首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physical processes associated with the clear-sky greenhouse effect in the presence of water vaporare examined by including surface emissivity in the greenhouse effect formulation, and by introducing anew way to partition physical processes of the greenhouse effect. In this new framework, it is found thatthe clear-sky greenhouse effect is governed by three physical processes associated with (1) the temperaturecontrast between the surface and the atmosphere, (2) the interaction between the surface emissivity andthe temperature contrast, and (3) the surface emissivity. The importance of the three physical processes isassessed by computing their vertical and spectral variations for the subarctic winter and summer standardatmosphere using the radiation model MODTRAN3 (Moderate Resolution Transmittance code Version3). The results show that the process associated with the temperature contrast between the surface andthe atmosphere dominates over the other two processes ill magnitude. The magnitude of this process hassubstantial variations in the spectral region of 1250 to 1880 cm 1 and in the far infrared region. Due tothe low-level temperature inversion over the subarctic winter, there exists a negative contribution to thegreenhouse trapping. The seasonal variations are, however, dominated by the processes associated with theinteraction between the surface emissivity and the temperature contrast as well as the surface emissivityitself. The magnitudes of these two physical processes contributing to the greenhouse trapping over thesubarctic winter are about 7 to 10 times of those over the subarctic summer, whereas the magnitude ofthe processes associated with the temperature contrast ill the subarctic summer is only about 2 times ofthat in the subarctic winter.  相似文献   

2.
Summary The greenhouse effect has been investigated predominantly with satellite measurements, but more than 90% of the greenhouse radiative flux affecting Earths surface temperature and humidity originates from a 1000 meter layer above the surface. Here we show that substantial improvements on surface longwave radiation measurements and very good agreement with radiative transfer model calculations allow the clear-sky greenhouse effect be determined with measured surface longwave radiation and calculated longwave outgoing radiation at the top of the atmosphere. The cloud radiative forcing is determined by measured net longwave fluxes and added to the clear-sky greenhouse effect to determine the all-sky greenhouse effect. Longwave radiation measurements at different altitudes were used to determine the clear-sky and all-sky annual and seasonal greenhouse effect and altitude gradients over the Alps. Linear altitude gradients are measured for clear-sky situations, whereas the all-sky greenhouse effect is strongly influenced by varying, cloud amounts at different altitudes. Large diurnal and seasonal variations show the importance of surface heating and cooling effects and demonstrate the strong coupling of the greenhouse effect to surface temperature and humidity.  相似文献   

3.
This study presents a comparison of the water vapor and clear-sky greenhouse effect dependence on sea surface temperature for climate variations of different types. Firstly, coincident satellite observations and meteorological analyses are used to examine seasonal and interannual variations and to evaluate the performance of a general circulation model. Then, this model is used to compare the results inferred from the analysis of observed climate variability with those derived from global climate warming experiments. One part of the coupling between the surface temperature, the water vapor and the clear-sky greenhouse effect is explained by the dependence of the saturation water vapor pressure on the atmospheric temperature. However, the analysis of observed and simulated fields shows that the coupling is very different according to the type of region under consideration and the type of climate forcing that is applied to the Earth-atmosphere system. This difference, due to the variability of the vertical structure of the atmosphere, is analyzed in detail by considering the temperature lapse rate and the vertical profile of relative humidity. Our results suggest that extrapolating the feedbacks inferred from seasonal and short-term interannual climate variability to longer-term climate changes requires great caution. It is argued that our confidence in climate models' predictions would be increased significantly if the basic physical processes that govern the variability of the vertical structure of the atmosphere, and its relation to the large-scale circulation, were better understood and simulated. For this purpose, combined observational and numerical studies focusing on physical processes are needed.  相似文献   

4.
When greenhouse gases are increased in coupled GCM experiments there is both a direct effect and an indirect effect due to changes in the surface conditions. In this study we carry out experiments with a perpetual winter atmosphere only model in order to investigate the influence of changes to the surface conditions (sea surface temperatures, sea-ice and snow amount) on the Northern Hemisphere winter mid-latitude mean sea level pressure response. The surface conditions for the perpetual winter model experiments are prescribed from time averages of the HadCM2 control and greenhouse gas experiments. Forcing the perpetual winter model with the HadCM2 greenhouse gas surface conditions produces a negative mean sea level pressure (MSLP) response across both Northern Hemisphere ocean basins, as was found in the coupled model HadCM2 experiment. Additional PW model experiments show that the sea surface temperature forcing from the HadCM2 greenhouse gas experiment dominates the snow and soil moisture content forcings. The sea-ice forcing from the HadCM2 greenhouse gas experiment reduces MSLP at high latitudes. In the north Pacific region MSLP decreases when the global mean warming is applied to the sea surface temperature forcing field at all open sea points. In the north Atlantic region the increased tropics to mid-latitude meridional sea surface temperature gradient is required for MSLP to decrease. These experiments show that the MSLP response in the Northern Hemisphere mid-latitude storm track regions is sensitive to the non-local sea surface temperature anomaly pattern.  相似文献   

