首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many surviving ancient monuments are freestanding stone masonry structures, which appear to be vulnerable to horizontal dynamic loads such as earthquakes. However, such structures have stood for thousands of years despite numerous historic earthquakes. This study proposes a scaled-down dynamic centrifuge modelling test to study how these masonry structures resist seismic loading. The test is proposed for seismic risk assessments to evaluate risk of damage from a future seismic event. The seismic behaviour of a 3-storey, freestanding stone block structure has been modelled and tested within a centrifuge. Models were made at 3 different scales and dynamic tests were conducted using different centrifugal acceleration fields so that the behaviours could be transformed to an equivalent full-scale prototype and compared. Data from 2 earthquakes and a sweeping signal were used to simulate the effects of earthquake ground motion within the centrifuge. The acceleration and frequency responses at each storey height of the model were recorded in different centrifugal acceleration fields. Similar behaviours appeared when the results of the small-scale models were transformed to a full-size prototype scale. This confirms that the seismic behaviour of stone masonry structures can be predicted using scaled-down models.  相似文献   

2.
In many applications of seismic isolation, such as in high‐rise construction, lightweight construction, and structures with large height‐to‐width aspect ratios, significant tension forces can develop in bearings, raising concerns about the possible rupture of elastomeric bearings and the uplift of sliding bearings. In this paper, a novel tension‐resistant lead plug rubber bearing (TLRB) with improved tension‐resisting capabilities is developed and experimentally and numerically assessed. This TLRB consists of a common lead plug rubber bearing (LRB) and several helical springs. After describing the theory underlying the behavior of the TLRB, the mechanical properties of reduced‐scale prototype bearings are investigated through extensive horizontal and vertical loading tests. The test results indicate that TLRBs can improve the shear stiffness and tension resistance capacity even under significant tensile loads. A series of shaking table tests on scaled models of high‐rise buildings with different aspect ratios were conducted to investigate the dynamic performance of the TLRB and the seismic responses of base‐isolated high‐rise buildings. Three different cases were considered in the shaking table tests: a fixed base condition and the use of TLRB and LRB isolation systems. The results of the shaking table test show that (a) base‐isolated systems are effective in reducing the structural responses of high‐rise buildings; (b) an isolated structure's aspect ratio is an important factor influencing its dynamic response; (c) TLRBs can endure large tensile stresses and avoid rupture on rubber bearings under strong earthquakes; and (d) the experimental and numerical results of the responses of the models show good agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This study attempts to propose dynamic centrifuge model tests as a method of seismic risk assessment in order to discover how stone architectural heritages with masonry structures have endured seismic load, and whether there is any possibility of future earthquake damage. Dynamic centrifuge tests have been conducted for one fifteenth scale models of Seok-ga-tap and the five-storey stone pagoda of Jeongnimsa temple site, which are Korean representative stone pagodas. In order to make input motions of the earthquake simulator, site investigation and site-specific response analysis have been performed. The models of two stone pagodas, which have the same number of pieces with the real structures, have been produced and the dynamic centrifuge tests have been conducted for the model pagodas. Accelerometers were attached at different heights of the pagoda. The measured acceleration records and frequency responses were analysed during dynamic centrifuge test. Two real earthquake records, Hachinohe and Ofunato earthquakes and a sweeping signal with ranged frequency were utilised for input motions of dynamic centrifuge tests to evaluate the behaviour of the stone pagodas. For Seok-ga-tap models, it was observed that acceleration tends to be amplified with height. The third floor body shows at most 2.5 amplification of acceleration in comparison to the surface ground. The amplification was at a frequency of 3.83 Hz and it was considered as the natural frequency of the pagoda. For the five-storey stone pagoda, the seismic wave energy significantly reduced while it passed the first body floor, and then the peak acceleration was gradually amplified upwards. It was found that the pagodas did not collapse when the peak acceleration of ground surface was raised to 0.4 g. Given that the maximum design seismic acceleration specified in Korean seismic design guide is 0.22 g and the amplification ratio of peak acceleration in the supporting ground of the pagodas ranges from 1.45 to 1.74, it can be shown that the two pagodas are stable against 2400-year return period earthquake level, and have excellent seismic performance.  相似文献   

4.
