首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 166 毫秒
1.
One of the challenges in fighting plant invasions is the inefficiency of identifying their distribution using field inventory techniques. Remote sensing has the potential to alleviate this problem effectively using spectral profiling for species discrimination. However, little is known about the capability of remote sensing in discriminating between shrubby invasive plants with narrow leaf structures and other cohabitants with similar ecological niche. The aims of this study were therefore to (1) assess the classification performance of field spectroradiometer data among three bushy and shruby plants (Artemesia afra, Asparagus laricinus, and Seriphium plumosum) from the coexistent plant species largely dominated by acacia and grass species, and (2) explore the performance of simulated spectral bands of five space-borne images (Landsat 8, Sentinel 2A, SPOT 6, Pleiades 1B, and WorldView-3). Two machine-learning classifiers (boosted trees classification and support vector machines) were used to classify raw hyperspectral (n = 688) and simulated multispectral wavelengths. Relatively high classification accuracies were obtained for the invasive species using the original hyperspectral bands for both classifiers (overall accuracy, OA = 83–97%). The simulated data resulted in higher accuracies for Landsat 8, Sentinel 2A, and WorldView-3 compared to those computed for bands simulated to SPOT 6 and Pleiades 1B data. These findings suggest the potential of remote-sensing techniques in the discrimination of different plant species with similar morphological characteristics occupying the same niche.  相似文献   

2.
ABSTRACT

The ability of remote sensing systems to optimally discriminate and map C3 and C4 grass species varies over time, due to environmental changes, which influence their phenological, physiological and morphological characteristics. In this regard, the discrimination of C3 and C4 grasses is insufficient when using a single image acquired at a specific period. In this study, multi-date Sentinel 2A MultiSpectral Instrument (MSI) data were explored to determine the optimal period for classifying and mapping Festuca costata, C3 and Themeda Triandra, C4 grasses in the montane grasslands of South Africa. The study further assessed how seasonal variations in species classification can be explained by climatic variability (rainfall and temperature). Results showed that image acquisition dates influence the discrimination accuracy, spatial representation of the two grass species, as well as the performance of spectral bands. The winter period also presents a better temporal window for discriminating C3 and C4 target grass species, with higher overall classification accuracies (between 91.8% and 95.3%), than summer (between 81.4% and 90.3%). Lower omission (between 2.8% and 11.6%) and commission (between 2.5% and 14.2%) errors were also observed when discriminating using winter images, as compared to those acquired in summer. Summer images showed large grass species areal coverage (e.g. in November and March, C3 and C4 covered ±25%), whereas in winter (mainly August), a notable decrease was observed. Overall, findings of the study have demonstrated the relevance of multi-date Sentinel data in discriminating C3 and C4 grass species. There is, however, a need to explore the classification ability of Sentinel 2 derivatives, especially during early summer and winter fall.  相似文献   

3.
The challenge of assessing and monitoring the influence of rangeland management practices on grassland productivity has been hampered in southern Africa, due to the lack of cheap earth observation facilities. This study, therefore, sought to evaluate the capability of the newly launched Sentinel 2 multispectral imager (MSI) data, in relation to Hyperspectral infrared imager (HyspIRI) data in estimating grass biomass subjected to different management practices, namely, burning, mowing and fertilizer application. Using sparse partial least squares regression (SPLSR), results showed that HyspIRI data exhibited slightly higher grass biomass estimation accuracies (RMSE = 6.65 g/m2, R2 = 0.69) than Sentinel 2 MSI (RMSE = 6.79 g/m2, R2 = 0.58) across all rangeland management practices. Student t-test results then showed that Sentinel 2 MSI exhibited a comparable performance to HyspIRI in estimating the biomass of grasslands under burning, mowing and fertilizer application. In comparing the RMSEs derived using wave bands and vegetation indices of HyspIRI and Sentinel, no statistically significant differences were exhibited (α = 0.05). Sentinel (Bands 5, 6 and 7) and HyspIRI (Bands 730 nm, 740 nm, 750 nm, 710 nm), as well as their derived vegetation indices, yielded the highest predictive accuracies. These findings illustrate that the accuracy of Sentinel 2 MSI data in estimating grass biomass is acceptable when compared with HyspIRI. The findings of this work provide an insight into the prospects of large-scale grass biomass modeling and prediction, using cheap and readily available multispectral data.  相似文献   

