水的关系,并分类研究了层状云和对流云在不同降水强度情况下,云参数的频数分布规律及其与降水的关系。结果表明:通常云厚大于5km、云底较低、云粒子有效半径较大时,地面易出现降水,若云顶高于10km、云光学厚度大于20且云中无夹层或夹层稀薄时,地面雨强多大于1mm/h;对于层状云降水,当云光学厚度大于17时,地面出现降水的概率较大,随光学厚度值增加,地面雨强呈增大趋势;对于对流云降水,云顶高度和光学厚度相关性较好,云光学厚度大于17且云顶高于7km时,地面出现降水的概率较大,当光学厚度大于20时,地面雨强明显增大;层状云和对流云的降水概率均随云顶高度和光学厚度的增加而增大,降水概率与云光学厚度的相关性更为密切,光学厚度小于10的云很难产生降水,而云光学厚度大于20时,层状云和对流云的降水概率都会显著增加;综合云体的高度、厚度和云光学厚度等云参量的组合特征,对分析判断地面降水落区和降水强度更加有效。  相似文献   

11.
广州亚运开幕日人工消(减)雨作业的物理响应分析   总被引:1,自引:0,他引:1  
2010年11月12日广州亚运会开幕日当天对广州西部降水云系实施了飞机人工消(减)雨作业。对实施人工消(减)雨作业前后FY-2C/D静止卫星资料反演的云顶高度、云顶温度、云粒子有效半径、液水路径等4个云参量的时间序列变化特征进行分析,初步明确了此次飞机人工消(减)雨作业的物理响应,结果显示:作业后,云顶高度高的云系面积减小,整个目标云系迅速收缩;针对冷暖云层分别采用冷暖云催化剂进行催化,作业后冷云层很快消散;作业目标云系的云粒子有效半径在母云系的云粒子有效半径增加时出现不断减小的情况,这与催化后降水提前产生,大粒子从云体落至地面,使得目标云中大粒子越来越少有关;云中垂直液水含量在作业后迅速减小。  相似文献   

12.
利用FY-2E静止卫星反演的云参数产品对乌鲁木齐2015年12月11日和2017年12月27日两次暴雪天气过程进行分析,发现在降水发生前2 h,云宏观参数的云顶温度、黑体亮温、云顶高度和过冷层厚度都处于不断增强的较高水平,且出现快速增强后又不断减弱,对应后期可能要出现强降水,其中与小时降水量变化具有较好的相关性,降水前期相关参量较降水中后期都要大。在降雪天气中云顶温度普遍在-20~-60℃,云顶高度最大值均超过10 km,过冷层厚度集中在2~9 km。从云微观参量来看,降雪云的光学厚度主要在10~35,绝大多数的有效粒子半径分布在15~35μm,两场天气的液水路径分别分布在75.49~975.63 g/m2和47.41~796.01 g/m2,前者降雪天气的云宏微观参量均值都不同程度地大于后者。  相似文献   

13.
利用2006—2016年夏季中分辨率成像光谱仪(Moderate-resolution Imaging Spectroradiometer,MODIS)气溶胶和云资料以及热带降水测量计划(Tropical Rainfall Measuring Mission,TRMM)降水数据,分析了中国8个典型地区气溶胶、云和降水的时空分布特征,探讨了气溶胶与云和降水的相互关系。结果表明:中国8个典型地区夏季平均气溶胶光学厚度(Aerosol Optical Depth,AOD)、云光学厚度(Cloud Optical Depth,COD)、云水路径(Cloud Water Path,CWP)、水云云滴有效粒子半径(Cloud Effective Radius Water,CERW)、冰云云滴有效粒子半径(Cloud Effective Radius Ice,CERI)和降水强度变化范围分别为0.21—1.05、15.01—24.02、151.98—219.20 g·m-2、12.93—15.37 μm、28.85—39.14 μm和0.44—8.54 mm·d-1;黄土高原和四川盆地AOD有显著降低趋势,年倾向分别为-2.30%和-3.20%,长江三角洲COD年增幅为29.11%,华北平原、长江三角洲和珠江三角洲CERI及塔克拉玛干沙漠CERW变化趋势分别为-21.60%、-15.77%、-18.94%和-10.31%;AOD与COD和CWP呈正相关,与云滴有效粒子半径(Cloud Effective Radius,CER)关系较为复杂,受水汽影响较大,在云层含水量较低的情况下,CERI(CERW)与AOD呈负(正)相关,而在云层含水量较高的情况下,二者呈正(负)相关;气溶胶和降水关系复杂,整体来看,气溶胶促进了中国地区的夏季降水。  相似文献   

