首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Western foreland basin in Taiwan originated through the oblique collision between the Luzon volcanic arc and the Asian passive margin. Crustal flexure adjacent to the growing orogenic load created a subsiding foreland basin. The sedimentary record reveals progressively changing sedimentary environments influenced by the orogen approaching from the East. Based on sedimentary facies distribution at five key stratigraphic horizons, paleogeographic maps were constructed. The maps highlight the complicated basin-wide dynamics of sediment dispersal within an evolving foreland basin.The basin physiography changed very little from the middle Miocene (∼12.5 Ma) to the late Pliocene (∼3 Ma). The transition from a passive margin to foreland basin setting in the late Pliocene (∼3 Ma), during deposition of the mud-dominated Chinshui Shale, is dominantly marked by a deepening and widening of the main depositional basin. These finer grained Taiwan derived sediments clearly indicate increased subsidence, though water depths remain relatively shallow, and sedimentation associated with the approach of the growing orogen to the East.In the late Pleistocene as the shallow marine wedge ahead of the growing orogen propagated southward, the proximal parts of the basin evolved into a wedge-top setting introducing deformation and sedimentation in the distal basin. Despite high Pleistocene to modern erosion/sedimentation rates, shallow marine facies persist, as the basin remains open to the South and longitudinal transport is sufficient to prevent it from becoming overfilled or even fully terrestrial.Our paleoenvironmental and paleogeographical reconstructions constrain southward propagation rates in the range of 5–20 km/Myr from 2 Ma to 0.5 Ma, and 106–120 km/Myr between late Pleistocene and present (0.5–0 Ma). The initial rates are not synchronous with the migration of the sediment depocenters highlighting the complexity of sediment distribution and accumulation in evolving foreland basins.  相似文献   

3.
《Gondwana Research》2014,25(3-4):865-885
Exhumation of middle and lower crustal rocks during the 450–320 Ma intraplate Alice Springs Orogeny in central Australia provides an opportunity to examine the deep burial of sedimentary successions leading to regional high-grade metamorphism. SIMS zircon U–Pb geochronology shows that high-grade metasedimentary units recording lower crustal pressures share a depositional history with unmetamorphosed sedimentary successions in surrounding sedimentary basins. These surrounding basins constitute parts of a large and formerly contiguous intraplate basin that covered much of Neoproterozoic to early Palaeozoic Australia. Within the highly metamorphosed Harts Range Group, metamorphic zircon growth at 480–460 Ma records mid-to-lower crustal (~ 0.9–1.0 GPa) metamorphism. Similarities in detrital zircon age spectra between the Harts Range Group and Late Neoproterozoic–Cambrian sequences in the surrounding Amadeus and Georgina basins imply that the Harts Range Group is a highly metamorphosed equivalent of the same successions. Maximum depositional ages for parts of the Harts Range Group are as low as ~ 520–500 Ma indicating that burial to depths approaching 30 km occurred ~ 20–40 Ma after deposition. Palaeogeographic reconstructions based on well-preserved sedimentary records indicate that throughout the Cambro–Ordovician central Australia was covered by a shallow, gently subsiding epicratonic marine basin, and provide a context for the deep burial of the Harts Range Group. Sedimentation and burial coincided with voluminous mafic magmatism that is absent from the surrounding unmetamorphosed basinal successions, suggesting that the Harts Range Group accumulated in a localised sub-basin associated with sufficient lithospheric extension to generate mantle partial melting. The presently preserved axial extent of this sub-basin is > 200 km. Its width has been modified by subsequent shortening associated with the Alice Springs Orogeny, but must have been > 80 km. Seismic reflection data suggest that the Harts Range Group is preserved within an inverted crustal-scale half graben structure, lending further support to the notion that it accumulated in a discrete sub-basin. Based on palaeogeographic constraints we suggest that burial of the Harts Range Group to lower crustal depths occurred primarily via sediment loading in an exceptionally deep Late Cambrian to Early Ordovician intraplate rift basin. High-temperature Ordovician deformation within the Harts Range Group formed a regional low angle foliation associated with ongoing mafic magmatism that was coeval with deepening of the overlying marine basin, suggesting that metamorphism of the Harts Range Group was associated with ongoing extension. The resulting lower crustal metamorphic terrain is therefore interpreted to represent high-temperature deformation in the lower levels of a deep sedimentary basin during continued basin development. If this model is correct, it indicates that regional-scale moderate- to high-pressure metamorphism of supracrustal rocks need not necessarily reflect compressional thickening of the crust, an assumption commonly made in studies of many metamorphic terrains that lack a palaeogeographic context.  相似文献   

