首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The paper focuses on the seismic response of walls in dual (frame + wall) structures, with particular emphasis on shear behaviour. Although dual structures are widely used in earthquake-resistant medium-rise and high-rise buildings, the provisions of modern seismic codes regarding design of walls for shear are not fully satisfactory, particularly in the (common) case that walls of substantially different length form part of the same structure. Relevant provisions of the leading seismic codes are first summarised and their limitations discussed. Then an extensive parametric study is presented, involving two multistorey dual systems, one with identical walls, and one with walls with unequal length, designed to the provisions of Eurocode 8 for two different ductility classes (H and M). The walls of the same structures are also designed to other methods such as those used in New Zealand and Greece. The resulting different designs are then assessed by subjecting the structures to a suite of strong ground motions, carrying out inelastic time history analysis, and comparing the results against design action effects. It is found that although modern code procedures generally lead to satisfactory performance (differences among them do exist), the design of walls seems to be less appropriate in the case of unequal length walls. For this case a modified procedure is proposed, consisting of an additional factor to account for the relative contribution of walls of the same length to the total base and an improved envelope of wall shears along the height; this improved method seems to work better than the other procedures evaluated herein, but further calibration is clearly required.  相似文献   

2.
结构抗震设计中的强度折减系数研究   总被引:27,自引:12,他引:27  
借助于单自由度弹塑性动力时程分析程序,对延性结构的强度折减系数进行了研究,在统计平均和回归分析的基础上,建立了平均强度折系数的函数形式,本文所建立的平强度折减系数函数,从理论上明确了结构具有延性对弹性地震力的折减关系,研究成果可供结构抗震设计规范采纳应用。  相似文献   

3.
Effect of higher vibration modes on the seismic shear demand of reinforced concrete cantilever walls has been studied since the 1970’s. The shear amplification becomes more important with increasing fundamental period (tall buildings) and increasing ductility demand (R or q factors). Yet, studying the relevant recommendations of structural engineering researchers and provisions of various seismic codes reveals that there is no consensus regarding the extent of shear amplification and of the inter-wall distribution of shear demand in structural systems comprising walls of different lengths. The paper presents the available formulas for predicting shear amplification in ductile walls and dual systems (wall-frames). One effect that impacts the shear amplification is shear cracking mainly in the plastic hinge zone of the wall near the base leading to appreciably lower shear amplification than previously predicted. Post yield shear redistribution among interconnected unequal walls is also addressed. Finally, an extensive bibliography is provided.  相似文献   

4.
For earthquake action the new design provisions of Eurocode 8 are in the process of replacing the European national earthquake codes. The paper treats the design and behaviour of multi-storey structural walls in view of the new provisions. For structural walls the provisions of the Eurocode 8 are compared with those of a national code which it is going to replace. As the national code the current Swiss earthquake standard SIA 160 is chosen. Basic design rules of both codes are introduced and compared by means of examples comprising buildings which are regular in plan and elevation and which use structural walls for lateral resistance. The height of the buildings is varied from a from four to eight storeys. In the example, both the SIA and the Eurocode design provisions are based on the static equivalent force method, and a triangular distribution of the lateral force. However, most other design provisions differ between the two codes. The structures designed are modelled numerically and subjected to non-linear time-history analysis. At first, both the SIA and Eurocode designed structures are subjected to ground motions compatible to the design spectra in the respective codes. Then all structures are subjected to a recorded ground motion. The results are discussed in view of assumptions made at the design phase. Conclusions and recommendations are provided. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
The response of structures subjected to seismic actions is always influenced by P–Δ effects. The importance of this effect is generally modest for structures experiencing an elastic response but often relevant for structures responding well within the inelastic range of behaviour. Seismic codes indicate that P–Δ effects may be counterbalanced through an increase in the structural strength required by a first order analysis. This increase is calculated by means of a strength amplification factor. The expressions suggested in codes for this factor are simplistic and often criticized by researchers. In this paper, the effectiveness of some of the provisions reported in the literature or suggested in seismic codes is evaluated on single degree of freedom systems with different periods of vibration. As suggested by past studies, attention is focused on the influence of the interstorey drift sensitivity coefficient, significant duration of the ground motion, class of the site soil, displacement ductility and equivalent viscous damping ratio of the system. Finally, an accurate expression of the strength amplification factor is proposed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete(r.c.)spatial frames,because only far-fault ground motions are considered in the seismic codes.Strong near-fault earthquakes are characterized by long-duration(horizontal)pulses and high values of the ratio α_(PGA)of the peak value of the vertical acceleration,PGA_V,to the analogous value of the horizontal acceleration,PGA_H,which can become critical for girders and columns.In this work,six- and twelve-storey r.c.spatial frames are designed according to the provisions of the Italian seismic code,considering the horizontal seismic loads acting(besides the gravity loads)alone or in combination with the vertical ones.The nonlinear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like iterative procedure.A lumped plasticity model based on the Haar-Karman principle is adopted to model the inelastic behaviour of the frame members.For the numerical investigation,five near-fault ground motions with high values of the acceleration ratio α_(PGA) are considered.Moreover,following recent seismological studies,which allow the extraction of the largest(horizontal) pulse from a near-fault ground motion,five pulse-type(horizontal)ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted.The results of the nonlinear dynamic analysis carried out on the test structures highlighted that horizontal and vertical components of near-fault ground motions may require additional consideration in the seismic codes.  相似文献   

