首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prediction of ship stability during the early stages of design is very important from the point of vessel’s safety. Out of the six motions of a ship, the critical motion leading to capsize of a vessel is the rolling motion. In the present study, particular attention is paid to the performance of a ship in beam sea. The linear ship response in waves is evaluated using strip theory. Critical condition in the rolling motion of a ship is when it is subjected to synchronous beam waves. In this paper, a nonlinear approach has been tried to predict the roll response of a vessel. Various representations of damping and restoring terms found in the literature are investigated. A parametric investigation is undertaken to identify the effect of a number of key parameters like wave amplitude, wave frequency, metacentric height, etc.  相似文献   

2.
Parametric rolling is one of five types of the ship stability failure modes as proposed by IMO. The periodic change of the metacentric height is often considered as the internal cause of this phenomenon. Parametric rolling is a complex nonlinear hydrodynamic problem, often accompanied by large amplitude vertical motions of ships. In recent years,the Reynolds-averaged Navier–Stokes(RANS) equation simulations for viscous flows have made great progress in the field of ship seakeeping. In this paper, the parametric rolling for the C11 containership in regular waves is studied both experimentally and numerically. In the experiments, parametric rolling amplitudes at different drafts, forward speeds and wave steepnesses are analyzed. The differences in the steady amplitudes of parametric rolling are observed for two drafts. The effect of the incident wave steepness(or wave amplitude) is also studied, and this supports previous results obtained on limits of the stability for parametric rolling. In numerical simulations, the ship motions of parametric rolling are analyzed by use of the potential-flow and viscous-flow methods. In the viscousflow method, the Reynolds-averaged Navier–Stokes equations are solved using the overset grid method. The numerical accuracies of the two methods at different wave steepnesses are also discussed.  相似文献   

3.
Considering the actual seaway condition, stability and capsizing of nonlinear ship rolling system in stochastic beam seas is of significant importance for voyage safety. Safe zone are defined in the phase space plan of the unperturbed Hamilton system to qualitatively distinguish ship motions as capsize and noncapsize. Capsize events are defined by solutions passing out of the safe zone. The probability of such an occurrence is studied by virtue of the random Melnikov function and the concept of phase space flux. In this paper, besides conventional wave excitation, the effect of wind load is also taken into account. The introduction of wind load will lead to asymmetry, in other words, it transforms the symmetric heteroclinic orbits into asymmetric homoclinic orbits. For asymmetric dynamical system, the orbital analytic solutions and its power spectrum are not readily available, and the technique of discrete time Fourier transformation (DTFT) is used. In the end, as verification of theoretical critical significant wave height, capsizing probability contour diagram is generated by means of numerical simulation. The contour diagram shows that these analytical methods provide reliable and predictive results about the likelihood of a vessel capsizing in a given seaway condition.  相似文献   

4.
A framework of risk based inspection and repair planning was presented to optimize for the ship structures subjected to corrosion deterioration. The planning problem was formulated as an optimization problem where the expected lifetime costs were minimized with a eonstraint on the minimum aceeptable rehability index. The safety margins were established for the inspection events, the repair events and the failure events for ship struetures. Moreover, the formulae were derived to calculate failure probabihties and repair probabilities. Based on them, a component subjected to corrosion is investigated for illustration of the process of selecting the optimal inspection and repair strategy. Furthermore, some sensitivity studies were provided. The results show that the optimal inspection instants should take place before the reliability index reaches the minimum acceptable reliability index. The optimal target failure probability is 10^-3. In addition, a balance can be achieved between the risk cost and total expected inspection and repair costs by means of the risk-based optimal inspection and repair method, which is very effective in selecting the optimal inspection and repair strategy.  相似文献   

5.
This paper described a procedure for simulation of the outer dynamics in ship collisions.The simulation procedure is derived using the transient equations for the horizontal motion of a ship. The hydrodynamic forces acting on the ships' hull during the collision are calculated by a strip method, where the forces acting on each section are described by means of unit response functions. These functions are determined by cosine transformation of the sectional dampings. The sectional added masses and dampings, and thereby also the sectional unit response functions, are calculated by an approximate method. The deformations of the slip structures during the collisions are modelled as non-linear springs.The resulting system of non-linear equations is solved using a numerical time-integration procedure.A number of different collision situations are simulated by means of the procedure.  相似文献   