4.
对于断陷盆地拗陷期远离滨岸的河流而言,其层序划分是层序地层学研究的难点。本研究在已有钻测井、岩心及地震资料分析基础上,以渤海湾盆地沙垒田凸起区新近系明化镇组下段(简称“明下段”)作为研究对象,将其划分为1个完整的三级层序、4个四级层序(即SQm1-SQm4)。沉积间断面、宽浅下切谷及复合连片砂体是该地区河流层序界面重要的识别标志。每个四级层序均由低可容空间和高可容空间体系域组成。地震地貌学定量分析表明,低可容空间体系有利于低弯度河流(辫状河、低弯度曲流河)发育,高可容空间体系域有利于中高弯度河流发育。新增可容空间和沉积物供给速率的变化对于河流不同体系域的砂体样式具有重要控制作用。  相似文献   

5.
Recent field and subsurface data about the early Neocomian N’dombo series and the Neocomian to mid-Barremian Schistes series of the interior basin of Gabon further our understanding of the initial stages of early Cretaceous N40–60°E extensional rifting. The syn-rift series comprise fluvial–lacustrine claystones–sandstones, rare conglomerates, and carbonates. The syn-rift fill begins with braided-stream feldspathic sandstones. These are overlain first by fluvial–lacustrine deposits and then by predominantly lacustrine–palustrine claystones, which are potential petroleum source rocks. The claystones are eroded in part and are capped by the pre-Aptian angular unconformity marking the end of Cretaceous rifting in the interior basin. This change in syn-rift facies and depositional environments reflects a rise in base level in response to accelerated subsidence after the initial stage of rifting. The syn-rift deposits form two fining-upward sequences several 100–1000 m thick.  相似文献   

6.
Eighteen coastal-plain depositional sequences that can be correlated to shallow- to deep-water clinoforms in the Eocene Central Basin of Spitsbergen were studied in 1 × 15 km scale mountainside exposures. The overall mud-prone (>300 m thick) coastal-plain succession is divided by prominent fluvial erosion surfaces into vertically stacked depositional sequences, 7–44 m thick. The erosion surfaces are overlain by fluvial conglomerates and coarse-grained sandstones. The fluvial deposits show tidal influence at their seaward ends. The fluvial deposits pass upwards into macrotidal tide-dominated estuarine deposits, with coarse-grained river-dominated facies followed further seawards by high- and low-sinuosity tidal channels, upper-flow-regime tidal flats, and tidal sand bar facies associations. Laterally, marginal sandy to muddy tidal flat and marsh deposits occur. The fluvial/estuarine sequences are interpreted as having accumulated as a series of incised valley fills because: (i) the basal fluvial erosion surfaces, with at least 16 m of local erosional relief, are regional incisions; (ii) the basal fluvial deposits exhibit a significant basinward facies shift; (iii) the regional erosion surfaces can be correlated with rooted horizons in the interfluve areas; and (iv) the estuarine deposits onlap the valley walls in a landward direction. The coastal-plain deposits represent the topset to clinoforms that formed during progradational infilling of the Eocene Central Basin. Despite large-scale progradation, the sequences are volumetrically dominated by lowstand fluvial deposits and especially by transgressive estuarine deposits. The transgressive deposits are overlain by highstand units in only about 30% of the sequences. The depositional system remained an estuary even during highstand conditions, as evidenced by the continued bedload convergence in the inner-estuarine tidal channels.  相似文献   

