首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The implementation of performance‐based design and assessment procedures in seismic codes leads to the need for an accurate estimation of local component demands. According to Part 3 of Eurocode 8 safety checks should be always conducted in terms of plastic rotations, even when linear elastic methods of analysis are used. This paper demonstrates that linear analysis fails to predict inelastic deformation demands at the member level. Therefore, a simplified procedure that allows for the estimation of beam inelastic deformation demands using linear elastic methods of analysis in a simple and conservative way is presented herein. A number of moment‐resisting steel frames designed according to different criteria and exhibiting different column‐to‐beam strength ratios were analysed and used for the derivation of the proposed procedure. A comparative study between alternative methods of quantifying inelastic deformation demands using linear analysis is also carried out. The results obtained allow concluding about the efficiency and conservativeness of the proposed procedure which makes it attractive to be employed in engineering practice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Performance-based earthquake engineering is a recent focus of research that has resulted in widely developed design methodologies due to its ability to realistically simulate structural response characteristics.Precise prediction of seismic demands is a key component of performance-based design methodologies.This paper presents a seismic demand evaluation of reinforced concrete moment frames with medium ductility.The accuracy of utilizing simplified nonlinear static analysis is assessed by comparison against the results of time history analysis on a number of frames.Displacement profiles,drift demand and maximum plastic rotation were computed to assess seismic demands.Estimated seismic demands were compared to acceptance criteria in FEMA 356.The results indicate that these frames have sufficient capacity to resist interstory drifts that are greater than the limit value.  相似文献   

3.
A refined probabilistic assessment of seismic demands and fracture capacity of welded column splice (WCS) connections in welded steel moment resisting frames (WSMRFs) is presented. Seismic demand assessment is performed through cloud-based nonlinear time history analysis (NLTHA) for two case-study structures, i.e., a 4- and a 20- story WSMRFs. Results from NLTHA are used to derive fracture fragility of WCS connections. To this aim, the study investigates (1) optimal ground-motion intensity measures for conditioning probabilistic seismic demand models in terms of global (i.e., maximum inter-story drift ratio) and local (i.e., peak tensile stress in the flange of WCSs) engineering demand parameters of WSMRFs; (2) the effect of ground-motion vertical components on the longitudinal flange stress of WCS connections and their resulting fracture fragility; and (3) the effect of WCS capacity uncertainties on the fracture fragility estimates of those connections. For the latter case, an advanced finite element fracture mechanics-based approach proposed by the authors is employed to capture aleatory and epistemic uncertainties affecting fracture capacities. The focus is on pre-Northridge WCS connections featuring partial joint penetration and brittle materials, making them highly vulnerable to seismic fracture. Fracture fragility results for the case-study structures are compared and discussed, highlighting the importance of the considered issues on fragility estimates, particularly in the case of high-rise structures. Findings from the study contribute shedding some light on the influence of seismic demand and capacity uncertainties on the assessment of fracture fragility of WCS connections. These findings can guide similar performance-based assessment exercises for WSMRFs to inform, for instance, the planning and design of retrofitting strategies for those vulnerable connections.  相似文献   

4.
An improved linear‐elastic analysis procedure is developed in this paper as a simple approximate method for displacement‐based seismic assessment of the existing buildings. The procedure is mainly based on reducing the stiffness of structural members that are expected to respond in the inelastic range in a single global iteration step. Modal spectral displacement demands are determined from the equal displacement rule. Response predictions obtained from the proposed procedure are evaluated comparatively by using the results of benchmark nonlinear response history analysis, and both the conventional and the multi‐mode pushover analyses. In comparative evaluations, a twelve‐story RC plane frame and a six‐story unsymmetrical‐plan RC frame are employed by using 91 ground motion components. It is observed that the proposed procedure estimates the flexural deformation demands in deformation‐controlled members and the shear forces in force‐controlled members with reasonable accuracy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In recent years, several research groups have studied a new generation of analysis methods for seismic response assessment of existing buildings. Nevertheless, many important developments are still needed in order to define more reliable and effective assessment procedures. Moreover, regarding existing buildings, it should be highlighted that due to the low knowledge level, the linear elastic analysis is the only analysis method allowed. The same codes (such as NTC2008, EC8) consider the linear dynamic analysis with behavior factor as the reference method for the evaluation of seismic demand. This type of analysis is based on a linear-elastic structural model subject to a design spectrum, obtained by reducing the elastic spectrum through a behavior factor. The behavior factor (reduction factor or q factor in some codes) is used to reduce the elastic spectrum ordinate or the forces obtained from a linear analysis in order to take into account the non-linear structural capacities. The behavior factors should be defined based on several parameters that influence the seismic nonlinear capacity, such as mechanical materials characteristics, structural system, irregularity and design procedures. In practical applications, there is still an evident lack of detailed rules and accurate behavior factor values adequate for existing buildings. In this work, some investigations of the seismic capacity of the main existing RC-MRF building types have been carried out. In order to make a correct evaluation of the seismic force demand, actual behavior factor values coherent with force based seismic safety assessment procedure have been proposed and compared with the values reported in the Italian seismic code, NTC08.  相似文献   