4.
以雅鲁藏布江源区为研究对象,以Landsat5 TM图像为数据源,根据不同草地类型的波段组合特征,结合源区1∶100万植被类型图、DEM和NDVI数据,构建草地判别规则,利用决策树分类法对雅鲁藏布江源区草地类型进行遥感识别。研究结果表明:①不同类型草地因其生境不同,利用不同波段组合特征进行草地类型识别能够达到较好的效果;②与传统的监督分类法相比,基于波段组合特征的决策树分类法具有较高的识别精度(总体精度提高了15.4%,Kappa系数提高了0.225);③在海拔4 400~5 000 m区域内,固沙草草原面积最大,其次为矮嵩草和小嵩草混生草甸,再次为变色锦鸡儿和金露梅灌丛,藏北嵩草草甸面积最小。  相似文献   

5.
This study assesses the usefulness of Nigeriasat-1 satellite data for urban land cover analysis by comparing it with Landsat and SPOT data. The data-sets for Abuja were classified with pixel- and object-based methods. While the pixel-based method was classified with the spectral properties of the images, the object-based approach included an extra layer of land use cadastre data. The classification accuracy results for OBIA show that Landsat 7 ETM, Nigeriasat-1 SLIM and SPOT 5 HRG had overall accuracies of 92, 89 and 96%, respectively, while the classification accuracy for pixel-based classification were 88% for Landsat 7 ETM, 63% for Nigeriasat-1 SLIM and 89% for SPOT 5 HRG. The results indicate that given the right classification tools, the analysis of Nigeriasat-1 data can be compared with Landsat and SPOT data which are widely used for urban land use and land cover analysis.  相似文献   

6.
草地光谱分类最佳时相选择分析   总被引:1,自引:0,他引:1  
利用2003年5-10月在环青海湖地区获取的典型天然草地与人工草地多时相地面高分辨率光谱数据,首先分析了最大似然分类法、支持向量机分类法、光谱角分类法、最小距离分类法和人工神经网络分类法所对应的最佳光谱变换方案;通过16个时相光谱数据的分类对比实验,分别确定了天然草地与人工草地分类、人工草地分类、天然草地分类的最佳时相;最后利用TM遥感数据对地面光谱数据分析结果进行了补充验证。  相似文献   

7.
Abstract

Landsat MSS, TM and SPOT XS imageries were used in conjunction with unsupervised, supervised and hybrid classilication techniques to classify land cover types in semi‐arid savannas of Mathison Pastoral Station in the Katherine region of northern Australia. Accuracy assessment was based on field data from 246 ground survey sites over a 745‐km2 study area. Of 14 land cover classes identified by traditional mapping means, all combinations of imageries and classification techniques differentiated at least seven land cover types. The overall accuracy for these classifications ranged between 43% and 67%. SPOT XS image delivered the best accuracy followed by TM and MSS; unsupervised classification performed better than supervised and hybrid methods. User's and producer's accuracy of individual land units ranged from 0% to 100%. Riparian woodlands, woodland on limestone slopes, shrubland on clay plains, woodland on limestone plains and shadows were the best‐mapped classes. The land units that were associated with undulating hills were not mapped accurately. However, incorporation of a digital elevation model (DEM) in a GIS improved the overall accuracy. The user's and producer's accuracy of dominant land cover types were also enhanced. The classification results and the efficacy of the techniques at Mathison were similar to those found for a nearby semi‐arid area (Kidman Springs) about 200 km from Mathison. However, the overall accuracy was lower at Mathison than at Kidman Springs. Spectral classification masks were developed from the SPOT XS and TM imageries at Kidman Springs, and were applied to classify SPOT XS and TM imageries at Mathison. Initial results showed that the classification mask could be successfully extrapolated to map dominant land cover types but only with moderate accuracy (50%).  相似文献   