5.
大气重力波是地球大气层中广泛存在的重要大气动力学扰动,研究其分布和变化规律对理解大气物理、大气结构以及大气动力学等具有重要意义.传统大气重力波探测手段,如雷达和探空气球等,均存在探测时间短、有效探测高度低等缺点,全球卫星导航系统(GNSS)掩星观测具有全天候、低成本、高精度等优点,被广泛应用于地球大气探测和研究,为研究区域或全球重力波变化和活动特征提供了新的观测手段.本文利用中国第一颗搭载GNSS掩星设备气象卫星——风云3C (FY-3C)获得的掩星数据,反演得到2014年8月—2016年12月大气温度轮廓线,并首次估计重力波参数分布,分析了重力波参数的时空变化分布特征.结果表明,海陆季节性对流导致冬夏两季的重力波势能强于春秋两季,赤道对流作用导致赤道区域重力波强于两极,夏季南半球中低纬度地区重力波活动频繁,冬季北半球中低纬度区域重力波活动频繁.重力波随着高度的上升,势能逐渐下降.另外,地形是低层大气重力波的主要来源.  相似文献   

6.
The orbital configuration at the end of the last interglacial, 115,000 years BP (115 ky BP), was such that the Northern Hemisphere seasonal contrast was decreased when compared to the last interglacial maximum, 126 ky BP. Climatic reconstructions argue for increased latitudinal surface temperature and salinity gradients in the North Atlantic at 115 ky BP compared to 126 ky BP. According to proxy measurements the high-latitude ocean freshening may be explained by enhanced northward atmospheric moisture advection which would have then led to decreased deep convection activity in the northern seas. To evaluate such re-adjustments of the atmospheric circulation to the insolation forcing changes, we have explored the changes in atmospheric energy balance and transport with two AGCM experiments, one for each climate. We show that the northward increase in static heat transport at 115 ky BP to 126 ky BP constitutes a first order response to the changing insolation. It tends to equalise the heat balance of the atmosphere. Despite sea surface temperatures fixed (SSTs) to present-day this feature is strongly amplified by the air–sea heat flux exchanges. By comparing with OAGCM experiments for the same periods, we find that the simulated surface ocean heat flux responses to insolation forcing are similar whether the ocean is allowed to vary or not. The latent heat transport does not undergo the same changes as the dry static one. On an annual basis, it decreases over the high northern latitudes. This is the result of summer modification of moisture sources and transient activity. The latter appears to affect latent heat transport much more than the dry static one. The winter response, however, differs from the summer response which dominates the annual mean. There is an enhanced northward atmospheric moisture advection during winter at 115 ky BP, which is responsible for the freshening of high-latitude ocean during this season. This result seems to confirm the hypothesis inferred from marine data.  相似文献   

7.
Seasonal prediction skill of winter mid and high northern latitudes climate from sea ice variations in eight different Arctic regions is analyzed using detrended ERA-interim data and satellite sea ice data for the period 1980–2013. We find significant correlations between ice areas in both September and November and winter sea level pressure, air temperature and precipitation. The prediction skill is improved when using November sea ice conditions as predictor compared to September. This is particularly true for predicting winter NAO-like patterns and blocking situations in the Euro-Atlantic area. We find that sea ice variations in Barents Sea seem to be most important for the sign of the following winter NAO—negative after low ice—but amplitude and extension of the patterns are modulated by Greenland and Labrador Seas ice areas. November ice variability in the Greenland Sea provides the best prediction skill for central and western European temperature and ice variations in the Laptev/East Siberian Seas have the largest impact on the blocking number in the Euro-Atlantic region. Over North America, prediction skill is largest using September ice areas from the Pacific Arctic sector as predictor. Composite analyses of high and low regional autumn ice conditions reveal that the atmospheric response is not entirely linear suggesting changing predictive skill dependent on sign and amplitude of the anomaly. The results confirm the importance of realistic sea ice initial conditions for seasonal forecasts. However, correlations do seldom exceed 0.6 indicating that Arctic sea ice variations can only explain a part of winter climate variations in northern mid and high latitudes.  相似文献   