6.
This paper presents a simplified Multi-Degree-Of-Freedom (MDOF) model through modification of fish-bone model (or generic frame). Modified Fish-Bone (MFB) model is developed through three enhancements: (i) the moment of inertia for half-beams is reduced slightly to modify the assumption of equal rotation at each story joints, (ii) a number of truss elements are inserted to the fish-bone model to simulate flexural deformation of moment frames due to axial elongation and contraction of columns, and (iii) moment–rotation relationship of representative rotational springs is supposed to be bilinear instead of trilinear in order to consider simultaneous yielding at both ends of the beam in moment frames. The proposed model is evaluated with respect to nonlinear dynamic analysis results of three classic moment resisting frames subjected to 94 records of FEMA-440 ground motion data set. Moreover, the adequacy of this model is compared with the fish-bone model and two predictors of nonlinear seismic demand. The statistical study of predicted interstory drift demonstrates the superiority of the proposed model over the fish-bone model and both seismic demand predictors.  相似文献   

7.
Continuum model is a useful tool for approximate analysis of tall structures including moment-resisting frames and shear wall-frame systems. In continuum model, discrete buildings are simplified such that their overall behavior is described through the contributions of flexural and shear stiffnesses at the story levels. Therefore, accurate determination of these lateral stiffness components constitutes one of the major issues in establishing reliable continuum models even if the proposed solution is an approximation to actual structural behavior. This study first examines the previous literature on the calculation of lateral stiffness components (i.e. flexural and shear stiffnesses) through comparisons with exact results obtained from discrete models. A new methodology for adapting the heightwise variation of lateral stiffness to continuum model is presented based on these comparisons. The proposed methodology is then extended for estimating the nonlinear global capacity of moment resisting frames. The verifications that compare the nonlinear behavior of real systems with those estimated from the proposed procedure suggest its effective use for the performance assessment of large building stocks that exhibit similar structural features. This conclusion is further justified by comparing nonlinear response history analyses of single-degree-of-freedom (sdof) systems that are obtained from the global capacity curves of actual systems and their approximations computed by the proposed procedure.  相似文献   

8.
增大柱端抗弯承载力是抗震"能力设计"措施中引导钢筋混凝土框架结构形成梁铰型有利耗能机构的关键措施。本文以6层确定性钢筋混凝土框架结构为分析对象,通过结构易损性分析评估了不同强柱系数取值对钢筋混凝土框架结构抗震性能的影响。结构易损性分析表明增大柱端抗弯承载力是改善结构抗震性能的有效措施,增大强柱系数提高了结构的变形能力,使不同破坏极限状态之间形成较大的"梯度",对防止强烈地震作用下结构的突然倒塌提供了预示。结构易损性曲线对评估结构抗震性能、选用合适的目标强柱系数提供了量化标准。  相似文献   