6.
A practical method for estimating the wave run-up height on a slender circular cylindrical foundation for wind turbines in nonlinear random waves is provided. The approach is based on the velocity stagnation head theory and Stokes second order wave theory by assuming the basic harmonic wave motion to be a stationary Gaussian narrow-band random process. Comparisons are made with measurements by De Vos et al. (2007), and some of the highest wave run-up events that were predicted agree with those measured.  相似文献   

7.
Most of the large scaled casualties are caused by loss of structural strength and stability due to the progressive flooding and the effect of waves and wind. To prevent foundering and structural failure, it is necessary to predict the motion of the damaged ship in waves.This paper describes the motion of damaged ship in waves resulting from a theoretical and experimental study. A time domain theoretical model, which can be applied to any type of ship or arrangement, for the prediction of damaged ship motion and accidental flooding has been developed considering the effects of flooding of compartments. To evaluate the accuracy of the model, model tests are carried out in ship motion basin for three different damaged conditions: engine room bottom damage, side shell damage and bow visor damage of Ro–Ro ship in regular and irregular waves with different wave heights and directions.  相似文献   

8.
Wang  Li-yuan  Tang  You-gang  Li  Yan  Zhang  Jing-chen  Liu  Li-qin 《中国海洋工程》2020,34(2):289-298
The paper studies the parametric stochastic roll motion in the random waves. The differential equation of the ship parametric roll under random wave is established with considering the nonlinear damping and ship speed. Random sea surface is treated as a narrow-band stochastic process, and the stochastic parametric excitation is studied based on the effective wave theory. The nonlinear restored arm function obtained from the numerical simulation is expressed as the approximate analytic function. By using the stochastic averaging method, the differential equation of motion is transformed into Ito's stochastic differential equation. The steady-state probability density function of roll motion is obtained, and the results are validated with the numerical simulation and model test.  相似文献   

9.
Up until the point at which ocean waves break, their dynamics are generally assumed to be accurately modelled by potential flow theory. For practical and computational reasons it is often useful to approximate the full potential flow solution with bandwidth and amplitude limited equations. A approximation used for waves on deep water is the Broad-banded Modified Non-linear Schrödinger equation (also known as the modified Dysthe equation). In this paper we compare this approximate model with potential flow simulations of focussing uni-directional wave-groups. We find that for moderate non-linearity the approximate model predicts very similar changes to the potential flow model. However, one of the dominant non-linear changes to the wave-group is a localised increase in the bandwidth and contraction in physical length, and beyond a certain point the approximate model fails to accurately reproduce this causing other elements, such as the maximum wave amplitude, to be poorly modelled. This modelling inaccuracy occurs in cases where, based on the initial conditions of the simulation, the approximate model would be expected to be accurate.  相似文献   

10.
一个新的破碎波统计模式   总被引:6,自引:1,他引:6       下载免费PDF全文
由运动方程和涡度方程所导得的两个首次积分估计给出了海波破碎的发生条件和破碎波的波面限制。由这两个条件所构造的新的破碎波统计模式,可导出海波的破碎面积率、破碎体积率和破碎能量损耗率的解析表达式,加之一个简单的白冠物理模型又导出了一个新的白冠覆盖率的解析表达式。  相似文献   

