首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ren-Xu Chen  Yong-Fei Zheng  Liewen Xie 《Lithos》2010,114(1-2):132-154
Simultaneous in-situ analyses of trace elements, U–Th–Pb and Lu–Hf isotopes were carried out on distinct domains of zircons in ultrahigh-pressure (UHP) eclogite-facies metamorphic rocks from the main hole of the Chinese Continental Scientific Drilling (CCSD) in the Sulu orogen. For the first time, trace elements are directly linked to Lu–Hf isotopes in metamorphic zircons with reference to their U–Pb dates. This enables methodological integration to distinguish four types of metamorphic zircon: solid-state, replacement and dissolution recrystallizations of protolith zircons, and new growth from the aqueous fluid. Metamorphically grown zircons are characterized by concordant U–Pb ages for the metamorphism, flat HREE patterns typical of the garnet effect, low contents of REE (especially HREE), Y, Nb + Ta and Th + U, high contents of Hf, low (Lu/Gd)N, Lu/Hf and Th/U (< 0.1) ratios, and elevated 176Hf/177Hf ratios relative to solid-state recrystallized zircons. This suggests the effects of both garnet and fluid on the growth of metamorphic zircons. In contrast, metamorphic recrystallization has reset the U–Th–Pb isotope system of protolith zircons to different extents, depending on the extents of fluid action during metamorphism. Solid-state recrystallized zircons exhibit the lowest degrees of resetting and thus almost inherit all geochemical features from the protolith zircons, which are characterized by discordant U–Pb ages close to or below the protolith age, steep MREE–HREE patterns typical of magmatic origin, high contents of trace elements and their ratios, and low 176Hf/177Hf ratios. On the other hand, dissolution recrystallized zircons show the highest degrees of reworking and thus have concordant or nearly concordant U–Pb ages for the metamorphism, steep MREE–HREE patterns, lowered contents of trace elements such as REE, Th, U, Y, Nb, Ta and Ti relative to the protolith zircons, and almost unchanged Hf isotope ratios. Replacement recrystallized zircons display intermediate degrees of reworking and thus have their many features of elements and isotopes in between. While the metamorphic growth in the presence of both garnet and fluid is characterized by both depletion of HREE with flat pattern and the low contents of trace elements, the metamorphic recrystallization in the presence of aqueous fluid is indicated by gradual decreases of MREE to HREE without the flat HREE pattern. Therefore, the simultaneous in-situ analyses of metamorphic zircons have the advantage over single-term analyses in making distinction between the new growth and the different types of recrystallization.  相似文献   

2.
Metamorphic dehydration and partial melting are two important processes during continental collision. They have significant bearing on element transport at the slab interface under subduction‐zone P–T conditions. Petrological and geochemical insights into the two processes are provided by a comprehensive study of leucocratic veins in ultrahigh‐pressure (UHP) metamorphic rocks. This is exemplified by this study of a polymineralic vein within phengite‐bearing UHP eclogite in the Dabie orogen. The vein is primarily composed of quartz, kyanite, epidote and phengite, with minor accessory minerals such as garnet, rutile and zircon. Primary multiphase solid inclusions occur in garnet and epidote from the both vein and host eclogite. They are composed of quartz ± K‐feldspar ± plagioclase ± K‐bearing glass and exhibit irregular to negative crystal shapes that are surrounded by weak radial cracks. This suggests their precipitation from solute‐rich metamorphic fluid/melt that involved the reaction of phengite breakdown. Zircon U–Pb dating for the vein gave two groups of concordant ages at 217 ± 2 and 210 ± 2 Ma, indicating two episodes of zircon growth in the Late Triassic. The same minerals from the two rocks give consistent δ18O and δD values, suggesting that the vein‐forming fluid was directly derived from the host UHP eclogite. The vein is much richer in phengite and epidote than the host eclogite, suggesting that the fluid is associated with remarkable concentration of such water‐soluble elements as LILE and LREE migration. Garnet and rutile in the vein exhibit much higher contents of HREE (2.2–5.7 times) and Nb–Ta (1.8–2.0 times) than those in the eclogite, indicating that these normally water‐insoluble elements became mobile and then were sunken in the vein minerals. Thus, the vein‐forming agent would be primarily composed of the UHP aqueous fluid with minor amounts of the hydrous melt, which may even become a supercritical fluid to have a capacity to transport not only LILE and LREE but also HREE and HFSE at subduction‐zone metamorphic conditions. Taken together, significant amounts of trace elements were transported by the vein‐forming fluid due to the phengite breakdown inside the UHP eclogite during exhumation of the deeply subducted continental crust.  相似文献   

