首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The water crisis in the gaza strip: prospects for resolution   总被引:1,自引:0,他引:1  
Israel and the Palestinian Authority share the southern Mediterranean coastal aquifer. Long-term overexploitation in the Gaza Strip has resulted in a decreasing water table, accompanied by the degradation of its water quality. Due to high levels of salinity and nitrate and boron pollution, most of the ground water is inadequate for both domestic and agricultural consumption. The rapid rate of population growth in the Gaza Strip and dependence upon ground water as a single water source present a serious challenge for future political stability and economic development. Here, we integrate the results of geochemical studies and numerical modeling to postulate different management scenarios for joint management between Israel and the Palestinian Authority. The chemical and isotopic data show that most of the salinity phenomena in the Gaza Strip are derived from the natural flow of saline ground water from Israel toward the Gaza Strip. As a result, the southern coastal aquifer does not resemble a classic "upstream-downstream" dispute because Israel's pumping of the saline ground water reduces the salinization rates of ground water in the Gaza Strip. Simulation of different pumping scenarios using a monolayer, hydrodynamic, two-dimensional model (MARTHE) confirms the hypothesis that increasing pumping along the Gaza Strip border combined with a moderate reduction of pumping within the Gaza Strip would improve ground water quality within the Gaza Strip. We find that pumping the saline ground water for a source of reverse-osmosis desalination and then supplying the desalinated water to the Gaza Strip should be an essential component of a future joint management strategy between Israel and the Palestinian Authority.  相似文献   

2.
A large chromium plume that evolved from chromium releases in a valley near the Mojave River was studied to understand the processes controlling fate and migration of chromium in ground water and used as a tracer to study the dynamics of a basin and range ground water system. The valley that was studied is naturally arid with high evapotranspiration such that essentially no precipitation infiltrates to the water table. The dominant natural hydrogeologic processes are recharge to the ground water system from the Mojave River during the infrequent episodes when there is flow in the river, and ground water flow toward a playa lake where the ground water evaporates. Agricultural pumping in the valley from the mid-1930s to the 1970s significantly altered ground water flow conditions by decreasing water levels in the valley by more than 20 m. This pumping declined significantly as a result of dewatering of the aquifer, and water levels have since recovered modestly. The ground water system was modeled using MODFLOW, and chromium transport was simulated using MT3D. Several innovative modifications were made to these modeling programs to simulate important processes in this ground water system. Modifications to MODFLOW include developing a new well package that estimates pumping rates from irrigation wells at each time step based on available drawdown. MT3D was modified to account for mass trapped above the water table when the water table declines beneath nonirrigated areas and to redistribute mass to the system when water levels rise.  相似文献   

3.
Ground water budget analysis in arid basins is substantially aided by integrated use of numerical models and environmental isotopes. Spatial variability of recharge, storage of water of both modern and pluvial age, and complex three-dimensional flow processes in these basins provide challenges to the development of a good conceptual model. Ground water age dating and mixing analysis with isotopic tracers complement standard hydrogeologic data that are collected and processed as an initial step in the development and calibration of a numerical model. Environmental isotopes can confirm or refute a priori assumptions of ground water flow, such as the general assumption that natural recharge occurs primarily along mountains and mountain fronts. Isotopes also serve as powerful tools during postaudits of numerical models. Ground water models provide a means of developing ground water budgets for entire model domains or for smaller regions within the model domain. These ground water budgets can be used to evaluate the impacts of pumping and estimate the magnitude of capture in the form of induced recharge from streams, as well as quantify storage changes within the system. The coupled analyses of ground water budget analysis and isotope sampling and analysis provide a means to confirm, refute, or modify conceptual models of ground water flow.  相似文献   

4.
Water quality management is a significant item in the sustainable development of wetland system, since the environmental influences from the economic development are becoming more and more obvious. In this study, an inexact left-hand-side chance-constrained fuzzy multi-objective programming (ILCFMOP) approach was proposed and applied to water quality management in a wetland system to analyze the tradeoffs among multiple objectives of total net benefit, water quality, water resource utilization and water treatment cost. The ILCFMOP integrates interval programming, left-hand-side chance-constrained programming, and fuzzy multi-objective programming within an optimization framework. It can both handle multiple objectives and quantify multiple uncertainties, including fuzziness (aspiration level of objectives), randomness (pollutant release limitation), and interval parameters (e.g. water resources, and wastewater treatment costs). A representative water pollution control case study in a wetland system is employed for demonstration. The optimal schemes were analyzed under scenarios at different probabilities (p i , denotes the admissible probability of violating the constraint i). The optimal solutions indicated that, most of the objectives would decrease with increasing probability levels from scenarios 1 to 3, since a higher constraint satisfaction probability would lead to stricter decision scopes. This study is the first application of the ILCFMOP model to water quality management in a wetland system, which indicates that it is applicable to other environmental problems under uncertainties.  相似文献   