7.
根据札达盆地河湖相剖面地层岩性、粒度、沉积构造、古生物等反映的沉积岩相,以及不整合面等沉积特征,可将札达盆地上新世—早更新世河湖相地层,初步划分为两个三级层序(Ⅰ、Ⅱ)。层序Ⅰ代表上新统地层层序,并进一步区分出退积准层序组和进积准层序组。对应上新世湖相沉积由低位体系域—湖泊扩张体系域—湖泊收缩体系域的演化,反映湖泊由源区水系冲积亚相—滨湖三角洲亚相—滨浅湖亚相—半深湖亚相—滨浅湖亚相的湖泊,由扩张到萎缩的一个完整的发展演化旋回。层序II代表下更新统地层层序,反映一个盆地受构造和气候(冰期—间冰期)双重控制的夭折型冰湖形成演化的由冰水冲积相到冰湖沉积相的不完整沉积旋回,为青藏高原新近系上新统与第四系的研究与划分提供了重要依据。  相似文献   

8.
《Quaternary Science Reviews》2007,26(3-4):287-299
High-resolution seismic data from Lake Tana, the source of the Blue Nile in northern Ethiopia, reveal a deep sedimentary sequence divided by four strong reflectors. Data from nearshore cores show that the uppermost strong reflector represents a stiff silt unit, interpreted as a desiccation surface. Channel cuts in this surface, bordered by levee-like structures, are apparent in the seismic data from near the lake margin, suggesting fluvial downcutting and over-bank deposition during seasonal flood events. Periphytic diatoms and peat at the base of a core from the deepest part of the lake overlie compacted sediments, indicating that desiccation was followed by development of shallow-water environments and papyrus swamp in the central basin between 16,700 and 15,100 cal BP. As the lake level rose, open-water evaporation from the closed lake caused it to become slightly saline, as indicated by halophytic diatoms. An abrupt return to freshwater conditions occurred at 14,750 cal BP, when the lake overflowed into the Blue Nile. Further reflection surfaces with downcut structures are identifiable in seismic images of the overlying sediments, suggesting at least two lesser lake-level falls, tentatively dated to about 12,000 and 8000 cal BP. Since Lake Victoria, the source of the White Nile, was also dry until 15,000 cal BP, and did not reach overflow until 14,500 cal BP, the entire Nile system must have been reduced to intermittent seasonal flow until about 14,500 cal BP, when baseflow was re-established with almost simultaneous overflow of the headwater lakes of both the White and Blue Nile rivers. Desiccation of the Nile sources coincides with Heinrich event 1, when cessation of northward heat transport from the tropical Atlantic disrupted the Atlantic monsoon, causing drought in north tropical Africa. The strong reflectors at deeper levels in the seismic sequence of Lake Tana may represent earlier desiccation events, possibly contemporaneous with previous Late Pleistocene Heinrich events.  相似文献   

9.
《Tectonophysics》2001,330(1-2):25-43
A detailed gravimetric study has been integrated with the most recent stratigraphic data in the area comprised between the Arno river and the foothills of the Northern Apennines, in northern Tuscany (central Italy). A Plio–Pleistocene basin lies in this area; its sedimentary succession can be subdivided from the bottom, in five allostratigraphic units: (1) Lower–Middle Pliocene shallow marine deposits; (2) Late Pliocene (?)–Early Pleistocene fluvio-lacustrine deposits; (3) late–Early Pleistocene–Middle Pleistocene alluvial to fluvial red conglomerates (Montecarlo Formation); (4) Middle Pleistocene alluvial to fluvial red conglomerates (Cerbaie and Casa Poggio ai Lecci Formations); (5) alluvial to fluvial deposits of Late Pleistocene age. The Bouguer anomaly map displays a strong minimum in the northeastern sector of the basin, and a gentle gradient from west to east. The map of the horizontal gradients permits to recognise three major fault zones, two of which along the southwestern and northeastern margins of the basin, and one along the southeastern edge of the Pisani Mountains. A 2.5D gravimetric modelling along a SW–NE section across the basin displays a thick wedge of sediments of density 2.25 g/cm3 (about 1700 m in the depocenter) overlying a layer of density 2.55 g/cm3, 1000 m thick, which rests on a basement of 2.72 g/cm3. The most of the sediment wedge is here referred to Upper Pliocene (?)–Lower Pleistocene, because borehole data show Pliocene marine deposits thinning northward close to the southern margin of the area. The layer below is referred to Ligurids and upper Tuscan Nappe units; the densest layer is interpreted as composed of Triassic evaporites, quartzites and Palaeozoic basement. According to Carmignani low-angle extensional tectonics began between Serravallian and early Messinian, thinning the Apennine nappe stack. At the end of Middle Pliocene, syn-rift deposition ceased in the Viareggio Basin (west of the investigated area) as demonstrated by Argnani and co-workers, and high-angle extensional tectonics migrated eastward up to the Monte Albano Ridge. A syn-rift continental sedimentary wedge developed in Late Pliocene–Early Pleistocene, until its hanging wall block was dismembered, during late Early Pleistocene, by NE-dipping faults, causing the uplift of its western portion (the Pisani Mountains). This breakup caused exhumation and erosion of Triassic units whose clastics where shed into the surrounding palaeo-Arno Valley in alluvial–fluvial deposits unconformably overlying the Lower Pleistocene syn-rift deposits. In the late Pleistocene SW–NE-trending fault systems created the steep southeastern edge of the Pisani Mountains and the resulting throw is recorded in Middle Pleistocene deposits across the present Arno Valley. This tectonic phase probably continues at present, offshore Livorno, as evidenced by the epicentres of earthquakes.  相似文献   