3.
柴北缘鱼卡河榴辉岩围岩的变质时代及其地质意义   总被引:17,自引:1,他引:16  
陈丹玲  孙勇  刘良 《地学前缘》2007,14(1):108-116
利用阴极发光和LA-ICP-MS原位分析方法,对柴北缘鱼卡河超高压榴辉岩的直接围岩——石榴石白云母角闪钠长片麻岩和含蓝晶石的石榴石云母片岩进行了详细的锆石微量元素和U-Th-Pb同位素分析。结果表明,石榴石白云母角闪钠长片麻岩中的锆石主体呈浑圆状形态,内部结构以扇状和冷杉树状为主,稀土总量和重稀土含量均较低,重稀土富集程度低,具明显正Eu异常,Th/U比值均小于0.1,指示其形成在与石榴石平衡共生而不含斜长石的变质条件下。而含蓝晶石的石榴石云母片岩中的锆石显示明显的核-边结构,核部显示碎屑锆石特征,边部为与石榴石共生的变质新生锆石。LA-ICP-MS原位定年获得两种围岩的峰期变质年龄分别为(431±3)Ma和(432±19)Ma。这两组年龄在误差范围内一致,而且与已获得的紧邻的两类超高压榴辉岩的变质年龄((436±3)Ma和(431±4)Ma)以及带内指示大陆深俯冲作用时代的都兰含柯石英副片麻岩锆石的柯石英微区年龄(424~432Ma)完全一致。参考这两类岩石与超高压榴辉岩的野外产状关系、含蓝晶石的石榴石云母片岩的原岩特征以及榴辉岩中超过变质年龄达300Ma的原岩残核的存在,共同表明,柴北缘鱼卡河超高压变质地体是典型的大陆深俯冲碰撞作用的产物,本区大陆深俯冲发生的时代为430~435Ma的早古生代。  相似文献   

4.
Laser ablation inductively coupled plasma mass spectrometry analyses of U–Pb isotopes and trace elements in zircon and titanite were carried out on epoxy mounts and thin sections for ultrahigh‐pressure (UHP) eclogite in association with paragneiss in the Dabie orogen. The results provide a direct link between metamorphic ages and temperatures during continental subduction‐zone metamorphism. Zircon U–Pb dating gives two groups of concordant ages at 242 ± 2 to 239 ± 5 Ma and 226 ± 2 to 224 ± 6 Ma, respectively. The Triassic zircon U–Pb ages are characterized by flat heavy rare earth element (HREE) patterns typical of metamorphic growth. Ti‐in‐zircon thermometry for the two generations of metamorphic zircon yields temperatures of 697 ± 27 to 721 ± 8 °C and 742 ± 19 to 778 ± 34 °C, respectively. We interpret that the first episode of zircon growth took place during subduction prior to the onset of UHP metamorphism, whereas the second episode in the stage of exhumation from UHP to HP eclogite facies regime. Thus, the continental subduction‐zone metamorphism of sedimentary protolith is temporally associated with two episodes of fluid activity, respectively, predating and postdating the UHP metamorphic phase. The significantly high Ti‐in‐zircon temperatures for the younger zircon at lower pressures indicate the initial ‘hot’ exhumation after the peak UHP metamorphism. There are two types of titanite. One exhibits light rare earth element (LREE) enrichment, steep MREE–HREE patterns and no Eu anomalies, and yields Zr‐in‐titanite temperatures of 551 to 605 °C at 0.5 GPa, and the other shows LREE depletion and flat MREE–HREE patterns, and gives Zr‐in‐titanite temperatures of 782–788 °C at 2.0 GPa. The former is amenable for U–Pb dating, yielding a discordia lower intercept age of 252 ± 3 Ma. Thus, the first type of titanite is interpreted to have grown in the absence of garnet and plagioclase and thus in the early stage of subduction. In contrast, the second one occurs as rims surrounding rutile cores and thus grew in the presence of garnet during the ‘hot’ exhumation. Therefore, there is multistage growth of zircon and titanite during the continental subduction‐zone metamorphism. The combined studies of chronometry and thermobarometry provide tight constraints on the P–T–t path of eclogites during the continental collision. It appears that the mid‐T/UHP eclogite facies zone would not only form by subduction of the continental crust in a P–T path slightly below the wet granite solidus, but also experience decompression heating during the initial exhumation.  相似文献   