5.
Optimal and sustainable extraction of groundwater in coastal aquifers   总被引:1,自引:0,他引:1  
Four examples are investigated for the optimal and sustainable extraction of groundwater from a coastal aquifer under the threat of seawater intrusion. The objectives and constraints of these management scenarios include maximizing the total volume of water pumped, maximizing the profit of selling water, minimizing the operational and water treatment costs, minimizing the salt concentration of the pumped water, and controlling the drawdown limits. The physical model is based on the density-dependent advective-dispersive solute transport model. Genetic algorithm is used as the optimization tool. The models are tested on a hypothetical confined aquifer with four pumping wells located at various depths. These solutions establish the feasibility of simulating various management scenarios under complex three-dimensional flow and transport processes in coastal aquifers for the optimal and sustainable use of groundwater.  相似文献   

6.
Ground water quality networks for monitoring phreatic drinking water wellfields are generally established for two main purposes: (1) the short-term safeguarding of public water supply and (2) signaling and predicting future quality changes in the extracted ground water. Six monitoring configurations with different well locations and different screen depths and lengths were evaluated using a numerical model of the 3D ground water flow toward a partially penetrating pumping well in a phreatic aquifer. Travel times and breakthrough curves for observation and pumping wells were used to judge the effectiveness of different design configurations for three monitoring objectives: (1) early warning; (2) prediction of future quality changes; and (3) evaluation of protection measures inside a protection zone. Effectiveness was tested for scenarios with advective transport, first-order degradation, and linear sorption. It is shown that the location and especially the depth of the observation wells should be carefully chosen, taking into account the residence time from the surface to the observation well, the residual transit times to the extraction well, and the transformation and retardation rates. Shallow monitoring was most functional for a variety of objectives and conditions. The larger the degradation rates or retardation, the shallower should the monitoring be for effective early warning and prediction of future ground water quality. The general approach followed in the current study is applicable for many geohydrological situations, tuning specific monitoring objectives with residence times and residual transit times obtained from a site-specific ground water flow model.  相似文献   

7.
Abstract

Groundwater, possibly of fossil origin, is used for water supply in some arid regions where the replenishment of groundwater by precipitation is low. Numerical modelling is a helpful tool in the assessment of groundwater resources and analysis of future exploitation scenarios. To quantify the groundwater resources of the East Owienat area in the southwest of the Western Desert, Egypt, the present study assesses the groundwater resources management of the Nubian aquifer. Groundwater withdrawals have increased in this area, resulting in a disturbance of the aquifer’s natural equilibrium, and the large-scale and ongoing depletion of this critical water reserve. Negative impacts, such as a decline in water levels and increase in salinity, have been experienced. The methodology includes application of numerical groundwater modelling in steady and transient states under different measured and abstraction scenarios. The numerical simulation model developed was applied to assess the responses of the Nubian aquifer water level under different pumping scenarios during the next 30 years. Groundwater management scenarios are evaluated to find an optimal management solution to satisfy future needs. Based on analysis of three different development schemes that were formulated to predict the future response of the aquifer under long-term water stress, a gradual increase in groundwater pumping to 150% of present levels should be adopted for protection and better management of the aquifer. Similar techniques could be used to improve groundwater management in other parts of the country, as well as other similar arid regions.
Editor D. Koutsoyiannis; Associate editor X. Chen  相似文献   

8.
Cities based on coal resources have increasingly important social and economic roles in China. Their strategies for sustainable development, however, urgently need to be improved, which represents a huge challenge. Most observers believe that the continued progress of these cities relies on the optimization of scientific adaptive management in which social, economic, and ecological factors are incorporated. A systems perspective that combines policies, management priorities, and long-term policy impacts needs to be applied. To date, however, such an approach has not been adopted, which means it is difficult to implement adaptive management at the regional scale. In this study, we used various situations to develop a multiple adaptive scenario system dynamics model. We then simulated a range of policy scenarios, with Ordos in the Inner Mongolia Autonomous Region as a case study. Simulation results showed that the current strategy is not sustainable and predicted that the system would exceed the environmental capacity, with risks of resource exhaustion and urban decline in 2025–2035. Five critical policy variables, including the urban population carrying capacity, rates of water consumption and water recycling, and expansion of urban land cover, were identified during sensitivity analysis. We developed and compared six socio-economic scenarios. The urban area, represented by the urban population density, seemed to transition through five different stages, namely natural growth, rapid growth, stable oscillation, fading, and rebalancing. Our scenarios suggested that different policies had different roles through each stage. The water use efficiency management policy had a comprehensive far-reaching influence on the system behavior; land urbanization management functions dominated at the start, and population capacity management was a major control in the mid-term. Our results showed that the water recycling policy and the urban population carrying capacity were extremely important, and both should be reinforced and evaluated by the local governments.  相似文献   