7.
The reinforced concrete (RC) shear wall serves as one of the most important components sustaining lateral seismic forces. Although they allow advanced seismic performance to be achieved, RC shear walls are rather difficult to repair once the physical plastic hinge at the bottom part has been formed. To overcome this, a damage‐controllable plastic hinge with a large energy dissipation capacity is developed herein, in which the sectional forces are decoupled and sustained separately by different components. The components sustaining the axial and the shear forces all remain elastic even under a rarely occurred earthquake, while the bending components yield and dissipate seismic energy during a design‐level earthquake. This design makes the behavior of the system more predictable and thus more easily customizable to different performance demands. Moreover, the energy dissipation components can be conveniently replaced to fully restore the occupancy function of a building. To examine the seismic behavior of the newly developed component, 3 one third‐scale specimens were tested quasi‐statically, including 1 RC wall complying with the current design codes of China and 2 installed with the damage‐controllable plastic hinges. Each wall was designed to have the same strength. The experimental results demonstrated that the plastic‐hinge‐supported walls had a better energy dissipation capacity and damage controllability than the RC specimen. Both achieved drift ratios greater than 3% under a steadily increasing lateral force.  相似文献   

8.
岩石场地重力式挡土墙地震土压力振动台实验研究   总被引:5,自引:0,他引:5  
结合汶川震区调查资料,利用大型振动台模型试验,分析了碎石土填料的岩石场地重力式挡土墙的地震土压力及其分布规律,并以此对我国现行铁路、公路抗震规范做合理性讨论和细化。研究发现,地震作用下,挡土墙的动土压力沿墙高呈单峰曲线状分布,且60%~80%集中作用于挡墙中部;随着地震峰值加速度的增加,地震土压力分布逐渐偏离现行振震设计规范所认为的三角形线性状,而呈现非线性状;合力作用点高于1/3墙高,0.4g地震加速度作用下,接近0.4倍墙高,对岩石场地下粗粒径墙背填料的地震土压力作用点高度,建议取0.35倍墙高。对比计算表明,现行规范能基本满足工程抗震设计需要,但建议对柔性挡土墙的抗震设计作出必要规定。  相似文献   