8.
利用卫星遥感数据制作复杂地形环境的植被图面临的最主要问题是精度,单纯对遥感数据(TM或SPOI)进行监督或非监督分类的精度低于50%。本文选择美国亚利桑那州SantaCatalina山脉的PuschRidge作为研究区,分析地理信息系统模型在改善植被分类精度中的作用。结果表明,通过结合辅助数据和应用地理信息系统模型,其精度可以从37.41%提高到71.67%(SPOT数据,非监督分类),或从50.07%提高到61.50%(TM数据,监督分类)。同时表明用SPOT数据进行山区植被制图的效果好于TM数据。  相似文献   

9.
Large area tree maps, important for environmental monitoring and natural resource management, are often based on medium resolution satellite imagery. These data have difficulty in detecting trees in fragmented woodlands, and have significant omission errors in modified agricultural areas. High resolution imagery can better detect these trees, however, as most high resolution imagery is not normalised it is difficult to automate a tree classification method over large areas. The method developed here used an existing medium resolution map derived from either Landsat or SPOT5 satellite imagery to guide the classification of the high resolution imagery. It selected a spatially-variable threshold on the green band, calculated based on the spatially-variable percentage of trees in the existing map of tree cover. The green band proved more consistent at classifying trees across different images than several common band combinations. The method was tested on 0.5 m resolution imagery from airborne digital sensor (ADS) imagery across New South Wales (NSW), Australia using both Landsat and SPOT5 derived tree maps to guide the threshold selection. Accuracy was assessed across 6 large image mosaics revealing a more accurate result when the more accurate tree map from SPOT5 imagery was used. The resulting maps achieved an overall accuracy with 95% confidence intervals of 93% (90–95%), while the overall accuracy of the previous SPOT5 tree map was 87% (86–89%). The method reduced omission errors by mapping more scattered trees, although it did increase commission errors caused by dark pixels from water, building shadows, topographic shadows, and some soils and crops. The method allows trees to be automatically mapped at 5 m resolution from high resolution imagery, provided a medium resolution tree map already exists.  相似文献   

10.
Abstract

The transition and restructuring process of urban South Africa are currently in the phase of identifying land development objectives. These objectives aim to integrate previously segregated areas through integrated development plans. This research aims firstly to identify and describe the historical development of the spatial form and structure of the secondary city and capital of the Northern Province, Pietersburg and its dispersed peripheral towns. Supervised classification of SPOT HRV multispectral imagery is used to support the theoretical explanation. Images from an airborne digital Kodak DCS 420 camera are used to provide training sites in the pre‐classification stages, and also provide field data to the process of post‐classification accuracy assessment. Secondly, SPOT HRV imagery is applied to identify the stark contrast in urban development between the city of Pietersburg and its surrounding former homeland towns. Both built and natural environmental aspects are investigated. In conclusion benefits and problems of assessing urban morphology and development in a developing country by means of a combination of satellite imagery and digital aerial photography are discussed.  相似文献   

11.
Understanding the growth and changes in urban environments are the most dynamic system on the earth’s surface is critical for urban planning and sustainable management. This study attempts to present a space-borne satellite-based approach to demonstrate the urban change and its relation with land surface temperature (LST) variation in urban areas of Klang valley, Malaysia. For this purpose an object-based nearest neighbour classifier (S-NN) approach was first applied on SPOT 5 data acquired on 2003 and 2010 and subsequently five land cover categories were extracted. The overall accuracies of the classified maps of 2003 and 2010 were 90.5 % and 91 % respectively. The classified maps were then used as inputs to perform the post classification change detection. The results revealed that the post-classification object-based change detection analysis performed reasonably well with an overall accuracy of 87.5 %, with Kappa statistic of 0.81 %. The changes represented that the urban expanded by 10 % over the period, whereas the urban expansion had caused reduction in soil (1.4 %) and vegetation (11.4 %), and growth in oil palm (2 %), and water (0.7 %). Additionally decision tree method was used to derive the surface heat fluxes from thermal infrared Landsat TM and ETM+bands. Subsequently, a comparison was made with classified result from SPOT 5 images. Results showed high correlation between urban growth and LST.  相似文献   