Sorted patterned ground is ubiquitous where gravelly fine soil experiences freeze–thaw cycles, but experimental studies have rarely been successful in reproducing such patterns. This article reports an attempt to reproduce miniature sorted patterns by repeating needle‐ice formation, which simulates frost sorting in regions dominated by diurnal freeze–thaw cycles. Six full‐scale laboratory models were tested. They consisted of near‐saturated volcanic fine soil topped by small stones of uniform size; the models explored a range of stone size (~6, ~12, ~17 and ~22 mm) and surface abundance (20, 40 and 60% cover). The stones were placed in a grid on the surface. These models were subjected to 20–30 temperature excursions between 10 °C and ?5 °C in 12 hours. The evolution of surface patterns were visually traced by photogrammetry. A data logging system continuously monitored vertical soil displacements, soil temperatures and moistures at different depths. All experimental runs displayed needle‐ice formation (2–3 cm in height) and resulting displacement of stones. The soil domains tended to heave faster and higher than the stones, leading to outward movement of the former and concentration of the stones. In plan view, smaller stones showed relatively fast and long‐lasting movements, while larger stones stabilized after the first five cycles. The 20% stone cover produced stone islands, whereas the 40% cover resulted in sorted labyrinths (a circle‐island complex) that may represent incipient sorted circles. The average diameter or spacing of these forms are 12–13 cm, being comparable to those in the field. The experiments imply that needle‐ice activity promotes rapid formation of sorted patterns, although the formation of well‐defined sorted circles may require hundreds of diurnal frost heave cycles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
An innovative solution for the seismic protection of existing masonry structures is proposed and investigated through shake table tests on a natural scale wall assemblage. After a former test series carried out without reinforcement, the specimen was retrofitted using Steel Reinforced Grout. The strengthening system comprises horizontal strips of ultra‐high strength steel cords, externally bonded to the masonry with hydraulic lime mortar, and connectors to transversal walls, applied within the thickness of the plaster layer. In order to assess the seismic performance of the retrofitted wall, natural accelerograms were applied with increasing intensity up to failure. Test results provide a deep understanding of the effectiveness of mortar‐based composites for improving the out‐of‐plane seismic capacity of masonry walls, in comparison with traditional reinforcements with steel tie‐bars. The structural implications of the proposed solution in terms of dynamic properties and damage development under earthquake loads are also discussed.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The use of base isolation in developed countries including the U.S. and Japan has already been recognized as a very effective method for upgrading the seismic resistance of structures. In this study, an advanced base‐isolation system called the multiple friction pendulum system (MFPS) is investigated to understand its performance on seismic mitigation through full‐scale component and shaking table tests. The component tests of the advanced Teflon composite coated on the sliding surface show that the friction coefficient of the lubricant material is a function of the sliding velocity in the range of 0.03–0.12. The experimental results also indicate that there were no signs of degradation of the sliding interface observed after 2000 cycles of sliding displacements. A full‐scale MFPS isolator under a vertically compressive load of 8830 KN (900 tf) and horizontally cyclic displacements was tested in order to assess the feasibility of the MFPS isolator for its practical use. After 248 cycles of horizontal displacement reversals, the behaviour of the base isolator was almost identical to its behaviour during the first few cycles. The experimental results of the shaking table tests of a full‐scale steel structure isolated with MFPS isolators show that the MFPS device can isolate seismic transmitted energy effectively under soft‐soil‐deposit site earthquakes with long predominant periods as well as strong ground motions with short predominant periods. These test results demonstrate that the MFPS isolator possesses excellent durability and outstanding earthquake‐proof capability. Furthermore, the numerical results show that the mathematical model proposed in this study can well predict the seismic responses of a structure isolated with MFPS isolators. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
方冬慧 《地震工程学报》2019,41(5):1193-1198,1214
为了研究多层空心砌块房屋混凝土结构抗震性测试,按照1∶5缩尺比例建造空心砌块房屋混凝土结构模型进行抗震性测试实验。根据实际原型参数遵从相似理论的要求选择模型参数,通过电液伺服加载装置和液压千斤顶加载水平、垂直方向荷载,对所建造模型进行动力特性测试、地震反应分析、结构最大地震反应以及位移响应进行了实例分析。结果表明,随着破坏程度加大,模型结构自振频率随之减小,阻尼比随之增大;有芯柱多层空心砌块房屋模型的抗震效果较强;强震状态下,结构动力特性变化较大,破坏层聚集了房屋结构的最大反应;当加速度为125 cm/s时,结构最大位移为2.73 mm,低于规范值,模型结构具备一定延性。  相似文献   

8.