10.
The Jiangnan Orogen, the eastern part of which comprises the oceanic Huaiyu terrane to the northeast and the continental Jiuling terrane to the southwest, marks the collision zone of the Yangtze and the Cathaysia Blocks in South China. Here, zircon U–Pb geochronological and Lu–Hf isotopic results from typical basement and cover meta-sedimentary/sedimentary rock units in the eastern Jiangnan Orogen are presented. The basement sequences in southwestern Huaiyu terrane are mainly composed of marine volcaniclastic turbidite, ophiolite suite and tuffaceous phyllite, whereas those in the northeastern Huaiyu consist of littoral face pebbly feldspathic sandstones and greywacke interbedded with intermediate-basic volcanic rocks. Combined with previous studies, the present data show that the basement sequences exhibit arc affinities. Zircons from the basement phyllite in the southwestern margin of the Huaiyu terrane, representing a Neoproterozoic back-arc basin, yield a single age population of 800–900 Ma. The basement greywacke from northeastern Huaiyu terrane, representing fore-arc basin, is also characterized by zircons that preserve a single tectono-thermal event during 800–940 Ma. However, the late Neoproterozoic cover sequence preserves zircons from multiple sources with age populations of 750–890 Ma, 1670–2070 Ma and 2385–2550 Ma. Moreover, Hf isotopic data further reveal that most detrital zircons from the basement sequences yield positive εHf(t) values and late Mesoproterozoic model ages, while those of the cover sequence mostly show negative εHf(t) values. The Hf isotopic data therefore suggest that the basement sequences are soured from a Neoproterozoic arc produced by reworking of subducted late Mesoproterozoic materials. The geochronological and Hf isotopic data presented in this study suggest ca. 800 Ma for the assembly of the Huaiyu and Jiuling terranes, implying that the amalgamation of the Yangtze and Cathaysia Blocks in the eastern part occurred at ca. 800 Ma.  相似文献   

11.
Sanshui basin is one of the typical Mesozoic–Cenozoic intra-continental rift basins with voluminous Cenozoic volcanic rocks in southeastern China. Thirteen cycles of volcanic eruptions and two dominant types of volcanic rocks, basalt and trachyte–rhyolite, have been identified within the basin. Both basalt and trachyte–rhyolite members of this bimodal suit have high values of εNd (+2.3 to +6.2) and different Sr isotopic compositions (initial 87Sr/86Sr ratios are 0.70461–0.70625 and 0.70688–0.71266 for basalts and trachyte–rhyolite, respectively), reflecting distinct magma evolution processes or different magma sources. The results presented in this study indicate that both of the trachyte–rhyolite and basaltic magmas were derived from similar independent primitive mantle, but experienced different evolution processes. The trachyte-rhyolitic magma experienced significant clinopyroxene and plagioclase fractionational crystallization from deeper magma chamber with significant crustal contamination, while the basaltic magmas experienced significant olivine and clinopyroxene fractionational crystallization in shallower magma chamber with minor crustal contamination. New zircon U–Pb dating confirms an initial volcanic eruption at 60 Ma and the last activity at 43 Ma. Geologic, geochemical, and geochronological data suggest that the inception of the Sanshui basin was resulted from upwelling of a mantle plume. The Sanshui basin widened due to subsequent east–west extension and the subsequent volcanism constantly occurred in the center of the basin. Evidence also supports a temporal and spatial association with other rift basins in southeastern China. The upwelling mantle plume became more active during late Cenozoic time and most likely triggered opening of other basins, including the young South China Sea basin.  相似文献   