8.
In this work, authors examine the variabilities of precipitation and surface air temperature (T2m) in Northeast China during 1948–2012, and their global connection, as well as the predictability. It is noted that both the precipitation and T2m variations in Northeast China are dominated by interannual and higher frequency variations. However, on interdecadal time scales, T2m is shifted significantly from below normal to above normal around 1987/1988. Statistically, the seasonal mean precipitation and T2m are largely driven by local internal atmospheric variability rather than remote forcing. For the precipitation variation, circulation anomalies in the low latitudes play a more important role in spring and summer than in autumn and winter. For T2m variations, the associated sea surface pressure (SLP) and 850-hPa wind (uv850) anomalies are similar for all seasons in high latitudes with significantly negative correlations for SLP and westerly wind anomaly for uv850, suggesting that a strong zonal circulation in the high latitudes favors warming in Northeast China. The predictability of precipitation and T2m in Northeast China is assessed by using the Atmospheric Model Inter-comparison Project type experiments which are forced by observed sea surface temperature (SST) and time-evolving greenhouse gas (GHG) concentrations. Results suggest that T2m has slightly higher predictability than precipitation in Northeast China. To some extent, the model simulates the interdecadal shift of T2m around 1987/1988, implying a possible connection between SST (and/or GHG forcing) and surface air temperature variation in Northeast China on interdecadal time scales. Nevertheless, the precipitation and T2m variations are mainly determined by the unpredictable components which are caused by the atmospheric internal dynamic processes, suggesting low predictability for the climate variation in Northeast China.  相似文献   

9.
By using a 2-layer AGCM designed by Institute of Atmospheric Physics,Chinese Academy of Sciences.this paper investigates influences of thickness and extent variations in Arctic sea ice on the atmosphere circulation,particularly on climate variations in East Asia.The simulation results have indicated that sea ice thickness variation in the Arctic exhibits significant influences on simulation results,particularly on East Asian monsoon.A nearly reasonable distribution of sea ice thickness in the model leads directly to stronger winter and summer monsoon over East Asia.and improves the model's simulation results for Siberia high and Icelandic low in winter.On the other hand,sea ice thickness variation can excite a teleconnection wave train across Asian Continent,and in low latitudes,the wave propagates from the western Pacific across the equator to the eastern Pacific.In addition,the variation of sea ice thickness also influences summer convective activitiesover the low latitudes including South China Sea and around the Philippines.Effects of winter sea ice extents in the Barents Sea on atmospheric circulation in the following spring and summer are also significant.The simulation result shows that when winter sea ice extent in the target region is larger (smaller) than normal.(1)in the following spring (averaged from April to June).positive (negative) SLP anomalies occupy the northern central Pacific.which leads directly to weakened (deepened)Aleutian low.and further favors the light (heavy) sea ice condition in the Bering Sea:(2)in the following summer,thermal depression in Asian Continent is deepened (weakened).and the subtropical high in the northwestern Pacific shifts northward(southward) from its normal position and to be strengthened (weakened).  相似文献   

10.
By using a 2-layer AGCM designed by Institute of Atmospheric Physics,Chinese Academy ofSciences.this paper investigates influences of thickness and extent variations in Arctic sea ice onthe atmosphere circulation,particularly on climate variations in East Asia.The simulation resuhshave indicated that sea ice thickness variation in the Arctic exhibits significant influences onsimulation results,particularly on East Asian monsoon.A nearly reasonable distribution of sea icethickness in the model leads directly to stronger winter and summer monsoon over East Asia.andimproves the model's simulation results for Siberia high and Icelandic low in winter.On the otherhand,sea ice thickness variation can excite a teleconnection wave train across Asian Continent,andin low latitudes,the wave propagates from the western Pacific across the equator to the easternPacific.In addition,the variation of sea ice thickness also influences summer convective activitiesover the low latitudes including South China Sea and around the Philippines.Effects of winter sea ice extents in the Barents Sea on atmospheric circulation in the followingspring and summer are also significant.The simulation result shows that when winter sea iceextent in the target region is larger (smaller) than normal.(1)in the following spring (averagedfrom April to June).positive (negative) SLP anomalies occupy the northern central Pacific.whichleads directly to weakened (deepened)Aleutian low.and further favors the light (heavy) sea icecondition in the Bering Sea:(2)in the following summer,thermal depression in Asian Continent isdeepened (weakened).and the subtropical high in the northwestern Pacific shifts northward(southward) from its normal position and to be strengthened (weakened).  相似文献   