9.
This paper assesses the fundamental approaches and main procedures adopted in the seismic design of steel frames, with emphasis on the provisions of Eurocode 8. The study covers moment-resisting as well as concentrically-braced frame configurations. Code requirements in terms of design concepts, behaviour factors, ductility considerations and capacity design verifications, are examined. The rationality and clarity of the design principles employed in Eurocode 8, especially those related to the explicit definitions of dissipative and non dissipative zones and associated capacity design criteria, are highlighted. Various requirements that differ notably from the provisions of other seismic codes are also pointed out. More importantly, several issues that can lead to unintentional departure from performance objectives or to impractical solutions, as a consequence of inherent assumptions or possible misinterpretations, are identified and a number of clarifications and modifications suggested. In particular, it is shown that the implications of stability and drift requirements as well as some capacity design checks in moment frames, together with the treatment of post-buckling response and the distribution of inelastic demand in braced frames, are areas that merit careful consideration within the design process.  相似文献   

10.
This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects (PASSI) is then established based on the equivalent SDOF system, and the modified response spectrum and equivalent capacity spectrum are obtained. Furthermore, the approximate formulas to obtain the dynamic stiffness of foundations are suggested. Three steel buildings with different story heights (3, 9 and 20) including SSI effects are analyzed under two far-field and two near-field historical records and an artificial seismic time history using the two PASSI procedures and the nonlinear response history analysis (NLhRHA) method. The results are compared and discussed. Finally, combined with seismic design response spectrum, the nonlinear seismic response of a 9-story building with SSI effects is analyzed using the PASSI procedures, and its seismic performance is evaluated according to the Chinese 'Code for Seismic Design of Buildings. The feasibility of the proposed procedure is verified.  相似文献   

11.
A generalized pushover analysis (GPA) procedure is developed for estimating the inelastic seismic response of structures under earthquake ground excitations. The procedure comprises applying different generalized force vectors separately to the structure in an incremental form with increasing amplitude until a prescribed seismic demand is attained for each generalized force vector. A generalized force vector is expressed as a combination of modal forces, and simulates the instantaneous force distribution acting on the system when a given response parameter reaches its maximum value during dynamic response to a seismic excitation. While any response parameter can be selected arbitrarily, generalized force vectors in the presented study are derived for maximum interstory drift parameters. The maximum value of any other response parameter is then obtained from the envelope of GPAs results. Each nonlinear static analysis under a generalized force vector activates the entire multi‐degree of freedom effects simultaneously. Accordingly, inelastic actions develop in members with the contribution of all ‘instantaneous modes’ in the nonlinear response range. Target seismic demands for interstory drifts at the selected stories are calculated from the associated drift expressions. The implementation of the proposed GPA is simpler compared with nonlinear response history analysis, whereas it is less demanding in computational effort when compared with several multi‐mode adaptive nonlinear static procedures. Moreover, it does not suffer from the statistical combination of inelastic modal responses obtained separately. The results obtained from building frames have demonstrated that GPA is successful in estimating maximum member deformations and member forces with reference to the response history analysis. When the response is linear elastic, GPA and response spectrum analysis produce identical results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Recent earthquakes have confirmed the role played by infills in the seismic response of reinforced concrete buildings. The control and limitation of damage to such nonstructural elements is a key issue in performance‐based earthquake engineering. The present work is focused on modeling and analysis of damage to infill panels, and, in particular, it is aimed towards linear analysis procedures for assessing the damage limitation limit state of infilled reinforced concrete frames. First, code provisions on infill modeling and acceptance criteria at the damage limitation limit state are reviewed. Literature contributions on damage to unreinforced masonry infill panels and corresponding displacement capacity are reported and discussed. Two procedures are then proposed aiming at a twofold goal: (i) the determination of ‘equivalent’ interstory drift ratio limits for a bare frame model and (ii) the estimation of the stiffness of equivalent struts representing infill walls in a linear model. These two quantities are determined such that a linear model ensures a reliable estimation of seismic capacity at the damage limitation limit state, providing the same intensity level as that obtained from nonlinear analyses carried out on structural models with infills. Finally, the proposed procedures are applied to four‐story and eight‐story case study‐infilled frames, designed for seismic loads according to current technical codes. The results of these application examples are presented and discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper demonstrates the applicability of response history analysis based on rigid‐plastic models for the seismic assessment and design of steel buildings. The rigid‐plastic force–deformation relationship as applied in steel moment‐resisting frames (MRF) is re‐examined and new rigid‐plastic models are developed for concentrically‐braced frames and dual structural systems consisting of MRF coupled with braced systems. This paper demonstrates that such rigid‐plastic models are able to predict global seismic demands with reasonable accuracy. It is also shown that, the direct relationship that exists between peak displacement and the plastic capacity of rigid‐plastic oscillators can be used to define the level of seismic demand for a given performance target. Copyright© 2009 John Wiley & Sons, Ltd.  相似文献   