12.
In many regions, a decrease in grasslands and change in their management, which are associated with agricultural intensification, have been observed in the last half-century. Such changes in agricultural practices have caused negative environmental effects that include water pollution, soil degradation and biodiversity loss. Moreover, climate-driven changes in grassland productivity could have serious consequences for the profitability of agriculture. The aim of this study was to assess the ability of remotely sensed data with high spatial resolution to estimate grassland biomass in agricultural areas. A vegetation index, namely the Normalized Difference Vegetation Index (NDVI), and two biophysical variables, the Leaf Area Index (LAI) and the fraction of Vegetation Cover (fCOVER) were computed using five SPOT images acquired during the growing season. In parallel, ground-based information on grassland growth was collected to calculate biomass values. The analysis of the relationship between the variables derived from the remotely sensed data and the biomass observed in the field shows that LAI outperforms NDVI and fCOVER to estimate biomass (R2 values of 0.68 against 0.30 and 0.50, respectively). The squared Pearson correlation coefficient between observed and estimated biomass using LAI derived from SPOT images reached 0.73. Biomass maps generated from remotely sensed data were then used to estimate grass reserves at the farm scale in the perspective of operational monitoring and forecasting.  相似文献   

13.
The availability of freely available moderate-to-high spatial resolution (10–30 m) satellite imagery received a major boost with the recent launch of the Sentinel-2 sensor by the European Space Agency. Together with Landsat, these sensors provide the scientific community with a wide range of spatial, spectral, and temporal properties. This study compared and explored the synergistic use of Landsat-8 and Sentinel-2 data in mapping land use and land cover (LULC) in rural Burkina Faso. Specifically, contribution of the red-edge bands of Sentinel-2 in improving LULC mapping was examined. Three machine-learning algorithms – random forest, stochastic gradient boosting, and support vector machines – were employed to classify different data configurations. Classification of all Sentinel-2 bands as well as Sentinel-2 bands common to Landsat-8 produced an overall accuracy, that is 5% and 4% better than Landsat-8. The combination of Landsat-8 and Sentinel-2 red-edge bands resulted in a 4% accuracy improvement over that of Landsat-8. It was found that classification of the Sentinel-2 red-edge bands alone produced better and comparable results to Landsat-8 and the other Sentinel-2 bands, respectively. Results of this study demonstrate the added value of the Sentinel-2 red-edge bands and encourage multi-sensoral approaches to LULC mapping in West Africa.  相似文献   

14.
Integrating multiple images with artificial neural networks (ANN) improves classification accuracy. ANN performance is sensitive to training datasets. Complexity and errors compound when merging multiple data, pointing to needs for new techniques. Kohonen's self-organizing mapping (KSOM) neural network was adapted as an automated data selector (ADS) to replace manual training data processes. The multilayer perceptron (MLP) network was then trained using automatically extracted datasets and used for classification. Two hypotheses were tested: ADS adapted from the KSOM network provides adequate and reliable training datasets, improving MLP classification performance; and fusion of Landsat thematic mapper (TM) and SPOT images using the modified ANN approach increases accuracy. ADS adapted from the KSOM network improved training data quality and increased classification accuracy and efficiency. Fusion of compatible multiple data can improve performance if appropriate training datasets are collected. This proved to be a viable classification scheme particularly where acquiring sufficient and reliable training datasets is difficult.  相似文献   