Integral abutment bridges (IABs) are jointless structures without bearings or expansion joints which require minimum or zero maintenance. The barrier to the application of long‐span integral abutment bridges is the interaction of the abutment with the backfill soil during the thermal expansion and contraction of the bridge deck, that is, serviceability, or when the bridge is subjected to dynamic loads, such as earthquakes. The interaction of the bridge with the backfill leads to settlements and ratcheting of the soil behind the abutment and, as a result, the soil pressures acting on the abutment build up in the long term. This paper provides a solution for the aforementioned challenges by introducing a novel isolator that is a compressible inclusion of reused tyre‐derived aggregates placed between the bridge abutment and the backfill. The compressibility of typical tyre‐derived aggregates was measured by laboratory tests, and the compressible inclusion was designed accordingly. The compressible inclusion was then applied to a typical integral frame abutment model, which was subjected to static and dynamic loads representing in‐service and seismic loads correspondingly. The response of both the conventional and the isolated abutment was assessed based on the settlements of the backfill, the soil pressures and the actions of the abutment. The study of the isolated abutment showed that the achieved decoupling of the abutment from the backfill soil results in significant reductions of the settlements of the backfill and of the pressures acting on the abutment. Hence, the proposed research enables extending the length limits of integral frame bridges subjected to earthquake excitations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Despite the long series of European research projects that has led to the setting of fully reliable seismic design criteria for precast structures, recent earthquakes have shown that a weak point still exists in the proportioning of the connection systems of cladding wall panels. Following this finding, this paper outlines an organic setting of the design problem of precast concrete structures including cladding–structure interaction and describes three possible solutions, namely, the isostatic, integrated, and dissipative systems. The related fastening arrangements, with the use of existing and innovative connection devices, are also described. This paper comments on the results of the pseudo‐dynamic and cyclic tests performed at ELSA Laboratory of the European Joint Research Centre of Ispra (Italy) on a full‐scale prototype of precast structure. The conception and the experimental performance of the structure with nine different configurations of either vertical or horizontal wall panel claddings are presented. The analysis of the results highlights the effectiveness of the different solutions in a comparative way. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents the shake‐table tests of a 2/3‐scale, three‐story, two‐bay, reinforced concrete frame infilled with unreinforced masonry walls. The specimen is representative of the construction practice in California in the 1920s. The reinforced concrete frame had nonductile reinforcement details and it was infilled with solid masonry walls in one bay and infill walls with window openings in the other bay. The structure was subjected to a sequence of dynamic tests including white‐noise base excitations and 14 scaled historical earthquake ground motion records of increasing intensity. The performance of the structure was satisfactory considering the seismic loads it was subjected to. The paper summarizes the design of the specimen and the major findings from the shake‐table tests, including the dynamic response, the load resistance, the evolution of damage, and the final failure mechanism. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents shake‐table tests conducted on a two‐fifths‐scale reinforced concrete frame representing a conventional construction design under current building code provisions in the Mediterranean area. The structure was subjected to a sequence of dynamic tests including free vibrations and four seismic simulations in which a historical ground motion record was scaled to levels of increasing intensity until collapse. Each seismic simulation was associated with a different level of seismic hazard, representing very frequent, frequent, rare and very rare earthquakes. The structure remained basically undamaged and within the inter‐story drift limits of the ‘immediate occupancy’ performance level for the very frequent and frequent earthquakes. For the rare earthquake, the specimen sustained significant damage with chord rotations of up to 28% of its ultimate capacity and approached the upper bound limit of inter‐story drift associated with ‘life safety’. The specimen collapsed at the beginning of the ‘very rare’ seismic simulation. Besides summarizing the experimental program, this paper evaluates the damage quantitatively at the global and local levels in terms of chord rotation and other damage indexes, together with the energy dissipation demands for each level of seismic hazard. Further, the ratios of column‐to‐beam moment capacity recommended by Eurocode 8 and ACI‐318 to guarantee the formation of a strong column‐weak beam mechanism are examined. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Throughout history, dry-stone masonry structures have been strengthened with different types of metal connectors in order to increase their resistance which enabled their survival, especially in the seismically active area. One such example is the ancient Protiron monument placed in the Peristyle square of the Diocletian's Palace in Split, Croatia. The Protiron was built at the turn of the 3rd century as a stone masonry structure with dowels embedded between its base, columns, capitals and broad gable. The stone blocks in the broad gable were connected by metal clamps during restoration at the beginning of the 20th century. In order to study the seismic performance of the strengthened stone masonry structures, an experimental investigation of seismic behaviour of a physical model of the Protiron was performed on the shaking table. The model was designed as a true replica model in a length scale of 1:4 and exposed to representative earthquake with increasing intensities up to collapse. The tests provided a clear insight into system behaviour, damage mechanism and failure under intensive seismic load, especially into the efficiency of connecting elements, which had a special role in increasing seismic resistance and protection of the structure from collapse. Additionally, this experiment provided valuable data for verification and calibration of numerical models for strengthened stone masonry structures.  相似文献   

13.
A common type of ancient monuments around the Mediterranean is the ancient Greek temple. Unfortunately, very few remain intact; most of them surviving in the form of free‐standing multidrum columns. Composed of stones resting on top of each other without any connection, such columns are considered vulnerable to earthquakes. The paper presents an experimental study of such structures, aiming to explore their seismic vulnerability and derive insights on the key factors affecting their response. Reduced scale models of a single multidrum column and of a portal were tested at the shaking table of the National Technical University of Athens Laboratory of Soil Mechanics. The models, constructed of marble just as the originals, were excited by idealized Ricker pulses and real seismic records. Single columns exhibit a remarkable earthquake resistance. Subjected to the strongest motions ever recorded in Greece, where many such monuments are situated, the columns hardly suffered any permanent deformation. Collapse is probable only for extremely harsh directivity‐affected seismic motions. Portals proved even more robust, surviving extreme seismic excitations. Their superior performance is related to the beneficial role of the epistyle, which adds energy dissipation and restoring force to the system. Their performance is very sensitive to minor changes in geometry or input motion. The complexity increases exponentially with the number of drums, being directly associated with the number of drum‐to‐drum interfaces and the increased probability of interface imperfections. In contrast to PGA, the maximum spectral displacement SDmax and the length scale Lp have turned out to be effective intensity measures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Much research has been conducted for physics‐based ground‐motion simulation to reproduce seismic response of soil and structures precisely and to mitigate damages caused by earthquakes. We aimed at enabling physics‐based ground‐motion simulations of complex three‐dimensional (3D) models with multiple materials, such as a digital twin (high‐fidelity 3D model of the physical world that is constructed in cyberspace). To perform one case of such simulation requires high computational cost and it is necessary to perform a number of simulations for the estimation of parameters or consideration of the uncertainty of underground soil structure data. To overcome this problem, we proposed a fast simulation method using graphics processing unit computing that enables a simulation with small computational resources. We developed a finite‐element‐based method for large‐scale 3D seismic response analysis with small programming effort and high maintainability by using OpenACC, a directive‐based parallel programming model. A lower precision variable format was introduced to achieve further speeding up of the simulation. For an example usage of the developed method, we applied the developed method to soil liquefaction analysis and conducted two sets of simulations that compared the effect of countermeasures against soil liquefaction: grid‐form ground improvement to strengthen the earthquake resistance of existing houses and replacement of liquefiable backfill soil of river wharves for seismic reinforcement of the wharf structure. The developed method accelerates the simulation and enables us to quantitatively estimate the effect of countermeasures using the high‐fidelity 3D soil‐structure models on a small cluster of computers.  相似文献   

15.