11.
The autumn and early winter atmospheric response to the record-low Arctic sea ice extent at the end of summer 2007 is examined in ensemble hindcasts with prescribed sea ice extent, made with the European Centre for Medium-Range Weather Forecasts state-of-the-art coupled ocean–atmosphere seasonal forecast model. Robust, warm anomalies over the Pacific and Siberian sectors of the Arctic, as high as 10°C at the surface, are found in October and November. A regime change occurs by December, characterized by weaker temperatures anomalies extending through the troposphere. Geopotential anomalies extend from the surface up to the stratosphere, associated to deeper Aleutian and Icelandic Lows. While the upper-level jet is weakened and shifted southward over the continents, it is intensified over both oceanic sectors, especially over the Pacific Ocean. On the American and Eurasian continents, intensified surface Highs are associated with anomalous advection of cold (warm) polar air on their eastern (western) sides, bringing cooler temperatures along the Pacific coast of Asia and Northeastern North America. Transient eddy activity is reduced over Eurasia, intensified over the entrance and exit regions of the Pacific and Atlantic storm tracks, in broad qualitative agreement with the upper-level wind anomalies. Potential predictability calculations indicate a strong influence of sea ice upon surface temperatures over the Arctic in autumn, but also along the Pacific coast of Asia in December. When the observed sea ice extent from 2007 is prescribed throughout the autumn, a higher correlation of surface temperatures with meteorological re-analyses is found at high latitudes from October until mid-November. This further emphasises the relevance of sea ice for seasonal forecasting in the Arctic region, in the autumn.  相似文献   

12.
中国西部空中水汽分布结构特征   总被引:2,自引:2,他引:2  
利用1958-1997年月平均NCEP比湿资料研究了中国西部空中水汽分布特征。结果表明:水汽的垂直分布结构非常相似,850hPa以上的水汽分布中心位于青藏高原上空,5-10月水汽含量主要集中在500hPa以下,其中7月的空中水汽含量最丰沛。水汽含量随高度减少,从季节变化来分析,夏季最大、秋季次之、冬季最小。40a的水汽年代际变化表明,夏季空中水汽含量呈现线性下降趋势,特别是20世纪90年代以来更明显;冬季比湿呈线性上升趋势,1月和7月比湿的年代际变化趋势呈反位相特征。  相似文献   

13.
Uncertainty in climate change projections: the role of internal variability   总被引:12,自引:7,他引:5  
Uncertainty in future climate change presents a key challenge for adaptation planning. In this study, uncertainty arising from internal climate variability is investigated using a new 40-member ensemble conducted with the National Center for Atmospheric Research Community Climate System Model Version 3 (CCSM3) under the SRES A1B greenhouse gas and ozone recovery forcing scenarios during 2000–2060. The contribution of intrinsic atmospheric variability to the total uncertainty is further examined using a 10,000-year control integration of the atmospheric model component of CCSM3 under fixed boundary conditions. The global climate response is characterized in terms of air temperature, precipitation, and sea level pressure during winter and summer. The dominant source of uncertainty in the simulated climate response at middle and high latitudes is internal atmospheric variability associated with the annular modes of circulation variability. Coupled ocean-atmosphere variability plays a dominant role in the tropics, with attendant effects at higher latitudes via atmospheric teleconnections. Uncertainties in the forced response are generally larger for sea level pressure than precipitation, and smallest for air temperature. Accordingly, forced changes in air temperature can be detected earlier and with fewer ensemble members than those in atmospheric circulation and precipitation. Implications of the results for detection and attribution of observed climate change and for multi-model climate assessments are discussed. Internal variability is estimated to account for at least half of the inter-model spread in projected climate trends during 2005–2060 in the CMIP3 multi-model ensemble.  相似文献   