14.
将钢框架结构按其性能划分为使用良好、人身安全、防止倒塌三个水平,并用层间侧移角予以量化采用钢框架的最大层侧移模式来确定其目标侧移曲线在等效线性化的前提下,由等效位移用弹性位移反应谱求出等效周期,然后对构件进行刚度设计和承载力设计用静力弹塑性分析方法对结构进行分析,校核其实际侧移曲线与满足性能目标的侧移曲线是否一致.采用...  相似文献   

15.
Post‐tensioned (PT) self‐centering moment‐resisting frames (MRFs) have recently been developed as an alternative to welded moment frames. The first generation of these systems incorporated yielding energy dissipation mechanisms, whereas more recently, PT self‐centering friction damped (SCFR) moment‐resistant connections have been proposed and experimentally validated. Although all of these systems exhibited good stiffness, strength and ductility properties and stable dissipation of energy under cyclic loading, questions concerning their ultimate response still remained and a complete design methodology to allow engineers to conceive structures using these systems was also needed. In this paper, the mechanics of SCFR frames are first described and a comprehensive design procedure that accounts for the frame behavior and the nonlinear dynamics of self‐centering frames is then elaborated. A strategy for the response of these systems at ultimate deformation stages is then proposed and detailing requirements on the beams in order to achieve this response are outlined. The proposed procedure aims to achieve designs where the interstory drifts for SCFR frames are similar to those of special steel welded moment‐resisting frames (WMRFs). Furthermore, this procedure is adapted from current seismic design practices and can be extended to any other PT self‐centering steel frame system. A six‐story building incorporating WMRFs was designed and a similar building incorporating SCFR frames were re‐designed by the proposed seismic design procedure. Time‐history analyses showed that the maximum interstory drifts and maximum floor accelerations of the SCFR frame were similar to those of the WMRF but that almost zero residual drifts were observed for the SCFR frame. The results obtained from the analyses confirmed the validity of the proposed seismic design procedure, since the peak drift values were similar to those prescribed by the seismic design codes and the SCFR frames achieved the intended performance level under both design and maximum considerable levels of seismic loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A pushover procedure with a load pattern based on the height-wise distribution of the combined modal story shear and torsional moment is proposed to estimate the seismic response of 3D asymmetric-plan building frames. Contribution of the higher modes and torsional response of asymmetric-plan buildings are incorporated into the proposed load pattern. The proposed pushover method is a single-run procedure, which enables tracing the nonlinear response of the structure during the analysis and averts the elusiveness of conducting multiple pushover analyses. The proposed method has been used to estimate the response of two moment-resisting building frames with 9 and 20 stories. The obtained results indicate the appropriate accuracy and efficiency of the proposed procedure in estimating the trend of the drift profiles of the structures resulted from nonlinear time history analyses.  相似文献   