9.
Reinforced concrete bridge columns exhibit complex hysteretic behavior owing to combined action of shear, bending moment, and axial force under multi‐directional seismic shakings. The inelastic displacement of columns can be increased by shear–flexure interaction (SFI). This paper develops a simple yet reliable demand model for estimating the inelastic displacement and ductility based on the nonlinear time history analyses of 24 full‐size columns subject to a suite of near‐fault ground motions. A coupled hysteretic model is used to simulate the shear‐flexure interactive (SFI) behavior of columns and the accumulated material damage during loading reversals, including pinching, strength deterioration, and stiffness softening. Guided by rigorous dimensional analysis, the inelastic displacement responses of bridge columns are presented in dimensionless form showing remarkable order. A dimensionless nonlinearity index is derived taking into account of the column strength, ground motion amplitude, and softening or hardening post‐yield behavior. Strong correlation is revealed between the normalized inelastic displacement and the dimensionless structure‐to‐pulse frequency, the dimensionless nonlinearity index as well as the aspect ratio. Two regressive equations for displacement and ductility demands are proposed and validated against the simulation results. The SFI effects are discussed and included explicitly through the aspect ratio in the proposed model. This study offers a new way to realistically predict the inelastic displacement of columns directly from structural and ground motion characteristics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The seismic shear provisions of EC8 for ductile reinforced concrete walls, serving as the lateral load resisting system in multistorey building structures are re-examined. Two aspects are considered (1) single walls, or a system comprising a number of equal-length walls, (2) a resisting system comprising walls of different lengths. It is demonstrated, in light of recent parametric studies, that the EC8 provisions for walls in the medium- and high-ductility classes (DC-M and DC-H, respectively) are both in need of revision. Possible revisions of requirements and a design procedure for a wall system are presented.  相似文献   

11.
为优化处于长周期地震动输入下的大型建筑剪力墙结构,进行了振动台试验。分析普通地震动与长周期地震动波的区别,证明了长周期地震波具有显著长周期分量的特性。将某一高层酒店剪力墙作为研究案例,设计模拟实验台的构建流程与传感器布局,将建筑模型缩尺比例设置为1∶10。选择CA波、RG波、EL波作为实验用地震波,从位移与结构周期、层间剪力与位移比、易损性以及损失评估等方面对大型建筑剪力墙的抗震性能进行了评估。振动台试验结果表明,在位移相同的情况下,长周期地震波下的建筑极限承载力最小;在经历CA波、RG波、EL波后,模型的自振周期均发生变化,而EL波作用下模型的自振周期始终比基本周期略长;不同地震波下,X、Y向层间剪力变化基本趋于一致;CA波、EL波作用下,X向位移比较为接近,而剪力墙Y向上位移比在三种地震波作用下具有较大差异性;在长周期地震波作用下,大型建筑剪力墙损伤最为严重。  相似文献   