5.
In‐situ SIMS analyses of O and U‐Pb isotopes were carried out for zircons from a quartz vein hosted by ultrahigh‐pressure metagranite (UHP) in the Dabie orogen. The results are integrated to decipher the property of unusual U‐rich aqueous fluids and their effects on both metamorphic and magmatic zircons during exhumation of the UHP metagranite. In CL images, most zircon grains show distinct core‐rim structures. Relict cores are bright and exhibit oscillatory or patchy zonation, giving Neoproterozoic upper‐intercept ages of 795 ± 26 Ma. Newly grown rims are dark and exhibit no zoning, yielding Triassic concordant ages of 215 ± 5 Ma. The cores give Th contents of 59 to 463 ppm and U contents of 98 to 558 ppm, with Th/U ratios of 0.263 to 1.423. The rims yield reduced Th contents of 11 to 124 ppm but significantly elevated U contents of 1051 to 3531 ppm, with Th/U ratios of 0.010 to 0.035. Comparison with the cores of magmatic origin, the unusual enrichment in U but depletion in Th in the rims of metamorphic origin are interpreted as zircon growth from Cl‐rich oxidized vein‐forming aqueous fluids that were produced by dehydration reactions of the wallrock during continental exhumation. The cores have variably positive δ18O values with concordant or discordant Neoproterozoic U‐Pb ages, suggesting their solid‐state modification of both O and U‐Pb isotopes through interaction with the fluids. The rims yield negative δ18O values, indicating their growth from the negative δ18O fluids. Taken together, the proposed Cl‐rich oxidized negative‐δ18O vein‐forming aqueous fluids have such an ability to not only cause variable metamorphic recrystallization in the relict magmatic zircons but also produce dramatic fractionation of U over Th in the metamorphic zircons during quartz veining, and potentially impact on the overlain metasomatite in the mantle wedge.  相似文献   