15.
In Africa, food security early warning systems use satellite-derived data concerning crop conditions and agricultural production. Such systems can be improved if they are provided with a more reliable estimation of the cultivated area at national scale. This paper evaluates the potential of using time series from the MODerate resolution Imaging Spectroradiometer MOD13Q1 (16-day composite of normalized difference vegetation index at 250 m resolution) to extract cultivated areas in the fragmented rural landscapes of Mali. To this end, we first stratified Southern Mali into 13 rural landscapes based on the spatio-temporal variability of NDVI and textural indices, using an object-oriented classification scheme.The accuracy of the resulting map (MODIScrop) and how it compares with existing coarse-resolution global land products (GLC2000 Africa, GLOBCOVER, MODIS V05 and ECOCLIMAP-II), was then assessed against six crop/non-crop maps derived from SPOT 2.5 m resolution images used as references. For crop areal coverage, the MODIScrop cultivated map was successful in assessing the overall cultivated area at five out of the six validation sites (less than 6% of the absolute difference), while in terms of crop spatial distribution, the producer accuracy was between 33.1% and 80.8%. This accuracy was linearly correlated with the mean patch size index calculated on the SPOT crop maps (r2 = 0.8). Using the Pareto boundary as an accuracy assessment method at the study sites, we showed that (i) 20-40% of the classification crop error was due to the spatial resolution of the MODIS sensor (250 m), and that (ii) compared to MODIS V05, which otherwise performed better than the other existing products, MODIScrop generally minimized omission-commission errors. A spatial validation of the different products was carried out using SPOT image classifications as reference. In the corresponding error matrices, the fraction of correctly classified pixels for our product was 70%, compared to 58% for MODIS V05, while it ranged between 40% and 51% for the GLC2000, the ECOCLIMAP-II and the GLOBCOVER.  相似文献   

16.
Abstract

Riparian vegetation has a fundamental influence on the biological, chemical and physical nature of rivers. The quantification of riparian landcover is now recognised as being essential to the holistic study of the ecosystem characteristics of rivers. Medium resolution satellite imagery is now commonly used as an efficient and cost effective method for mapping vegetation cover; however such data often lack the resolution to provide accurate information about vegetation cover within riparian corridors. To assess this, we measure the accuracy of SPOT multispectral satellite imagery for classification of riparian vegetation along the Taieri River in New Zealand. In this paper, we discuss different sampling strategies for the classification of riparian zones. We conclude that SPOT multispectral imagery requires considerable interpretative analysis before being adequate to produce sufficiently detailed maps of riparian vegetation required for use in stream ecological research.  相似文献   

17.
SVM多窗口纹理土地利用信息提取技术   总被引:2,自引:0,他引:2  
针对单一窗口纹理分类时地物破碎,分类精度不高等问题,提出了一种基于支持向量机多窗口纹理的遥感图像分类方法。该方法在对SPOT5遥感影像进行纹理特征提取的基础上,构建了结合多窗口纹理的SVM模型。以陕西省佛坪县长角坝乡为试验区,利用此模型对该区域的土地利用类型进行分类研究,并将分类结果与单一窗口纹理SVM分类和单元数据(光谱)SVM分类结果进行了比较分析。结果表明:多窗口纹理参与的土地利用分类总精度达到85.33%,比单一窗口纹理分类提高了13.11%,而与单元数据SVM分类相比提高了近24.10%,取得了较好的分类效果,有效地解决了单一窗口纹理分类时地物破碎、分类精度不高等问题。  相似文献   