Storage tanks are vulnerable to earthquakes, as numerous major earthquakes have demonstrated. The trend of recent revisions to make seismic design criteria for large‐scale industrial storage tanks increasingly stringent has made development of cost‐effective earthquake‐resistant design and retrofit techniques for industrial tanks imperative. This study assesses the feasibility of seismic base isolation for making liquid‐filled storage tanks earthquake resistant. The sliding‐type friction pendulum seismic (FPS) bearings are considered rather than the elastomeric bearings because the dynamic characteristics of an FPS‐isolated tank remain unchanged regardless of the storage level. This work has devised a hybrid structural‐hydrodynamic model and solution algorithm, which would permit simple, accurate and efficient assessment of the seismic response of rigid cylindrical storage tanks in the context of seismic isolation. Extensive numerical simulations confirm the effectiveness of seismic base isolation of rigid cylindrical tanks using FPS bearings. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Eight half‐scale brick masonry walls were tested to study two important aspects of confined masonry (CM) walls related to its seismic behavior under in‐plane and out‐of‐plane loads. Four solid wall specimens tested to investigate the role of type of interface between the masonry and tie‐columns, such as toothing varying from none to every course. The other four specimens with openings were tested to study the effectiveness of various strengthening options around opening to mitigate their negative influence. In the set of four walls, one wall was infilled frame while the other three were CM walls of different configurations. The experimental results were further used to determine the accuracy of various existing models in predicting the in‐plane response quantities of CM walls. Confined masonry walls maintained structural integrity even when severely damaged and performed much better than infill frames. No significant effect of toothing details was noticed although toothing at every brick course was preferred for better post‐peak response. For perforated walls, provision of vertical elements along with continuous horizontal bands around openings was more effective in improving the overall response. Several empirical and semi‐empirical equations are available to estimate the lateral strength and stiffness of CM walls, but those including the contribution of longitudinal reinforcement in tie‐columns provided better predictions. The available equations along with reduction factors proposed for infills could not provide good estimates of strength and stiffness for perforated CM walls. However, recently proposed relations correlating strength/stiffness with the degree of confinement provided reasonable predictions for all wall specimens. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The ability of a recently proposed seismic isolation system, with inherent self‐stopping mechanism, to mitigate or even eliminate seismic pounding of adjacent structures is investigated under severe near‐fault earthquakes. The isolation system is referred to as roll‐in‐cage (RNC) isolator. It is a rolling‐based isolator that provides in one unit the necessary functions of vertical rigid support, horizontal flexibility with enhanced stability, hysteretic energy dissipation, and resistance to minor vibration loads. In addition, the RNC isolator is distinguished by a self‐stopping (buffer) mechanism to limit the bearing displacement under excitations stronger than a design earthquake or at limited seismic gaps, and a linear gravity‐based self‐recentering mechanism to prevent permanent bearing displacement without causing vertical fluctuation of the isolated structure. A previously developed multifeature SAP2000 model of the RNC isolator is improved in this paper to account for the inherent buffer mechanism's damping. Then, the effectiveness of the isolator's buffer mechanism in limiting peak bearing