9.
In this study, an environmental-friendly modeling system was developed and applied to an agriculture nonpoint source (AGNPS) management in Ulansuhai Nur watershed. In this system, water environmental capacity, credibility-based chance-constrained programming (CCCP), and AGNPS optimization models were integrated into a general modeling framework. It could be used to calculate water environmental capacity of total nitrogen and total phosphorus in Ulansuhai Nur watershed, which could consequentially provide input data for the developed AGNPS optimization model. Also, the inherent uncertainties in estimating water environmental capacities that can be expressed as possibilistic distributions were reflected and addressed based on computational results of three widely used methods. Such uncertainties were consequentially transferred to the proposed CCCP model based on the adoption of multiple credibility satisfactory levels, significantly facilitating objectivity reflection of decision alternatives. The developed modeling system was then applied to Ulansuhai Nur watershed of Inner Mongolia, a semi-arid river basin in northwestern China. Optimal strategies for AGNPS management in Ulansuhai Nur watershed were generated with consideration of the maximum total agricultural income under multiple policy scenarios. The results showed that the total agricultural income would increase with point source pollution being cut down, and would decrease with rising credibility levels, representing decreasing system violation risks. It was indicated that the higher of total nitrogen/phosphorus discharge being less than water environmental capacity of Ulansuhai Nur, the lower the total agriculture incomes. The proposed methods could help decision makers establish various production patterns with cost-effective agriculture nonpoint source management schemes in the basin of Ulansuhai Nur, and gain in-depth insights into the trade-offs between total agricultural incomes and system reliabilities.  相似文献   

10.
Transboundary impacts on regional ground water modeling in Texas   总被引:1,自引:0,他引:1  
Recent legislation required regional grassroots water resources planning across the entire state of Texas. The Texas Water Development Board (TWDB), the state's primary water resource planning agency, divided the state into 16 planning regions. Each planning group developed plans to manage both ground water and surface water sources and to meet future demands of various combinations of domestic, agricultural, municipal, and industrial water consumers. This presentation describes the challenges in developing a ground water model for the Llano Estacado Regional Water Planning Group (LERWPG), whose region includes 21 counties in the Southern High Plains of Texas. While surface water is supplied to several cities in this region, the vast majority of the regional water use comes from the High Plains aquifer system, often locally referred to as the Ogallala Aquifer. Over 95% of the ground water demand is for irrigated agriculture. The LERWPG had to predict the impact of future TWDB-projected water demands, as provided by the TWDB, on the aquifer for the period 2000 to 2050. If detrimental impacts were noted, alternative management strategies must be proposed. While much effort was spent on evaluating the current status of the ground water reserves, an appropriate numerical model of the aquifer system was necessary to demonstrate future impacts of the predicted withdrawals as well as the effects of the alternative strategies. The modeling effort was completed in the summer of 2000. This presentation concentrates on the political, scientific, and nontechnical issues in this planning process that complicated the modeling effort. Uncertainties in data, most significantly in distribution and intensity of recharge and withdrawals, significantly impacted the calibration and predictive modeling efforts. Four predictive scenarios, including baseline projections, recurrence of the drought of record, precipitation enhancement, and reduced irrigation demand, were simulated to identify counties at risk of low final ground water storage volume or low levels of satisfied demand by 2050.  相似文献   