12.
In the young and active tectonic belt of southwestern Taiwan, reconstructed stratigraphy in the distal part of the foreland basin reveals at least two regional unconformities with the younger ones covering the areas farther from the mountain belt. In contrast with the previously proposed monotonous basin development, the temporal–spatial distribution of the unconformities indicates the back-and-forth migration of the foreland basin margin. Three distinct episodes of rapid subsidence during the foreland basin development have also been identified. The onset of the basin development can be well constrained by the initial rapid subsidence at 4.4–4.2 Ma, which happened only in the proximal part of the basin. This was followed by two younger episodes of rapid subsidence events at 2–1.8 Ma and 0.45 Ma, which were encountered initially in the areas progressively farther from the orogenic belt.We propose a model of episodic tectonic evolution in the distal part of the foreland basin in southwestern Taiwan. During each episode of rapid subsidence, uplifting that corresponds to the forebulge began with a concurrent rapid subsidence in the areas closer to the basin center and was followed by rapid subsidence and deposition of widespread strata onlapping toward the basin margin. Part of the widespread strata and its overlying deposits would be eroded in the beginning of the next episode when the forebulge shifted toward the orogenic belt. In general, rate of forebulge migrating away from the orogenic belt during the early stage was slower than that derived from a previously proposed kinematic model of a steady migration of the orogenic belt. This might be due to a rifted and weaker lithosphere beneath the foreland basin. Once the foreland basin migrated onto the less stretched lithosphere, the basin would expand rapidly into the craton.  相似文献   

13.
成因层序地层学的回顾与展望   总被引:10,自引:0,他引:10  
薛良清 《沉积学报》2000,18(3):484-488
回顾了以成因地层层序为基础的成因层序地层学的形成、发展与研究现状,对成因地层层序及其内部构成、高分辨率成因地层层序、成因地层层序的旋回性、非海相成因地层层序、成因地层层序与沉积物堆积速率等主要观点作了简略评述,并结合我国陆相沉积特征对成因层序地层学未来研究前景作了初步展望。  相似文献   

14.
柴北缘地区层序格架下的沉积特征   总被引:14,自引:0,他引:14  
中国中西部含油气沉积盆地大多具有前陆盆地层序组合特征,可以识别出前陆层序和非前陆层序。柴达木盆地柴北缘层序地层格架主要包括非前陆层序的侏罗系和古近系以及前陆层序的新近系。通过井剖面层序分析结合有限的地震剖面,可以对柴达木北缘侏罗系划分7套III级层序。古近系—第四系划分11套III级层序。侏罗系属于非前陆期沉积,新近系属于前陆期沉积。通过柴北缘地区层序框架下沉积特征的解剖,表明柴北缘地区非前陆期遗迹化石以缺氧环境化石群为主,沉积相以河流-湖沼体系为特征。前陆期遗迹化石以陆相氧化河湖相环境化石群为主,湖退体系域(RST)冲积扇-河流三角洲-滨浅湖相沉积体系非常发育。柴达木盆地的沉积层序表现为受构造强烈活动和气候变化的影响,强烈活动期潮湿气候下层序表现为山前带发育进积式准层序组,凹陷区形成退积式准层序组。干旱气候配合下的层序表现为多物源更加明显,山前带沉积物供应更加迅速,且沉积中心迁移强烈。  相似文献   