12.
The use of nonlinear static procedures for performance‐based seismic design (PBSD) and assessment is a well‐established practice, which has found its way into modern codes for quite some time. On the other hand, near‐source (NS) ground motions are receiving increasing attention, because they can carry seismic demand systematically different and larger than that of the so‐called ordinary records. This is due to phenomena such as rupture forward directivity (FD), which can lead to distinct pulses appearing in the velocity time‐history of the ground motion. The framework necessary for taking FD into account in probabilistic seismic hazard analysis (PSHA) has recently been established. The objective of the present study is to discuss the extension of nonlinear static procedures, specifically the displacement coefficient method (DCM), with respect to the inelastic demand associated with FD. In this context, a methodology is presented for the implementation of the DCM toward estimating NS seismic demand, by making use of the results of NS‐PSHA and a semi‐empirical equation for NS‐FD inelastic displacement ratio. An illustrative application of the DCM, with explicit inclusion of NS‐pulse‐like effects, is given for a set of typical plane R/C frames designed under Eurocode provisions. Different scenarios are considered in the application and nonlinear dynamic analysis results are obtained and discussed with respect to the static procedure estimates. Conclusions drawn from the results may help to assess the importance of incorporating NS effects in PBSD. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper revisits the phenomenon of dynamic soil‐structure interaction (SSI) with a probabilistic approach. For this purpose, a twofold objective is pursued. First, the effect of SSI on inelastic response of the structure is studied considering the prevailing uncertainties. Second, the consequence of practicing SSI provisions of the current seismic design codes on the structural performance is investigated in a probabilistic framework. The soil‐structure system is modeled by the sub‐structure method. The uncertainty in the properties of the soil and the structure is described by random variables that are input to this model. Monte Carlo sampling analysis is employed to compute the probability distribution of the ductility demand of the structure, which is selected as the metrics for the structural performance. In each sample, a randomly generated soil‐structure system is subjected to a randomly selected and scaled ground motion. To comprehensively model the uncertainty in the ground motion, a suite of 3269 records is employed. An extensive parametric study is conducted to cover a wide range of soil‐structure systems. The results reveal the probability that SSI increases the ductility demand of structures designed based on the conventional fixed‐based assumption but built on flexible soil in reality. The results also show it is highly probable that practicing SSI provisions of modern seismic codes increase the ductility demand of the structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper explores the notion of detailing reinforced concrete structural walls to develop base and mid‐height plastic hinges to better control the seismic response of tall cantilever wall buildings to strong shaking. This concept, termed here dual‐plastic hinge (DPH) concept, is used to reduce the effects of higher modes of response in high‐rise buildings. Higher modes can significantly increase the flexural demands in tall cantilever wall buildings. Lumped‐mass Euler–Bernoulli cantilevers are used to model the case‐study buildings examined in this paper. Buildings with 10, 20 and 40 stories are designed according to three different approaches: ACI‐318, Eurocode 8 and the proposed DPH concept. The buildings are designed and subjected to three‐specific historical strong near‐fault ground motions. The investigation clearly shows the dual‐hinge design concept is effective at reducing the effects of the second mode of response. An advantage of the concept is that, when combined with capacity design, it can result in relaxation of special reinforcing detailing in large portions of the walls. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A summary of the development of a new coupled shear‐bending model for analysis of stacked wood shear walls and multi‐story wood‐frame buildings is presented in this paper. The model focuses on dynamic response of light‐frame wood structures under seismic excitation. The formulation is intended to provide a more versatile option than present pure shear models in that the new model is capable of accurately capturing the overall lateral response of each story diaphragm and separates the inter‐story shear deformation and the deformation associated with rotation of the diaphragm due to rod elongation, which is an analogue to the bending deformation in an Euler–Bernoulli beam model. Modeling the coupling of bending and shear deformation is shown to provide more accurate representation of stacked shear wall system behavior than a pure shear model, particularly for the upper stories in the assembly. The formulation is coupled with the newly developed evolutionary parameter hysteretic model for wood shear walls. Existing data from a shake table test of an isolated three‐story wood shear wall were used to verify the accuracy of the model prediction. The numerical results agreed very well with shake table test measurements. The influence of a continuous rod hold‐down system on the dynamic behavior of the three‐story stacked wood shear wall was also successfully simulated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements of T-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.  相似文献   

17.
Nonlinear behaviour of RC frames under repeated strong ground motions   总被引:1,自引:0,他引:1  
This paper presents an extensive parametric study on the inelastic response of eight reinforced concrete (RC) planar frames which are subjected to forty five sequential ground motions. Two families of regular and vertically irregular (with setbacks) frames are examined. The first family has been designed for seismic and vertical loads according to European codes while the second one only for vertical loads, to study structures which have been constructed before the introduction of adequate seismic design code provisions. The whole range of frames is subjected to five real seismic sequences which are recorded by the same station, in the same direction and in a short period of time, up to three days. In such cases, there is a significant damage accumulation as a result of multiplicity of earthquakes, and due to lack of time, any rehabilitation action is impractical. Furthermore, the examined frames are also subjected to forty artificial seismic sequences. Comprehensive analysis of the created response databank is employed in order to derive important conclusions. It is found that the sequences of ground motions have a significant effect on the response and, hence, on the design of reinforced concrete frames. Furthermore, it is concluded that the ductility demands of the sequential ground motions can be accurately estimated using appropriate combinations of the corresponding demands of single ground motions.  相似文献   