14.
Climate change due to enhanced greenhouse warming has been calculated using the coupled GFDL general circulation model of the atmosphere and ocean. The results of the model for a sustained increase of atmospheric carbon dioxide of 1% per year over a century indicate a marked warming of the upper ocean. Results of the model are used to study the rise in sea level caused by increase in ocean temperatures and associated changes in ocean circulation. Neglecting possible contributions due to changes in the volume of polar ice sheets and mountain glaciers, the model predicts an average rise in sea level of approximately 15 ± 5 cm by the time atmospheric carbon dioxide doubles. Heating anomalies are greatest in subpolar latitudes. This effect leads to a weakening of the ocean thermohaline circulation. Changes in thermohaline circulation redistribute heat within the ocean from high latitudes toward the equator, and cause a more uniform sea level rise than would occur otherwise.  相似文献   

15.
Land surface hydrology (LSH) is a potential source of long-range atmospheric predictability that has received less attention than sea surface temperature (SST). In this study, we carry out ensemble atmospheric simulations driven by observed or climatological SST in which the LSH is either interactive or nudged towards a global monthly re-analysis. The main objective is to evaluate the impact of soil moisture or snow mass anomalies on seasonal climate variability and predictability over the 1986–1995 period. We first analyse the annual cycle of zonal mean potential (perfect model approach) and effective (simulated vs. observed climate) predictability in order to identify the seasons and latitudes where land surface initialization is potentially relevant. Results highlight the influence of soil moisture boundary conditions in the summer mid-latitudes and the role of snow boundary conditions in the northern high latitudes. Then, we focus on the Eurasian continent and we contrast seasons with opposite land surface anomalies. In addition to the nudged experiments, we conduct ensembles of seasonal hindcasts in which the relaxation is switched off at the end of spring or winter in order to evaluate the impact of soil moisture or snow mass initialization. LSH appears as an effective source of surface air temperature and precipitation predictability over Eurasia (as well as North America), at least as important as SST in spring and summer. Cloud feedbacks and large-scale dynamics contribute to amplify the regional temperature response, which is however, mainly found at the lowest model levels and only represents a small fraction of the observed variability in the upper troposphere.  相似文献   

16.
南亚高压的季节变化与趋暖性   总被引:27,自引:3,他引:27  
利用NCEP/NCAR再分析资料,分析了南亚高压的季节变化,讨论了对流层中高层温度、整层大气视热源和非绝热加热率的时空变化对南亚高压季节变化的影响。结果表明,南亚高压存在两个季节平衡态,即夏半年的大陆高压和冬半年的海洋高压,大陆高压又可分为青藏高压和伊郎高压。加热场对南亚高压的季节变化有重要作用,南亚高压是一个暖性高压,其中心有“趋热性”,通常位于或趋于加热率的相对大值区。南亚高压的年循环过程,主要受南亚地区潜热和感热季节变化的支配。夏季北方地区和高压地区的强烈短波辐射加热对高压中心北移和维持也有作用,长波辐射的冷却作用则是高压减弱的重要原因。  相似文献   

17.
Proposed is a method for computing the average temperature of the vertical column of the atmosphere (the temperature of the average energy level) based on some features of energy characteristics of the atmosphere and using the radiosonde data within the mid-troposphere. The modem database is supplemented with the data of radio sounding carried out at Russian upper-air stations in 1934–1959. Variations of average annual values of temperature of the mean atmospheric energy level are observed with the period of several decades and with the amplitude of 4°C in 1935–2012. Intensive decrease in the mean annual values of height-integrated temperature has been registered in recent years. Long-period variations of its average seasonal values of the same nature are registered. They are most pronounced in winter and transition seasons and are significantly reduced in summer. The observed oscillations indicate the existence of disturbance sources of long-term scale that is typical of the evolution of the anomalies of the sea surface temperature in the North Atlantic. The nature of long-term changes in the temperature of the mean energy level enables to assume the existence of a local attractor in atmospheric changes near the Franz Josef Land archipelago associated with the features of the thermal state of the North European basin and with the ice regime, first of all, in the Barents Sea. The temperature of the mean energy level depends weakly on local greenhouse effects that allows distinguishing natural (nonantropogenic) causes of atmospheric disturbances in a more explicit form.  相似文献   