17.
The paper investigates the degree of accuracy achievable when some non‐linear static procedures based on a pushover analysis are used to evaluate the seismic performance. In order to assess the significance of different sources of errors, three types of structural systems are analysed: (i) single‐degree‐of‐freedom (SDOF) systems with different hysteretic behaviour; (ii) shear‐type multi‐degree‐of‐freedom (MDOF) systems with elastic–perfect plastic (EPP) shear force–interstorey drift relationships; (iii) a steel moment‐resisting frame with rigid joints and EPP moment–curvature relationship. In SDOF systems, the source of approximation comes only from the calibration of the demand spectrum, while in MDOF systems some further errors are introduced by the schematization with an equivalent SDOF system. The non‐linear static procedures are compared with rigorous time‐history analyses carried out by considering ten generated earthquake ground motions compatible with the Eurocode 8 elastic spectra. It was found that SDOF systems with longer periods satisfy the equal displacement approximation regardless of the hysteretic model, while hysteresis loops with smaller energy dissipated indicate lower response for shorter periods. This is the opposite of what predicted by the ATC‐40 capacity spectrum method, which underestimates and overestimates, respectively, the actual response of low‐ and high‐ductility systems. Conversely, the inelastic spectrum method proposed by Vidic, Fajfar and Fischinger leads to the most accurate results for all types of structural systems. The analyses carried out on EPP shear‐type frames point out a large concentration of the ductility demand on some storeys. However, such a concentration markedly reduces when some hardening is accounted for. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
An assessment of seismic demands and capacities of welded column splice (WCS) connections in steel moment frames is presented. For demand assessment, nonlinear dynamic analyses are conducted for two case‐study buildings, that is, a 4‐story and a 20‐story moment frame. Results from the nonlinear dynamic analyses are assessed through a probabilistic seismic demand analysis (PSDA) framework to characterize recurrence rates of longitudinal flange stress in these connections. The PSDA is applied in two contexts. First, in the context of WCS connections constructed prior to the M 6.7 1994 Northridge earthquake, the PSDA is combined with sophisticated finite element‐based fracture mechanics analysis to compute the mean annual frequencies of fracture in these connections. The pre‐Northridge WCS are especially critical because they feature partial joint penetration and brittle materials that compromise their resistance to fracture. The analysis indicates that the mean annual frequencies of fracture in these connections may be unacceptably high for both the 4‐story and the 20‐story frames. This warrants a serious and urgent consideration of retrofit strategies. These findings are attributed to the brittleness of the pre‐Northridge splices (as indicated by the fracture mechanics simulations), as well as the force‐controlled nature of these components, wherein low‐intensity ground motions contribute disproportionately to fracture risk, as evidenced by fracture risk disaggregation. Second, in the context of new construction, the PSDA provides meaningful stress magnitudes for design. Currently, WCS connections employ complete joint penetration welds with the intent to develop the smaller column flange in yielding. The PSDA conducted in this study suggests that this requirement may be too stringent because stress demands in the splices corresponding even to high return periods (e.g., 2475 years) are significantly lower (~40 ksi), as compared with the stress required to yield the column (~55 ksi). Limitations of the study are outlined. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The application of performance-based design and assessment procedures requires an accurate estimation of local component deformation demands. In the case of steel moment-resisting frames, these are usually defined in terms of plastic rotations. A rigorous estimation of this response parameter is not straightforward, requiring not only the adoption of complex nonlinear structural models, but also of time-consuming numerical integration calculations. Moreover, the majority of existing codes and guidelines do not provide any guidance in terms of how these response parameters should be estimated. Part 3 of Eurocode 8 (EC8-3) requires the quantification of plastic rotations even when linear methods of analysis are used. Therefore, the aim of the research presented in this paper is to evaluate different methods of quantifying local component demands and also to answer the question of how reliable are the estimates obtained using the EC8-3 linear analysis procedures in comparison to more accurate nonlinear methods of analysis, particularly when the linear analysis applicability criterion proposed by EC8-3 is verified. An alternative methodology to assess the applicability of linear analysis is proposed which overcomes the important limitations identified in the EC8-3 criterion.  相似文献   

20.
Inelastic deformation capacity of links is a factor that significantly influences design of steel eccentrically braced frames (EBFs). The link rotation angle is used to describe inelastic link deformation. The link rotation angle is generally calculated by making use of design story drifts that in turn are calculated by modifying the elastic displacements by a displacement amplification factor. This paper presents a numerical study undertaken to evaluate the displacement amplification factor given in ASCE7‐10 for EBFs and the rigid‐plastic mechanism used for calculating link rotation angles. A total of 72 EBFs were designed by considering the number of stories, the bay width, the link length to bay width ratio, and the seismic hazard level as the prime variables. All structures were analyzed using elastic and inelastic time history analyses. The results indicated that the displacement amplification factor given in ASCE7‐10 provides unconservative estimates of the story drifts. On the other hand, the rigid‐plastic mechanism provides conservative estimates of link rotations. Based on the results of the numerical study, a new set of displacement amplification factors that vary along the height of the structure and modifications to the rigid‐plastic mechanism were developed. In light of the proposed modifications, the EBFs were redesigned and analyzed using inelastic time history analysis. The results indicated that the proposed modifications provide improvements for the displacement amplification factor and link rotation angle calculation procedures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号