6.
A variety of eclogites from an east-west transect across the North-East Greenland eclogite province have been studied to establish the timing of high pressure (HP) and ultrahigh-pressure (UHP) metamorphism in this northern segment of the Laurentian margin. Garnet + omphacite ± amphibole + whole rock Sm-Nd isochrons from a quartz eclogite, a garnet + omphacite + rutile eclogite and a partially melted zoisite eclogite in the western HP belt are 401±2, 402±9 and 414±18 Ma, respectively. Corresponding sensitive high-resolution ion microprobe (SHRIMP) 206Pb/238U ages of metamorphic zircon in the same samples are 401±7, 414±13, and 393 ±10 Ma. Metamorphic zircon domains were identified using morphology, cathodoluminescence (CL) imaging, U, Th, Th/U and trace element contents. Zircon from the quartz eclogite and the garnet + omphacite + rutile eclogite are typical of eclogite facies zircon with rounded to subhedral shapes, patchy to homogenous CL domains, low U, and very low Th and Th/U. The partially melted eclogite contains euhedral zircons with dark, sector-zoned, higher U, Th and Th/U inherited cores. Three cores give a Paleoproterozoic 207Pb/206Pb age of 1,962±27 Ma, interpreted as the age of the leucogabbroic protolith. CL images of the bright overgrowths show faint oscillatory zoning next to homogenous areas that indicate zircon growth in the presence of a HP melt and later recrystallization. Additional evidence that zircon grew during eclogite facies conditions is the lack of a Eu anomaly in the trace element data for all the samples. These results, combined with additional less precise Sm-Nd ages and our earlier work, point to a Devonian age of HP metamorphism in the western and central portions of the eclogite province. An UHP kyanite eclogite from the eastern part of the transect contains equant metamorphic zircon with homogeneous to patchy zoning in CL and HP inclusions of garnet, omphacite and kyanite. These zircons have slightly higher U, Th and Th/U values than the HP ones, no Eu anomaly, and are thus comparable to UHP zircons in the literature. The 206Pb/238U age of these zircons is 360±5 Ma, much younger than the HP eclogites. The same sample gives a Sm-Nd age of 342±6 Ma. Unlike the HP eclogites, the Sm-Nd age of the UHP rock is ca. 20 Ma younger than the U-Pb zircon age and most likely records slow cooling through the closure temperature, since peak temperatures were in excess of 900°C. Widespread HP metamorphism of both the Laurentian and Baltica continental margins marks the culmination of this continent–continent collision in the Devonian. Carboniferous UHP conditions, though localized in the east, suggest a prolonged collisional history rather than a short-lived Scandian orogeny. The traditional Silurian Scandian orogeny should thus be extended through the Devonian.  相似文献   

7.
Secondary-ion mass spectrometry (SIMS) U–Pb and trace element data are reported for zircon to address the controversial geochronology of eclogite-facies metamorphism in the Lindås nappe, Bergen Arcs, Caledonides of W Norway. Caledonian eclogite-facies overprint in the nappe was controlled by fracturing and introduction of fluid in the Proterozoic—Sveconorwegian—granulite-facies meta-anorthosite-norite protolith. Zircon grains in one massive eclogite display a core–rim structure. Sveconorwegian cores have trace element signatures identical with those of zircon in the granulite protolith, i.e. 0.31Th/U0.89, heavy rare earth element (HREE) enrichment, and negative Eu anomaly. Weakly-zoned to euhedral oscillatory-zoned Caledonian rims are characterized by Th/U0.13, low LREE content (minimum normalized abundance for Pr or Nd), variable enrichment in HREE, and no Eu anomaly. A decrease of REE towards the outermost rim, especially HREE, is documented. This signature reflects co-precipitation of zircon with garnet and clinozoisite in a feldspar-absent assemblage, and consequently links zircon to the eclogite-facies overprint. The rims provide a mean 206Pb/238U crystallization age of 423±4 Ma. This age reflects eclogite-forming reactions and fluid–rock interaction. This age indicates that eclogite-facies overprint in the Lindås nappe took place at the onset of the Scandian (Silurian) collision between Laurentia and Baltica.  相似文献   

8.
阿尔金江尕勒萨依榴辉岩及其直接围岩——石榴子石黑云母片麻岩锆石的阴极发光图像、微区原位LA-ICP-MS微量元素分析研究表明,榴辉岩锆石内部结构比较均匀,少数颗粒保留斑杂状残核;位于锆石斑杂状残核测点的重稀土相对富集,Th/U比值多大于0.4,为岩浆锆石的特征;位于锆石边部与内部结构均匀颗粒上的测点显示HREE近平坦型或弱亏损型的稀土配分模式,显示了与石榴石平衡共生的变质锆石特征;而石榴子石黑云母片麻岩的锆石具有核-幔-边结构,核部为碎屑锆石,幔部则为与石榴石平衡共生的变质锆石。LA-ICP-MS微区定年获得榴辉岩的变质年龄为(493±4.3)Ma,其原岩形成年龄为(754±9)Ma;石榴子石黑云母片麻岩的变质年龄为(499±27)Ma。榴辉岩的变质年龄滞后于其原岩的形成年龄约250Ma,并且榴辉岩与其直接围岩副片麻岩的变质年龄几乎完全一致,充分表明该超高压榴辉岩的形成是陆壳深俯冲作用的产物。  相似文献   