11.
基于极限分析上限方法的海底斜坡稳定性评价   总被引:2,自引:1,他引:1  
刘博  年廷凯  刘敏  郑德凤  宋雷  印萍 《海洋学报》2016,38(7):135-143
极限平衡法仍是当前海底斜坡稳定性的主要工程评价方法,但该法只能给出稳定性分析的近似解答。基于极限分析运动学定理,假定海底斜坡发生对数螺线型滑移破坏模式,将滑体有效自重和简化波浪力等以外荷载形式叠加引入到虚功率方程中,与潜在滑动面上由黏聚力产生的内能耗散率相平衡,建立考虑一阶简化波浪效应的海底斜坡上限解法;利用多变量无导数求极值的逐级迭代方法与最优化技术,结合抗剪强度折减思想,求解波浪加载下不同时刻的海底斜坡稳定性与相应的临界破坏机构,并针对典型算例开展有限元数值解的验证。进而联合采用数值法与上限解,探讨波高、波长、水深等波浪参数对海底斜坡稳定性与滑动机制的影响。结果表明,本文提出的上限解与数值解吻合较好,获得的安全系数与破坏模式等符合一般规律,为波浪作用下海底斜坡的稳定性评价提供了新的途径。  相似文献   

12.
Distribution of wave crests in a non-Gaussian sea   总被引:2,自引:0,他引:2  
The sea elevation at a fixed point is modelled as a quadratic form of a vector valued Gaussian process with arbitrary mean. With this model, saddlepoint methods are used to approximate the mean upcrossing intensity with which the sea level crosses upwards at a certain height. This estimated intensity is further used to determine the probability distribution of wave crests. The use of saddlepoint technique is particularly important here because it can approximate the crest distribution without the need to perform simulations or use fitted distributions. Several numerical examples are given, including two with measured data. In the cases of real data, the results obtained with the saddlepoint technique are also compared with the results obtained with well known methods commonly used in the industry.  相似文献   

13.
In current Naval Architecture practice, employing static considerations is an important and necessary step in assessing ship stability and seakeeping properties (e.g. inclining experiments, load line regulations, range of stability calculations). However, damaged vessels and vessels operating in heavy weather or in conditions where topside icing is a concern may require an additional assessment of stability that considers dynamic effects. Within such contexts, the actual (i.e. current) second moment properties of the vessel mass become very important in the associated equations of motion for a given ship. One such critical second mass moment property is the roll gyradius, as it is closely related to the occurrence of capsizing. The present paper furnishes a means for reckoning the actual roll gyradius of a given ship operating within a seaway. The approach hinges on the formulation and solution of a stochastic inverse problem that leverages existing seakeeping software against the shipboard inertial measurement unit (IMU) telemetry. The method is demonstrated at full-scale and validated at model scale.  相似文献   

14.
Sofia Aberg  Igor Rychlik 《Ocean Engineering》2007,34(17-18):2300-2310
In this paper the joint density of waveheight and half-wavelength is considered for waves observed at a fixed time point and encountering waves that are overtaking a ship from behind. The densities for these two cases are related by a Doppler shift, expressed in terms of the relative velocity of the waves and the ship. Based on this observation, an approximation of the encountered density is proposed. This approximation is then investigated for a Gaussian sea having a Pierson–Moskowitz spectrum.  相似文献   

15.
Wave elevations and water particle velocities were measured in a laboratory surf zone created by the breaking of a narrow-band irregular wave train on a 1/35 plane slope. The incident waves form wave groups that are strongly modulated. It is found that the waves that break close to the shoreline generally have larger wave-height-to-water-depth ratios before breaking than the waves that break farther offshore. After breaking, the wave-height-to-water-depth ratio for the individual waves approaches a constant value in the inner surf zone, while the standard deviation of the wave period increases as the still water depth decreases. In the outer surf zone, the distribution of the period-averaged turbulent kinetic energy is closely correlated to the initial wave heights, and has a wider variation for narrow-band waves than for broad-band waves. In the inner surf zone, the distribution of the period-averaged turbulent kinetic energy is similar for narrow-band waves and broad-band waves. It is found that the wave elevation and turbulent kinetic energy time histories for the individual waves in a wave group are qualitatively similar to those found in a spilling regular wave. The time-averaged transport of turbulent kinetic energy by the ensemble-averaged velocity and turbulence velocity under the irregular breaking waves are also consistent with the measurements obtained in regular breaking waves. The experimental results indicate that the shape of the incident wave spectrum has a significant effect on the temporal and spatial variability of wave breaking and the distribution of turbulent kinetic energy in the outer surf zone. In the inner surf zone, however, the distribution of turbulent kinetic energy is relatively insensitive to the shape of the incident wave spectrum, and the important parameters are the significant wave height and period of the incident waves, and the beach slope.  相似文献   