14.
卫星资料在气象业务中的应用越来越广泛,有效识别云的宏微观物理参数将有利于人影业务的发展。利用2005—2007年春季青海省东部地区FY-2卫星观测资料,针对不同形态、等级的降水过程,反演该区域降水云的宏微观物理参数,并与降水量做相关分析。结果表明:青海东部FY-2卫星反演的春季降水云粒子有效半径大多为8~65μm,云顶温度大多为215~240 K,云层厚度大都在1 500~5 200 m之间,云水含量大多为10~150 g·cm-2,但不同形态、量级降水过程反演的云特征参数值及其与地面降水量的相关性差异较明显。  相似文献   

15.
孙丽  马嘉理  赵姝慧  杨磊  刘旸  秦鑫  张晋广  袁健 《气象》2019,45(7):958-967
为区分不同天气系统影响下云垂直结构的差异,从而为人工增雨作业提供参考,对2004—2014年辽宁省进行人工增雨作业期间,500、850 hPa以及地面的天气形势进行了统计,利用CloudSat卫星观测资料对筛选的出现频率≥2次·a~(-1)的系统配置下的云垂直结构进行分析,并研究了典型系统影响下的作业云系垂直结构特征。根据系统配置差异,2004—2014年间影响辽宁省的共有225次过程,可划分为17种配置类型,其中典型天气系统四种,分别为西风槽—切变线—冷锋(CF型)、西风槽—低涡—蒙古气旋(MCW型)、西风槽—低涡—南方气旋(SC型)和低涡—低涡—蒙古气旋型(MCV型)。对四种典型天气系统影响下的云垂直结构分析发现,不同天气系统影响下云层均以单层云为主。SC影响下的云层发展较为旺盛,云底较低而云顶较高,云层深厚。MCW影响下的云层云底高度较高,云层较薄。不同天气系统影响下的云夹层厚度大多(50%)在1 km以下,而且随着云层数目增加,低于1 km的云夹层所占的比例增加。将云底高度≤2 km且云厚≥2 km视为作业云系,发现有云条件下,SC型符合条件的作业云系最多(59.7%),而MCW型影响下最少(14.5%)。作业云系以单层低冷云为主,单层低冷云的云底高度低于1 km且云顶高度可达7 km以上,作业云系的云夹层厚度对降水云催化效果影响较小。  相似文献   

16.
卷云的物理特性对研究卷云的辐射强迫具有重要意义。利用星载雷达(CPR,Cloud Profile Radar/CALIOP,Cloud-Aerosol Lidar with Orthogonal Polarization)联合探测反演数据产品,对南京地区的2007年1月—2010年12月4 a的卷云物理特性进行了统计分析。研究结果表明:(1)4 a的卷云出现概率均是春季和夏季大于秋季和冬季;(2)全年的平均云底、云顶高度相当,整体相差较小,分布较为稳定,云底、云顶高度年平均值在2009年均出现最大值,分别为10.065 km,11.685 km;(3)冰水含量(IWC)的范围基本集中在0.000 0~0.050 0 g/m~3,粒子有效半径(ER)的范围基本集中在30~40μm之间;IWC和ER的年平均值在2009年均出现最小值,分别为0.045 8 g/m~3,45.893μm。南京地区卷云的物理结构特征可为气候模式或辐射传输模式中典型高云参数的输入和使用提供参考。  相似文献   

17.
大兴安岭是我国重要生态资源保护区,深入分析该区域云物理特性参量分布特征,对了解复杂地形区域气候变化及人工影响天气等具有重要意义。基于CloudSat-CALIPSO(CloudSat-Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations)卫星观测资料,分析了大兴安岭地区云层的宏、微观物理特征,结果表明:大兴安岭地区年平均云出现频率为59.5%,主要以高层云、卷云和层积云为主,春夏季云发生频率高于秋冬季。云层主要以薄云为主,61.41%的云厚度不超过2 km,云顶高度、云底高度分别呈现双峰型和单峰型分布形式。云垂直结构特征为单层云的出现频率最高,占到总云量的69.19%,随着云层数的增加,云的发生频率逐渐降低。大兴安岭地区云中液态水含量丰富,年平均值达244.41 mg·m^(-3),约为冰水含量年平均值的4倍,有83.2%的云水含量集中在低空5 km以下的区域。水滴粒子有效粒径和数浓度的年平均值分别为15.86μm和34.47个·cm^(-3),均小于冰晶粒子平均值。云中含水量和有效粒径随高度呈现单峰型分布形式,而云滴粒子数浓度则在低空呈现为双峰型分布形式。  相似文献   