18.
In this study, we assessed land cover land use (LCLU) changes and their potential environmental drivers (i.e., precipitation, temperature) in five countries in Eastern & Southern (E&S) Africa (Rwanda, Botswana, Tanzania, Malawi and Namibia) between 2000 and 2010. Landsat-derived LCLU products developed by the Regional Centre for Mapping of Resources for Development (RCMRD) through the SERVIR (Spanish for “to serve”) program, a joint initiative of NASA and USAID, and NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to evaluate and quantify the LCLU changes in these five countries. Given that the original development of the MODIS land cover type standard products included limited training sites in Africa, we performed a two-level verification/validation of the MODIS land cover product in these five countries. Precipitation data from CHIRPS dataset were used to evaluate and quantify the precipitation changes in these countries and see if it was a significant driver behind some of these LCLU changes. MODIS Land Surface Temperature (LST) data were also used to see if temperature was a main driver too.Our validation analysis revealed that the overall accuracies of the regional MODIS LCLU product for this African region alone were lower than that of the global MODIS LCLU product overall accuracy (63–66% vs. 75%). However, for countries with uniform or homogenous land cover, the overall accuracy was much higher than the global accuracy and as high as 87% and 78% for Botswana and Namibia, respectively. In addition, the wetland and grassland classes had the highest user’s accuracies in most of the countries (89%–99%), which are the ones with the highest number of MODIS land cover classification algorithm training sites.Our LCLU change analysis revealed that Botswana’s most significant changes were the net reforestation, net grass loss and net wetland expansion. For Rwanda, although there have been significant forest, grass and crop expansions in some areas, there also have been significant forest, grass and crop loss in other areas that resulted in very minimal net changes. As for Tanzania, its most significant changes were the net deforestation and net crop expansion. Malawi’s most significant changes were the net deforestation, net crop expansion, net grass expansion and net wetland loss. Finally, Namibia’s most significant changes were the net deforestation and net grass expansion.The only noticeable environmental driver was in Malawi, which had a significant net wetland loss and could be due to the fact that it was the only country that had a reduction in total precipitation between the periods when the LCLU maps were developed. Not only that, but Malawi also happened to have a slight increase in temperature, which would cause more evaporation and net decrease in wetlands if the precipitation didn’t increase as was the case in that country. In addition, within our studied countries, forestland expansion and loss as well as crop expansion and loss were happening in the same country almost equally in some cases. All of that implies that non-environmental factors, such as socioeconomics and governmental policies, could have been the main drivers of these LCLU changes in many of these countries in E&S Africa. It will be important to further study in the future the detailed effects of such drivers on these LCLU changes in this part of the world.  相似文献   

19.
This research aimed to explore the fusion of multispectral optical SPOT data with microwave L-band ALOS PALSAR and C-band RADARSAT-1 data for a detailed land use/cover mapping to find out the individual contributions of different wavelengths. Many fusion approaches have been implemented and analyzed for various applications using different remote sensing images. However, the fusion methods have conflict in the context of land use/cover (LULC) mapping using optical and synthetic aperture radar (SAR) images together. In this research two SAR images ALOS PALSAR and RADARSAT-1 were fused with SPOT data. Although, both SAR data were gathered in same polarization, and had same ground resolution, they differ in wavelengths. As different data fusion methods, intensity hue saturation (IHS), principal component analysis, discrete wavelet transformation, high pass frequency (HPF), and Ehlers, were performed and compared. For the quality analyses, visual interpretation was applied as a qualitative analysis, and spectral quality metrics of the fused images, such as correlation coefficient (CC) and universal image quality index (UIQI) were applied as a quantitative analysis. Furthermore, multispectral SPOT image and SAR fused images were classified with Maximum Likelihood Classification (MLC) method for the evaluation of their efficiencies. Ehlers gave the best score in the quality analysis and for the accuracy of LULC on LULC mapping of PALSAR and RADARSAT images. The results showed that the HPF method is in the second place with an increased thematic mapping accuracy. IHS had the worse results in all analyses. Overall, it is indicated that Ehlers method is a powerful technique to improve the LULC classification.  相似文献   

20.
Remote sensing techniques offer effective means for mapping plant communities. However, mapping grassland with fine vegetative classes over large areas has been challenging for either the coarse resolutions of remotely sensed images or the high costs of acquiring images with high-resolutions. An improved hybrid-fuzzy-classifier (HFC) derived from a semi-ellipsoid-model (SEM) is developed in this paper to achieve higher accuracy for classifying grasslands with Landsat images. The Xilin River Basin, Inner Mongolia, China, is chosen as the study area, because an acceptable volume of ground truthing data was previously collected by multiple research communities. The accuracy assessment is based on the comparison of the classification outcomes from four types of image sets: (1) Landsat ETM+ August 14, 2004, (2) Landsat TM August 12, 2009, (3) the fused images of ETM+ with CBERS, and (4) TM with CBERS, respectively, and by three classifiers, the proposed HFC-SEM, the tetragonal pyramid model (TPM) based HFC, and the support vector machine method. In all twelve classification experiments, the HFC-SEM classifier had the best overall accuracy statistics. This finding indicates that the medium resolution Landsat images can be used to map grassland vegetation with good vegetative detail when the proper classifier is applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号