9.
The geochemistry of zircons from autochthonous granite gneiss (Lc1) anatectic (Lc3–4) and injection (Lc5) leucosomes has been studied. Neoarchean prismatic zircon grains with cores that reveal oscillatory zoning and are overgrown by a couple of rims have been seen to occur in Lc3–4. The prismatic grains are occasionally modified into isometric grains with block structure by Paleoproterozoic secondary alteration, which is accompanied by the depletion in HREE, Y, Nb, U; enrichment in Ti, Li, LREE; increasing Th: U ratio and Ce anomaly; and decreasing Eu anomaly. The Paleoproterozoic alteration is related to the low-temperature amphibolite-facies metamorphism followed by partial melting. The Neoarchean prismatic zircons were formed under the conditions of high-temperature amphibolite-facies ultrametamorphism at a temperature of ~700°C. Judging by the higher Ce/Ce* ratio, the metamorphic rounded zircons were formed at a higher oxygen fugacity as compared with ultrametamorphic zircons from Lc1 and Lc3–4. Specific variation trends of trace element concentrations in prismatic L1 and L3–4 zircons, occasionally with opposite directions, emphasize their different origin. The former are products of metasomatic granitization completed by selective melting with appearance of dispersed melt drops, while the latter are products of anatexis in the open system and by lit-par-lit migmatization. Prismatic zircons L5 are characterized by rhythmic zoning in the core surrounded by rims. The concordant U-Pb age of rims is 129 Ma; the 206Pb/238U age of cores varies from 2213 to 147 Ma. The appreciable enrichment (by a factor of 2–13) of zircons in all minor elements from the core to the rims is caused by the effect of residual postmagmatic fluid, which not only altered zircons, but also facilitated the recrystallization of granite into a pegmatoid variety.  相似文献   

10.
The origins of >3900 Ma detrital zircons from Western Australia are controversial, in part due to their complexity and long geologic histories. Conflicting interpretations for the genesis of these zircons propose magmatic, hydrothermal, or metamorphic origins. To test the hypothesis that these zircons preserve magmatic compositions, trace elements [rare earth elements (REE), Y, P, Th, U] were analyzed by ion microprobe from a suite of >3900 Ma zircons from Jack Hills, Western Australia, and include some of the oldest detrital zircons known (4400-4300 Ma). The same ∼20 μm domains previously characterized for U/Pb age, oxygen isotope composition (δ18O), and cathodoluminescence (CL) zoning were specifically targeted for analysis. The zircons are classified into two types based on the light-REE (LREE) composition of the domain analyzed. Zircons with Type 1 domains form the largest group (37 of 42), consisting of grains that preserve evolved REE compositions typical of igneous zircon from crustal rocks. Grains with Type 1 domains display a wide range of CL zoning patterns, yield nearly concordant U/Pb ages from 4400 to 3900 Ma, and preserve a narrow range of δ18O values from 4.7‰ to 7.3‰ that overlap or are slightly elevated relative to mantle oxygen isotope composition. Type 1 domains are interpreted to preserve magmatic compositions. Type 2 domains occur in six zircons that contain spots with enriched light-REE (LREE) compositions, here defined as having chondrite normalized values of LaN > 1 and PrN > 10. A subset of analyses in Type 2 domains appear to result from incorporation of sub-surface mineral inclusions in the analysis volume, as evidenced by positively correlated secondary ion beam intensities for LREE, P, and Y, which are anti-correlated to Si, although not all Type 2 analyses show these features. The LREE enrichment also occurs in areas with discordant U/Pb ages and/or high Th/U ratios, and is apparently associated with past or present radiation damage. The enrichment is not attributed to hydrothermal alteration, however, as oxygen isotope ratios in Type 2 domains overlap with magmatic values of Type 1 domains, and do not appear re-set as might be expected from dissolution or ion-exchange processes operating at variable temperatures. Thus, REE compositions in Type 2 domains where mineral inclusions are not suspected are best interpreted to result from localized enrichment of LREE in areas with past or present radiation damage, and with a very low fluid/rock ratio. Correlated in situ analyses allow magmatic compositions in these complex zircons to be distinguished from the effects of secondary processes. These results are additional evidence for preservation of magmatic compositions in Jack Hills zircons, and demonstrate the benefits of detailed imaging in studies of complicated detrital zircons of unknown origin. The data reported here support previous interpretations that the majority of >3900 Ma zircons from the Jack Hills have an origin in evolved granitic melts, and are evidence for the existence of continental crust very early in Earth’s history.  相似文献   