18.
基于CloudSat云分类资料的华北地区云宏观特征分析   总被引:4,自引:0,他引:4  
陈超  孟辉  靳瑞军  王兆宇 《气象科技》2014,42(2):294-301
利用2007年1月至2008年12月的CloudSat 2B-CLDCLASS-LIDAR云分类资料对华北地区(36°~42°N,110°~120°E)各类云在单层及多层云中的出现频率、平均高度及平均厚度进行统计分析。结果表明:华北地区单层云和多层云出现频率存在明显的季节变化,夏季最大,春秋次之,冬季最小。单层云的出现频率远高于多层云,单层云出现频率在春、夏、秋、冬4个季节分别为44.3%、46.1%、37.8%和32.8%,而多层云中2层云所占比例最大。单层云和多层云各云层平均高度、平均厚度分析显示,3层云上层云顶云底高度最高,3层云下层云顶云底高度最低,单层云平均厚度明显大于多层云,云层数越多,各云层的平均厚度越小。对不同类型云出现频率分析显示,卷云主要出现在单层云及多层云中、上层,高层云和高积云在单层云和多层云各云层中均占有一定的比例,层云主要出现在多层云下层,层积云、积云、深对流云主要出现在单层云及多层云下层,雨层云主要出现在夏季单层云中。卷云、高层云、高积云的平均高度及厚度在不同云系统中存在显著的差异。  相似文献   

19.
基于PR和VIRS融合资料的东亚台风和非台风降水结构分析   总被引:1,自引:0,他引:1  
借助JAXA/EORC热带台风数据集资料,实现了台风区和非台风区的分离,在此基础上,利用热带测雨卫星搭载的测雨雷达和可见光/红外扫描仪的融合观测资料,对1998~2007年东亚雨季台风及非台风降水的气候特征和降水云红外信号特征进行了分析。结果表明:1)东亚台风降水强度谱较非台风降水谱更宽,特别是对流降水主要分布在5~20 mm/h之间;强降水更多,主要分布在东亚洋面。2)雨季东亚降水的主要形式是非台风层云降水,但台风降水对局地降水量的贡献也不容忽视,例如台湾以东附近洋面可达20%。3)台风降水云亮温海陆分布差异显著;其雨顶高度在4~9 km(层云)和4.5~12.5 km(对流)之间均有分布,较非台风降水雨顶高度谱更宽。4)不同等级的台风在降水强度、覆盖区域和云顶10.8μm亮温分布上差异大。  相似文献   

20.
沙修竹  丁建芳  程博 《气象》2019,45(11):1569-1578
采用河南省2016—2017年100个日降水资料,对比分析雨滴谱反演回波与雷达回波的差异、雨滴谱反演降水强度与雨量计观测降水强度的差异;进行雨滴谱Gamma拟合,以探究河南省雨滴谱分布及降水云系类型;进行Z-I关系拟合,以探究河南省降水回波与降水强度的关系。结果表明:(1)雨滴谱反演回波、雷达观测回波的变化趋势具有较好一致性。而前者普遍小于后者,其可能原因:一是雷达通过最低仰角观测到的地面雨滴谱仪上方回波与地面雨滴谱仪之间存在一定高度差,二是雨滴下落时的蒸发、破碎过程,使到达地面的雨滴直径减小。(2)雨滴谱反演的降水强度与雨量计观测的降水强度相比,存在一定差异,但无显著偏大或偏小规律性特征。(3)对流云及层积混合云的雨滴谱宽大于层状云,中等尺度雨滴数密度较大。层状云的小水滴数密度较大。河南省大部分降水过程为雨滴谱较窄的层状云降水。(4)河南省降水回波与降水强度的拟合公式:Z=262I~(1.34),层状云拟合公式:Z=219I~(1.30),对流云拟合公式:Z=307I~(1.38)。(5)雨滴数浓度较高月份为6—7月(1500个·m~(-3)左右),降水强度较高月份为8—10月(60 mm·h~(-1)),雨滴最大直径较高月份为4—8月(4.3~4.8 mm),雨滴平均直径较高月份为3—4月(3 mm左右)。雨滴数浓度、降水强度、最大直径、平均直径的月份特征变化无一致性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号