18.
高层结构中的填充墙在地震作用下与周围结构构件之间的相互作用十分复杂,对建筑结构的整体抗震性能具有较大影响。然而我国规范在设计阶段通常不考虑填充墙对结构抗震性能的影响,统一采用周期折减系数来考虑其刚度变化引起的内力变化,因此准确评估填充墙对结构抗震性能的影响具有重要意义。本文在对一栋框-剪结构和一栋剪力墙高层建筑进行随机振动测试的基础上,利用Perform-3D对每栋高层分别建立了3种分析模型。其中对未考虑填充墙作用的结构模型,分别采取规范建议值和实测结果值两种方式进行周期折减。对通过添加斜撑单元来考虑填充墙作用的结构模型,利用环境激励测试识别获得的结构模态信息进行模型修正。对该3种模型进行了增量动力分析,探讨潜在危险性水平地震作用下填充墙对高层建筑抗震性能的影响。结果表明,填充墙增加了结构在弹性阶段的整体初始刚度,但随着地震动强度的增加逐渐丧失对结构刚度的贡献作用。相比考虑了填充墙作用的模型计算结果,规范建议的周期折减系数较为保守。同时研究发现,填充墙对高层框-剪结构的影响程度要比剪力墙结构大。  相似文献   

19.

This study proposes an innovative precast shear wall system, called an EVE precast hollow shear wall structure (EVE-PHSW). Precast panels in EVE-PHSW are simultaneously precast with vertical and horizontal holes. Noncontact lap splices of rebars are used in vertical joints connecting adjacent precast panels for automated prefabrication and easy in situ erection. The seismic behavior of EVE walls was examined through a series of tests on six wall specimens with aspect ratios of 1.0∼1.3. Test results showed that EVE wall specimens with inside cast-in situ concrete achieved the desired “strong bending and weak shear” and failed in shear mode. Common main diagonal cracks and brittle shear failure in squat cast-in situ walls were prevented. Inside cast-in situ concrete could significantly improve the shear strength and stiffness of EVE walls. The details of boundary elements (cast-in situ or prefabricated) and vertical joints (contiguous or spaced) had little effect on the global behavior of EVE walls. Noncontact lap splices in vertical joints could enable EVE walls to exhibit stable load-carrying capacity through extensive deformations. Evaluation on design codes revealed that both JGJ 3-2010 and ACI 318-14 provide conservative estimation of shear strength of EVE walls, and EVE walls achieved shear strength reserves comparative to cast-in situ walls. The recommended effective stiffness for cast-in situ walls in ASCE 41–17 appeared to be appropriate for EVE walls.

  相似文献   

20.
This paper summarizes the results of an extensive study on the inelastic seismic response of X‐braced steel buildings. More than 100 regular multi‐storey tension‐compression X‐braced steel frames are subjected to an ensemble of 30 ordinary (i.e. without near fault effects) ground motions. The records are scaled to different intensities in order to drive the structures to different levels of inelastic deformation. The statistical analysis of the created response databank indicates that the number of stories, period of vibration, brace slenderness ratio and column stiffness strongly influence the amplitude and heightwise distribution of inelastic deformation. Nonlinear regression analysis is employed in order to derive simple formulae which reflect the aforementioned influences and offer a direct estimation of drift and ductility demands. The uncertainty of this estimation due to the record‐to‐record variability is discussed in detail. More specifically, given the strength (or behaviour) reduction factor, the proposed formulae provide reliable estimates of the maximum roof displacement, the maximum interstorey drift ratio and the maximum cyclic ductility of the diagonals along the height of the structure. The strength reduction factor refers to the point of the first buckling of the diagonals in the building and thus, pushover analysis and estimation of the overstrength factor are not required. This design‐oriented feature enables both the rapid seismic assessment of existing structures and the direct deformation‐controlled seismic design of new ones. A comparison of the proposed method with the procedures adopted in current seismic design codes reveals the accuracy and efficiency of the former. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号