11.
The Xiongdian eclogite occurring in the Sujiahe tectonic melange zone at Luoshan County, Henan Province, in the western Dabie Mountains, is typical high-pressure (HP)-ultrahigh-pressure (UHP) and medium-temperature eclogite. The occurrence, internal texture and surface characteristics of zircons in eclogite were studied rather systematically petrographically combined with the cathodoluminescence (CL) and scanning electron microscope (SEM) methods. Zircons are mainly hosted in garnet and other metamorphic minerals with sharp boundaries, have a multifaceted morphology and are homogeneous or exhibit a metamorphic growth texture in the interior, thus indicating that they are the product of metamorphism. SHRIMP analyses give zircon 206Pb/238U ages of 335 to 424 Ma and show a certain degree of radiogenic Pb loss; therefore it may be inferred that the age of 424? Ma represents the minimum age of a HP-UHP metamorphic age. From the above analyses coupled with previous Sm-Nd, 40Ar-39Ar, U-Pb and 207Pb/206Pb age d  相似文献   

12.
An unusual zircon SHRIMP dating result of a granitic gneiss from the Qinglongshan eclogite-gneiss roadcut section is presented in this paper. The very peculiar and complicated internal structures, as well as the very low Th/U ratios (0.01-0.08) of the zircons indicate that they were formed by metamorphic recrystallization. Strongly in contrast with previously published zircon U-Pb ages of the Dabie-Sulu UHP metamorphic rocks where protolith ages of 600-800 Ma are commonly recorded, only metamorphic age of 218±5 Ma, defined by 18 analytical spots either in rim or in core of zircons, are recorded in this granitic gneiss. This age represents the time of the complete metamorphic recrystallization overprint on primary magmatic zircons. The recrystallization was derived by the UHP metamorphism, and was strengthened by the early stage of retrograde metamorphic fluid activity.  相似文献   

13.
辽西医巫闾山变质核杂岩经历过两阶段演化,晚侏罗世发育了围绕核部医巫闾山岩体周缘展布的长环形韧性剪切带(称为医巫闾山剪切带),早白垩世西侧叠加了北北东走向瓦子峪伸展韧性剪切带.在医巫间山剪切带及其变形下盘中侵入了大量的晚侏罗世花岗岩脉,其所含的锆石包括古老继承锆石、新生岩浆锆石、热液锆石等多种类型.根据锆石阴极发光图像、...  相似文献   

14.
High-pressure(HP)or ultrahigh-pressure(UHP)rutile-quartz veins that form at mantle depths due to fluid-rock interaction can be used to trace the properties and behavior of natural fluids in subduction zones.To explore the fluid flow and the associated element mobility during deep subduction and exhumation of the continental crust,we investigated the major and trace elements of Ti-rich minerals.Additionally,U–Pb dating,trace element contents,and Lu–Hf isotopic composition of zircon grains in the UHP eclogite and associated rutile-quartz veins were examined in the North Qaidam UHP metamorphic belt,Yuka terrane.The zircon grains in the rutile-quartz veins have unzoned or weak oscillatory zonings,and show low Th/U ratios,steep chondrite-normalized patterns of heavy rare earth elements(HREEs),and insignificant negative Eu anomalies,indicating their growth in metamorphic fluids.These zircon grains formed in 4313 Ma,which is consistent with the 4322 Ma age of the host eclogite.As for the zircons in the rutile-quartz veins,they showed steep HREE patterns on one hand,and were different from the zircons present in the host eclogite on the other.This demonstrates that their formation might have been related to the breakdown of the early stage of garnet,which corresponds to the abundance of fluids during the early exhumation stage.The core-rim profile analyses of rutile recorded a two-stage rutile growth across a large rutile grain;the rutile core has higher Nb,Ta,W,and Zr contents and lower Nb/Ta ratios than the rim,indicating that the rutile domains grew in different metamorphic fluids from the core towards the rim.The significant enrichment of high field strength elements(HFSEs)in the rutile core suggests that the peak fluids have high solubility and transportation capacity of these HFSEs.Furthermore,variations in the Nb vs.Cr trends in rutile indicate a connection of rutile to mafic protolith.The zircon grains from both the rutile-quartz veins and the host eclogite have similar Hf isotopic compositions,indicating that the vein-forming fluids are internally derived from the host eclogite.These fluids accumulated in the subduction channel and were triggered by local dehydration of the deeply subducted eclogite during the early exhumation conditions.  相似文献   