11.
Modeling effects of multinode wells on solute transport   总被引:1,自引:0,他引:1  
Long-screen wells or long open boreholes with intraborehole flow potentially provide pathways for contaminants to move from one location to another in a ground water flow system. Such wells also can perturb a flow field so that the well will not provide water samples that are representative of ground water quality a short distance away from the well. A methodology is presented to accurately and efficiently simulate solute transport in ground water systems that include wells longer than the grid spacing used in a simulation model of the system and hence are connected to multiple nodes of the grid. The methods are implemented in a MODFLOW-compatible solute-transport model and use MODFLOW's Multi-Node Well Package but are generic and can be readily implemented in other solute-transport models. For nonpumping multinode wells (used to simulate open boreholes or observation wells, for example) and for low-rate pumping wells (in which the flow between the well and the ground water system is not unidirectional), a simple routing and local mixing model was developed to calculate nodal concentrations within the borehole. For high-rate pumping multinode wells (either withdrawal or injection, in which flow between the well and the ground water system is in the same direction at all well nodes), complete and instantaneous mixing in the wellbore of all inflows is assumed.  相似文献   

12.
Since surface water and groundwater systems are fully coupled and integrated, increased groundwater withdrawal during drought may reduce groundwater discharges into the stream, thereby prolonging both systems’ recovery from drought. To analyze watershed response to basin-level groundwater pumping, we propose a modelling framework to understand the resiliency of surface water and groundwater systems using an integrated hydrologic model under transient pumping. The proposed framework incorporates uncertainties in initial conditions to develop robust estimates of restoration times of both surface water and groundwater and quantifies how pumping impacts state variables such as soil moisture. Groundwater pumping impacts over a watershed were also analyzed under different pumping volumes and different potential climate scenarios. Our analyses show that groundwater restoration time is more sensitive to variability in climate forcings as opposed to changes in pumping volumes. After the cessation of pumping, streamflow recovers quickly in comparison to groundwater, which has higher persistence. Pumping impacts on various hydrologic variables were also discussed. Potential for developing optimal conjunctive management plans using seasonal-to-interannual climate forecasts is also discussed.  相似文献   

13.
This study proposes a groundwater resources management model in which the solution is performed through a combined simulation-optimization model. A modular three-dimensional finite difference groundwater flow model, MODFLOW is used as the simulation model. This model is then combined with a Harmony Search (HS) optimization algorithm which is based on the musical process of searching for a perfect state of harmony. The performance of the proposed HS based management model is tested on three separate groundwater management problems: (i) maximization of total pumping from an aquifer (steady-state); (ii) minimization of the total pumping cost to satisfy the given demand (steady-state); and (iii) minimization of the pumping cost to satisfy the given demand for multiple management periods (transient). The sensitivity of HS algorithm is evaluated by performing a sensitivity analysis which aims to determine the impact of related solution parameters on convergence behavior. The results show that HS yields nearly same or better solutions than the previous solution methods and may be used to solve management problems in groundwater modeling.  相似文献   

14.
Refractive flow and treatment (RFT) systems are designed for passive or low-maintenance in situ ground water remediation for rock or soil of low to moderate permeability. An RFT system captures and refracts contaminated ground water and conveys it to an in situ permeable treatment zone without the need for pumping. Flow to the treatment zone is through one or more high-permeability collection cells, and flow from the treatment zone back into the adjacent native media is through one or more high-permeability dispersal cells.
Conceptual, analytical, and numerical modeling demonstrates the potential for RFT systems to be successful. Analytical modeling shows that the most important factor for this success is that RFT system components be engineered to have comparatively high hydraulic conductivities. A numerical model, capable of representing site-specific conditions, is required for actual RFT system design.  相似文献   

15.
Sehlke G  Jacobson J 《Ground water》2005,43(5):722-730
System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multipurpose national laboratory managed by the Department of Energy, has developed a system dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River basin, a transboundary basin that includes portions of Idaho, Utah, and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and ground water data and for simulating the interactions between these sources within a given basin. In addition, we also found that system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory, and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple "what-if" scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or ground water modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause-effect relationships in large-scale hydrological systems, for integrating disparate data, for incorporating output from traditional hydraulic/hydrologic models, and for integration of interdisciplinary data, information, and criteria to support better management decisions.  相似文献   

16.
基于水生态改善的太湖分区分时动态水质目标制定方法   总被引:1,自引:0,他引:1  
彭兆亮  胡维平 《湖泊科学》2019,31(4):988-997
科学、合理地制定水体主要污染物浓度控制目标,即水质目标是实施河、湖"水质目标管理"的基础和前提.本文基于环境条件决定生态系统结构以及自组织适应生态学原理,提出一种可促进水生态改善的太湖分区分时动态水质目标制定方法.该方法在出入湖河道流量情景及分区污染物浓度情景设计的基础上,进行不同情境下水生态系统要素时空演化的数值试验;然后以藻类生物量减小、沉水植物生物量增加为判据,构造水质目标优化模型;最后将湖泊水生态模型与水质目标优化模型耦合,判断各污染物浓度情景下水生态系统健康状况,进而确定不同时间尺度下太湖各分区总氮、总磷、氨氮、高锰酸盐指数等主要污染物指标的动态控制目标.结果表明:本方法制定的太湖各湖区分时水质目标相比传统的"静态"目标更能促进太湖水生态系统健康发展,并为太湖水环境的精细化管理提供了可能.  相似文献   