15.
The Junggar basin contains an almost continuous section of Late Carboniferous–Quaternary terrigenous sedimentary rocks. The maximum thicknesses of the stratigraphic units constituting the basin cover make up a total of ~ 23 km, and the basement under the deepest part of the basin is localized at a depth of ~ 18 km. Both the folded framing and the basin edges have undergone uplifting and erosion during recent activity. These processes have exposed all the structural stages of the basin cover. Considering the completeness and detailed stratigraphic division of the section, we can determine the exact geologic age of intense mountain growth and erosion periods as well as estimate the age of orogenic periods by interpolating the stratigraphic ages. During the Permian orogeny, which included two stages (255–265 and 275–290 Ma), the Junggar, Zaisan, and Turpan–Hami basins made up a whole. During the Triassic orogeny (210–230 Ma), the Junggar and Turpan–Hami basins became completely isolated from each other. During the Jurassic orogeny (135–145 and 160–200 Ma), the sedimentation took place within similar boundaries but over a smaller area. During the Cretaceous orogeny (65–85 and 125–135 Ma), the mountain structures formed mainly at the southern boundaries of the basin and along the Karamaili–Saur line. The Junggar and Zaisan basins were separated at that time. The Early and Middle Paleogene were characterized by relative tectonic quiescence. The fifth orogenic stage began in the Oligocene. The recent activity consists of two main stages: Oligocene (23–33 Ma) and Neogene–Quaternary (1.2–7.6 Ma to the present).  相似文献   

16.
The Reed Bank Basin in the southern margin of the South China Sea is considered to be a Cenozoic rifted basin. Tectono-thermal history is widely thought to be important to understand tectonics as well as oil and gas potential of basin. In order to investigate the Cenozoic tectono-thermal history of the Reed Bank Basin, we carried out thermal modeling on one drill well and 22 pseudo-wells using the multi-stage finite stretching model. Two stages of rifting during the time periods of ∼65.5–40.4 Ma and ∼40.4–28.4 Ma can be recognized from the tectonic subsidence rates, and there are two phases of heating corresponding to the rifting. The reconstructed average basal paleo-heat flow values at the end of the rifting events are ∼60 and ∼66.3 mW/m2, respectively. Following the heating periods, this basin has undergone a persistent thermal attenuation phase since ∼28.4 Ma and the basal heat flow cooled down to ∼57.8–63.5 mW/m2 at present. In combination with the radiogenic heat production of the sedimentary sequences, the surface heat flow of the Reed Bank Basin ranges from ∼60.4 to ∼69.9 mW/m2.  相似文献   

17.
Western Tibet, between the Karakorum fault and the Gozha–Longmu Co fault system, is mostly internally drained and has a 1.5–2 km amplitude relief with km-large valleys. We investigate the origin of this peculiar morphology by combining a topography analysis and a study of the Cenozoic sedimentation in this area. Cenozoic continental strata correspond to a proximal, detrital fan deposition, and uncomformably rest on a palaeorelief similar to the modern one. Zircon U–Pb dating from trachytic flows interbedded within the Cenozoic continental sediments indicates that detrital sedimentation occurred at least between ca 24 and 20 Ma in the Shiquanhe basin, while K/Ar ages suggest it may have started since ~ 37 Ma in the Zapug basin. The distribution of continental deposits shows that present-day morphology features, including km-large, 1500 m-deep valleys, were already formed by Early Miocene times. We suggest that today's internally drained western Tibet was externally drained, at least during late Miocene, contemporaneously with early motion along the Karakorum Fault. Detailed study of the present day river network is compatible with a dextral offset on the Karakorum Fault of 250 km at a rate of ~ 10 ± 1 mm/yr. Displacement along the Karakorum fault possibly induced the shift from external to an internal drainage system, by damming of the Bangong Co ~ 4 Ma ago, leading to the isolation and preservation of the western Tibet relief.  相似文献   

18.
龙川江盆地上第三系芒棒组沉积体系与层序地层分析   总被引:2,自引:1,他引:2  
孙泽轩  姚毅锋  陈勇  李国新 《铀矿地质》2004,20(5):286-293,298
龙川江盆地是造山带内部发育的新生代小型山间断陷盆地。本文结合该盆地晚新世构造、火山活动与沉积作用,对盆地盖层芒棒组沉积体系与层序地层进行了分析。通过分析,建立了龙川江盆地晚新世沉积模式,认为晚新世早期断陷带内快速堆积,主要以发育冲积扇沉积体系为特征,中、晚期冲积扇快速人湖,由此而形成冲积扇一扇三角洲一湖泊沉积体系组合;提出了龙川江盆地芒棒组层序的形成受多期构造活动控制的观点,并建立了3个构造层序,划分了体系域。  相似文献   