18.
The BALTEX Integrated Model System (BALTIMOS) coupled atmosphere ocean model was compared to passive microwave observations of the Advanced Microwave Scanning Radiometer (AMSR-E). Emphasis was put on quantifying the uncertainties associated with the different variables based on data screening both in the model and observations. Monthly means of three atmospheric parameters, as well as sea surface temperature, were compared for a period of 1 year. Sea ice extent was also derived from AMSR-E and compared to the model data on a daily basis. It is shown that the accuracy of the comparisons on a monthly mean basis is limited by precipitation screening. Out of the three atmospheric parameters, surface wind speed and water vapor column amount agree with the model data to within the accuracy of the comparison. The vertically integrated cloud liquid water content diagnosed from BALTIMOS is systematically higher than the liquid water content derived from satellite, even if potential systematic errors are accounted for. In terms of coupling, the two most relevant variables discussed are sea surface temperature and sea ice extent. The temporal extent of sea ice in the investigation area is well represented, as are the periods of the main growing and decay periods. The total sea ice cover appears to be underestimated by BALTIMOS, especially in the peak season between January and the beginning of March. The amplitude of the annual cycle of sea surface temperature in BALTIMOS appears to be too weak compared to the observations, leading to too cold sea surface temperatures in summer and too warm sea surface temperatures in winter. This might also partially explain the underestimation of sea ice cover by BALTIMOS.  相似文献   

19.
段升妮  姜智娜 《气象学报》2021,79(2):209-228
基于ERA-Interim再分析资料,借助大气模式CAM4,分析了北半球冬季不同月份的平均大气对巴伦支海不同振幅及不同季节海冰扰动的敏感性,并考察了中高纬度典型大气模态的分布变化情况。结果表明,冬季巴伦支海海冰的减少,会导致湍流热通量异常向上、局地异常变暖及水汽含量的异常升高,且相关异常的强度和范围随着海冰减少幅度的减小而减弱。这种局地响应会通过大气环流调整扩散开来,产生远程影响。具体地,冬季大气环流与欧亚地面温度异常对于不同幅度海冰异常的响应是非线性的,且在不同月份也呈现出不同特征。秋季巴伦支海海冰减少虽未引起局地显著的温度异常,但欧亚大陆温度及环流场异常响应的强度更强、范围更广,这表明秋季海冰可以独立地对冬季中纬度大气产生影响。此外,冬季不同月份西伯利亚高压强度、位置对巴伦支海海冰减少的响应是不同的,北大西洋涛动位相的倾向变化对不同季节、不同振幅海冰减少的响应也不相同。冬季海冰减少时,12月和1月,西伯利亚高压强度更易偏强、位置易偏东,2月则与之相反。与冬季相比,秋季海冰偏少时,西伯利亚高压更易稳定维持在欧亚大陆,晚冬时发生北大西洋涛动负位相的概率增大,但出现极端负位相概率降低。这为了解巴伦支海海冰异常对北半球天气、气候的影响提供了参考。   相似文献   

20.
Detectability of Summer Dryness Caused by Greenhouse Warming   总被引:14,自引:0,他引:14  
This study investigates the temporal and spatial variation of soil moisture associated with global warming as simulated by long-term integrations of a coupled ocean-atmosphere model conducted earlier. Starting from year 1765, integrations of the coupled model for 300 years were performed for three scenarios: increasing greenhouse gases only, increasing sulfate-aerosol loading only and the combination of both radiative forcings. The integration with the combined radiative forcings reproduces approximately the observed increases of global mean surface air temperature during the 20th century. Analysis of this integration indicates that both summer dryness and winter wetness occur in middle-to-high latitudes of North America and southern Europe. These features were identified in earlier studies. However, in the southern part of North America where the percentage reduction of soil moisture during summer is quite large, soil moisture is decreased for nearly the entire annual cycle in response to greenhouse warming. A similar observation applies to other semi-arid regions in subtropical to middle latitudes such as central Asia and the area surrounding the Mediterranean Sea. On the other hand, annual mean runoff is greatly increased in high latitudes because of increased poleward transport of moisture in the warmer model atmosphere. An analysis of the central North American and southern European regions indicates that the time when the change of soil moisture exceeds one standard deviation about the control integration occurs considerably later than that of surface air temperature for a given experiment because the ratio of forced change to natural variability is much smaller for soil moisture compared with temperature. The corresponding lag time for runoff change is even greater than that of either precipitation or soil moisture for the same reason. Also according to the above criterion, the inclusion of the effect of sulfate aerosols in the greenhouse warming experiment delays the noticeable change of soil moisture by several decades. It appears that observed surface air temperature is a better indicator of greenhouse warming than hydrologic quantities such as precipitation, runoff and soil moisture. Therefore, we are unlikely to notice definitive CO2-induced continental summer dryness until several decades into the 21st century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号