15.
We report SHRIMP U–Pb age of zircons in four samples of eclogite and one sample of orthogneiss from Sulu ultrahigh-pressure (UHP) zone in Yangkou area, eastern China. UHP rocks are distributed along the Sulu orogenic belt suturing North China Block with South China Block. In Yangkou area, UHP unit is well exposed for about 200 m along Yangkou beach section and consists mainly of blocks or lenses of ultramafic rocks and eclogite together with para- and orthogneiss which are highly sheared partly. Zircon grains examined in this study from eclogite show oscillatory zoning and overgrowth texture in CL images, and most of the grains have high Th/U ratio ranging from 0.8 to 2.1 indicating an igneous origin. The weighted mean 206Pb/238U ages of zircons from the four samples range from 690 to 734 Ma. These ages can be correlated to the magmatic stage of the protoliths. In rare cases, zircon grains possess a narrow rim with very low Th/U ratio (< 0.02). EPMA U–Th-total Pb dating of such rim yields younger ages that range from 240 to 405 Ma marking the metamorphic stage. On the other hand, zircons from the orthogneiss show irregular shape and zoning with inclusion-rich core and inclusion-free rim. These grains of zircon yield U–Pb discordia intercept ages of 226 ± 63 Ma and 714 ± 110 Ma (MSWD 0.78). Bulk of the areas of the rims rim of the zircons demonstrate younger 206Pb/238U ages close to the upper intercept, with low Th/U ratio (< 0.20) indicating their metamorphic origin. In contrast, the cores show older 206Pb/238U ages close to lower intercept and high Th/U ratio of (0.14–5.25) indicating their igneous origin. The upper intercept age is also commonly noted in zircons from eclogite. Our results suggest a bimodal igneous activity along this zone during the Neoproterozoic, probably related to the rifting of the Rodinia supercontinent.  相似文献   