displacements is studied together with its possibly arising negative influence on the isolation efficiency. After that, the study investigates how to alleviate or even eliminate those possibly arising drawbacks, due to the developed RNC isolator's inner pounding as a result of its buffer activation, to achieve efficient seismic isolation with no direct structure‐to‐structure pounding, considering limited seismic gaps with adjacent structures and near‐fault earthquakes. The results show that the RNC isolator could be an efficient solution for aseismic design in near‐fault zones considering limited seismic gaps. Earthquake Engineering and Structural Dynamics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Based on the theory of dynamic wheel–rail interactions, a dynamic model of coupled train–bridge system subjected to earthquakes is established, in which the non‐uniform characteristics of the seismic wave input from different foundations are considered. The bridge model is based on the modal comprehension analysis technique. Each vehicle is modelled with 31 degrees of freedom. The seismic loads are imposed on the bridge by using the influence matrix and exerted on the vehicles through the dynamic wheel–rail interaction relationships. The normal wheel–rail interaction is tackled by using the Hertzian contact theory, and the tangent wheel–rail interaction by the Kalker linear theory and the Shen–Hedrick–Elkins theory. A computer code is developed. A case study is performed to a continuous bridge on the planned Beijing–Shanghai high‐speed railway in China. Through input of typical seismic waves with different propagation velocities to the train–bridge system, the histories of the train running through the bridge are simulated and the dynamic responses of the bridge and the vehicles are calculated. The influences of train speed and seismic wave propagation velocity on the dynamic responses of the bridge–vehicle system are studied. The critical train speeds are proposed for running safety on high‐speed railway bridges under earthquakes of various intensities. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete(r.c.)spatial frames,because only far-fault ground motions are considered in the seismic codes.Strong near-fault earthquakes are characterized by long-duration(horizontal)pulses and high values of the ratio α_(PGA)of the peak value of the vertical acceleration,PGA_V,to the analogous value of the horizontal acceleration,PGA_H,which can become critical for girders and columns.In this work,six- and twelve-storey r.c.spatial frames are designed according to the provisions of the Italian seismic code,considering the horizontal seismic loads acting(besides the gravity loads)alone or in combination with the vertical ones.The nonlinear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like iterative procedure.A lumped plasticity model based on the Haar-Karman principle is adopted to model the inelastic behaviour of the frame members.For the numerical investigation,five near-fault ground motions with high values of the acceleration ratio α_(PGA) are considered.Moreover,following recent seismological studies,which allow the extraction of the largest(horizontal) pulse from a near-fault ground motion,five pulse-type(horizontal)ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted.The results of the nonlinear dynamic analysis carried out on the test structures highlighted that horizontal and vertical components of near-fault ground motions may require additional consideration in the seismic codes.  相似文献   

20.
祝叶  罗凡 《地震工程学报》2019,41(5):1170-1176
研究基于Revit平台设计建筑模型的钢网架结构抗震性能数值模拟方法,对于提高钢网架结构抗震性能以及安全性具有重要应用价值。该方法依据标高和轴网的定位信息设计钢网架建筑构件及结构构件后,通过Revit软件平台确定实例钢网架结构建筑模型大体框架;采用绑定约束以及接触约束方法,分别实现建筑模型杆件-梁以及混凝土-型钢间的约束,并采用位移控制加载方法在得到的建筑模型杆顶以及梁与轴线方向加载轴向荷载和往复荷载。采用TurnTool虚拟仿真软件,进行钢网架结构抗震性数值模拟。结果显示:在低周往复荷载作用下钢网架结构荷载与位移的变化较为稳定;在低周往复荷载作用下的塑性阶段时,结构的纵向系杆对混凝土存在约束效果,构件间距越小该结构的延性就越好,纵向系杆能够提高实例钢网架结构的受力性;不同地震波作用下钢网架结构楼层节点位移随着楼层的增高而加大,证明了所设计模型的抗震模拟结果准确性较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号