17.
Abstract

Multidisciplinary models are useful for integrating different disciplines when addressing water planning and management problems. We combine water resources management, water quality and habitat analysis tools that were developed with the decision support system AQUATOOL at the basin scale. The water management model solves the allocation problem through network flow optimization and considers the environmental flows in some river stretches. Once volumes and flows are estimated, the water quality model is applied. Furthermore, the flows are evaluated from an ecological perspective using time series of aquatic species habitat indicators. This approach was applied in the Tormes River Water System, where agricultural demands jeopardize the environmental needs of the river ecosystem. Additionally, water quality problems in the lower part of the river result from wastewater loading and agricultural pollution. Our methodological framework can be used to define water management rules that maintain water supply, aquatic ecosystem and legal standards of water quality. The integration of ecological and water management criteria in a software platform with objective criteria and heuristic optimization procedures allows realistic assessment and application of environmental flows to be made. Here, we improve the general methodological framework by assessing the hydrological alteration of selected environmental flow regime scenarios.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., and Andreu, J., 2014. Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59 (3–4), 878–889.  相似文献   

18.
Zheng C  Wang PP 《Ground water》2002,40(3):258-266
While significant progress has been made in the theoretical development of the simulation/optimization (S/O) approach for ground water remediation design, its application to large, field-scale problems has remained limited. To demonstrate the applicability and usefulness of the S/O approach under real field conditions, an optimization demonstration project was conducted at the Massachusetts Military Reservation in Cape Cod, Massachusetts, involving the design of a pump-and-treat system for the containment and cleanup of a large trichloroethylene (TCE) plume. The optimization techniques used in this study are based on evolutionary algorithms coupled with a response function approach for greater computational efficiency. The S/O analysis was performed parallel to a conventional trial-and-error analysis based on simulation alone. The results of this study demonstrate that not only would it be possible to remove more TCE mass under the same amount of pumping assumed in the trial-and-error design, but also substantial cost savings could be achieved by reducing the number of wells needed and adapting dynamic pumping. In spite of the large model size of more than 500,000 nodes and a long planning horizon of 30 years, the optimization modeling was carried out successfully on desktop PCs. This field demonstration project clearly illustrates the potential benefits of applying optimization techniques in remediation system design.  相似文献   

19.
The reliability of a levee system is a crucial factor in flood risk management. In this study we present a probabilistic methodology to assess the effects of levee cover strength on levee failure probability, triggering time, flood propagation and consequent impacts on population and assets. A method for determining fragility curves is used in combination with the results of a one-dimensional hydrodynamic model to estimate the conditional probability of levee failure in each river section. Then, a levee breach model is applied to calculate the possible flood hydrographs, and for each breach scenario a two-dimensional hydrodynamic model is used to estimate flood hazard (flood extent and timing, maximum water depths) and flood impacts (economic damage and affected population) in the areas at risk along the river reach. We show an application for levee overtopping and different flood scenarios for a 98 km reach of the lower Po River in Italy. The results show how different design solutions for the levee cover can influence the probability of levee failure and the consequent flood scenarios. In particular, good grass cover strength can significantly delay levee failure and reduce maximum flood depths in the flood-prone areas, thus helping the implementation of flood risk management actions.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Viglione  相似文献   

20.
Seepage from tailings ponds associated with an active uranium mill in Utah has resulted in contamination of ground water contained in the Dakota-Burro Canyon Formation. This aquifer is used in the area as a supply for domestic and industrial wells.
Results of very low-frequency electromagnetic surveys and ground water quality investigations at the site indicated that the flow of ground water and contaminants is primarily fracture-controlled. Pumping tests were conducted to determine the hydraulic characteristics of the fractured system. The extent of contaminant migration was then determined using an analytical model of transport in fractured aquifers.
Based on these investigations, a plan was designed to control future and remediate past ground water contamination. This plan consists of pumping from a single well intersecting the main fracture that transports contaminants off the site. The effectiveness of the plan was analytically modeled, taking account of the anisotropy of the ground water system. Subsequent monitoring of water levels in the area indicates that the plan has been effective since its inception in November 1983.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号