19.
A detailed investigation of the fluvial geochemistry of the Han River system allows to estimate the rates of chemical weathering and the consumption of CO2. The Han River drains approximately 26,000 km2 and is the largest river system in South Korea in terms of both water discharge and total river length. It consists of two major tributaries: the North Han River (NHR) and the South Han River (SHR). Distinct differences in basin lithology (silicate vs. carbonate) between the NHR and SHR provide a good natural laboratory in which to examine weathering processes and the influence of basin geology on water quality. The concentrations of major elements and the Sr isotopic compositions were obtained from 58 samples collected in both summer and winter along the Han River system in both 2000 and 2006. The concentrations of dissolved loads differed considerably between the NHR and SHR; compared with the SHR, the NHR had much lower total dissolved solids (TDS), Sr, and major ion concentrations but a higher Si concentration and 87Sr/86Sr ratio. A forward model showed that the dissolved loads in the NHR came primarily from silicate weathering (55 ± 11%), with a relatively small portion from carbonates (30 ± 14%), whereas the main contribution to the dissolved loads in the SHR was carbonate weathering (82 ± 3%), with only 11 ± 4% from silicates. These results are consistent with the different lithologies of the two drainage basins: silicate rocks in the NHR versus carbonate rocks in the SHR. Sulfuric acid derived from sulfide dissolution in coal-containing sedimentary strata has played an important role in carbonate weathering in the SHR basin, unlike in the NHR basin. The silicate weathering rate (SWR) was similar between the NHR and SHR basins, but the rate of CO2 consumption in the SHR basin was lower than in the NHR basin due to an important role of sulfuric acid derived from pyrite oxidation.  相似文献   

20.
S.M. Lev  J.K. Filer  P. Tomascak 《Earth》2008,86(1-4):1-14
Black shales from the southern Appalachian Basin and the southwest Welsh Basin have anomalous U–Pb and Nd model ages suggesting syn- and post-depositional resetting of the Sm–Nd and U–Pb isotopic systems. This alteration to the primary detrital signature of these two shale sequences is indicative of black shale diagenetic/depositional processes that obscure paleo-environmental and provenance information recorded prior to and during deposition. The trace element and isotopic signatures of these two shale sequences reveal a syn-/post-depositional history that is de-coupled from the coeval orogenic history of the region making it difficult to reconstruct the tectonic and oceanographic conditions present at the time of deposition.Both the Ordovivian Welsh Basin and the Devonian Appalachian Basin sequences host REE- and U-bearing diagenetic phosphate minerals that play a critical role in the whole rock REE and U budgets. In the Welsh Basin shales, early diagenetic apatite and a later monazite phase dominate the REE budget and cause the redistribution of REE early in the basin's history (ca. 460 Ma). This redistribution is recorded by the Sm–Nd system (450 ± 90 Ma) and the Nd model ages that are anomalously old by as much as 20% (TDM > 2.0 Ga). This early history is complicated by a Permo-Triassic fluid event affecting the whole rock U-budget and resetting the U–Pb isotopic system at 193 ± 45 Ma. The Appalachian Basin sequence appears to have a much less complicated history yet still records a significant disturbance in both the Sm–Nd isotopic system (392 ± 76 Ma) and the Pb isotopic system (340 ± 50 Ma) at about the time of deposition (ca. 365 Ma).These two sequences suggest a pattern of diagenetic disturbance common to black shales. These processes are unique to black shales and must be considered when interpreting provenance and paleo-environmental information from the black shale sequences. Although these rocks are susceptible to alteration, the alteration may provide extensive information on the post-depositional history of the basin while still retaining some primary depositional information. If black shale processes are considered during the interpretation of isotopic and trace element signatures from organic-rich shales, it may be possible to recover an extensive basin history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号