16.
The free motions in waves of submerged vehicles with a spherical hull from but different metacentric heights are sought. The problem is analysed by considering the submerged vehicle as a neutrally buoyant sphere. The solutions to two independent problems, namely the radiation problem and the diffraction problem, are required. Nondimensional parameters known as the added mass, damping and diffraction coefficients for neutrally buoyant spheres are derived and computed values of these coefficients are presented in tabulated form. The responses of surge, heave and pitch are explicitly expressed by these coefficients and the metacentric height of the submarine. A spherical submarine is practically motionless relative to the particle movement of waves except at the vicinity of reasonant frequency, which is governed by the value of metacentric height.  相似文献   

17.
A mathematical formulation for the motion of a slender ship in shallow water parallel to straight bottom contours is described. From this, a singular integral equation which determines the vorticity on the ship is derived, together with a numerical procedure for solving this integral equation. Particular attention is paid to the trailing edge of the ship, so that the correct solution of the integral equation is found. Numerical results for the cases of a bank or a uniformly sloping beach are provided. The effect of changing the water plane shape of ships is investigated, as well as the effects of changing the local water depth, distance to beach or bank, beach angle and yaw. General conclusions are drawn where possible and illustrate the properties of the bottom geometry.  相似文献   

18.
Longuet-Higgins(1983)[1]导出了波高与周期的联合分布函数,此分布函数虽然与实际数据符合良好,但存在很大的缺陷,如:由此分布函数得出的波高分布为形式较为复杂的非Rayleigh分布,很难应用于工程计算中。孙孚(1988a)[2]应用射线理论导出了一种波高与周期联合分布,虽然弥补了Longuet-Higgins的一些缺陷,但推导过程过于复杂。本文在窄谱假定下通过应用Hilbert变换方法得出新的分布函数并与前两者比较,表明Hilbert变换的方法不但简便,而且完全克服Longuet-Higgins的不足,可以方便的应用于工程计算中。本文也为Hilbert变换的方法在工程中的应用提供了理论依据。  相似文献   

19.
Wave radiation stress is the main driving force of wave-induced near-shore currents. It is directly related to the hydrodynamic characteristics of near-shore current whether the calculation of wave radiation stress is accurate or not. Irregular waves are more capable of reacting wave motion in the ocean compared to regular waves.Therefore, the calculation of the radiation stress under irregular waves will be more able to reflect the wave driving force in the actual near-shore current. Exact solution and approximate solution of the irregular wave radiation stress are derived in this paper and the two kinds of calculation methods are compared. On the basis of this, the experimental results are used to further verify the calculation of wave energy in the approximate calculation method. The results show that the approximate calculation method of irregular wave radiation stress has a good accuracy under the condition of narrow-band spectrum, which can save a lot of computing time, and thus improve the efficiency of calculation. However, the exact calculation method can more accurately reflect the fluctuation of radiation stress at each moment and each location.  相似文献   

20.
To what extent methane liberated from marine hydrate will enter the ocean during a warmer world is unknown. Although methane release due to hydrate dissociation has been modelled, it is unclear whether or not methane will reach the seafloor during a warmer world and therefore contribute to oceanic and atmospheric budgets. Here we show, using a new three-dimensional (3-D) seismic dataset, that some hydrate deposits surround the gas chimneys passing through the HSZ. Bottom water warming since the last glacial maximum (LGM) is interpreted to cause hydrate dissociation but critically some of the released methane was not vented to the ocean. The released gas caused seal failure and free gas entered the hydrate stability zone (HSZ) through vertical gas chimneys to where new hydrate accumulations formed. This process is a new evidence for methane recycling and could account in part for the lack of methane in ice core records that cover warming events during the late Quaternary. This research provides new insight into how methane could be recycled rather than vented during a warmer world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号