16.
The amalgamation of South (SCB) and North China Blocks (NCB) along the Qinling‐Dabie orogenic belt involved several stages of high pressure (HP)‐ultra high pressure (UHP) metamorphism. The new discovery of UHP metamorphic rocks in the North Qinling (NQ) terrane can provide valuable information on this process. However, no precise age for the UHP metamorphism in the NQ terrane has been documented yet, and thus hinders deciphering of the evolution of the whole Qinling‐Dabie‐Sulu orogenic belt. This article reports an integrated study of U–Pb age, trace element, mineral inclusion and Hf isotope composition of zircon from an eclogite, a quartz vein and a schist in the NQ terrane. The zircon cores in the eclogite are characterized by oscillatory zoning or weak zoning, high Th/U and 176Lu/177Hf ratios, pronounced Eu anomalies and steep heavy rare earth element (HREE) patterns. The zircon cores yield an age of 796 ± 13 Ma, which is taken as the protolith formation age of the eclogite, and implies that the NQ terrane may belong to the SCB before it collided with the NCB. The ?Hf(t) values vary from ?11.3 to 3.2 and corresponding two‐stage Hf model ages are 2402 to 1495 Ma, suggesting the protolith was derived from an enriched mantle. In contrast, the metamorphic zircon rims show no zoning or weak zoning, very low Th/U and 176Lu/177Hf ratios, insignificant Eu anomalies and flat HREE patterns. They contain inclusions of garnet, omphacite and phengite, suggesting that the metamorphic zircon formed under eclogite facies metamorphic conditions, and their weighted mean 206Pb/238U age of 485.9 ± 3.8 Ma was interpreted to date the timing of the eclogite facies metamorphism. Zircon in the quartz vein is characterized by perfect euhedral habit, some oscillatory zoning, low Th/U ratios and variable HREE contents. It yields a weighted mean U–Pb age of 480.5 ± 2.5 Ma, which registers the age of fluid activity during exhumation. Zircon in the schist is mostly detrital and U–Pb age peaks at c. 1950 to 1850, 1800 to 1600, 1560 to 1460 and 1400 to 1260 Ma with an oldest grain of 2517 Ma, also suggesting that the NQ terrane may have an affinity to the SCB. Accordingly, the amalgamation between the SCB and the NCB is a multistage process that spans c. 300 Myr, which includes: the formation of the Erlangping intra‐oceanic arc zone onto the NCB before c. 490 Ma, the c. 485 Ma crustal subduction and UHP metamorphism of the NQ terrane, the c. 430 Ma arc‐continent collision and granulite facies metamorphism, the 420 to 400 Ma extension and rifting in relation to the opening of the Palaeo‐Tethyan ocean, the c. 310 Ma HP eclogite facies metamorphism of oceanic crust and associated continental basement, and the final 250 to 220 Ma continental subduction and HP–UHP metamorphism.  相似文献   

17.
对西大别造山带夏店岩体进行了系统的锆石LA-ICP-MSU-Pb定年、岩石地球化学研究,发现该岩体化学成分具富硅、碱,贫钙、镁、铝等特点;岩石轻稀土元素富集,重稀土元素亏损,轻重稀土元素分馏明显,Eu亏损明显;Rb、K、Th等大离子亲石元素和Pb元素富集,Ta、Nb、Ti等高场强元素亏损和Sr、Ba元素亏损;岩石成因类型上属于A型花岗岩。LA-ICP-MS锆石U-Pb定年结果显示夏店岩体~(206)Pb/~(238)U加权平均年龄为130.0±1.8 Ma,代表岩体的结晶年龄,显示该岩体为早白垩世岩浆活动的产物。夏店岩体A型花岗岩形成于造山期后环境,预示着桐柏-大别造山带板内演化阶段的到来。  相似文献   

18.
Zircon populations of Neoproterozoic and early Paleozoic age occur in metabasites of a high-pressure amphibolite-facies unit of the Austroalpine basement south of the Tauern Window. The host rocks for these zircons are eclogitic amphibolites of N-MORB-type character, hornblende gneisses with volcanic-arc basalt signature, and alkaline within-plate-basalt amphibolites. Bulk rock magmatic trace element patterns were preserved during amphibolite-facies high-pressure and subsequent high-temperature events, as well as a greenschist-facies overprint. Positive Ce and negative Eu anomalies and enrichment of HREE in normalized zircon REE patterns, as analysed by LA-ICP-MS, are typical for an igneous origin of these zircon suites. Zircon Y is well correlated to HREE, Ce, Th, U, Nb, and Ta and allows discrimination of compositional fields for each host rock type. Low Th/U ratios are correlated to low Y and HREE abundances in zircon from low bulk Th/U host rocks. This is likely a primary igneous characteristic that cannot be attributed to metamorphic recrystallization. Variations of zircon/host rock element ratios confirm that ionic radii and charges control abundances of many trace elements in zircon. The trace element ratios—presented as mineral/melt distribution coefficients—indicate a selectively inhibited substitution of Zr and Si by HREE and Y in zircon which crystallized from a N-MORB melt. Correlated host rock and zircon trace element concentrations indicate that the metabasite zircons are not xenocrysts but crystallized from mafic melts, represented by the actual host rocks.  相似文献   

19.
北秦岭地区的早古生代超高压变质作用是整个秦岭-桐柏-红安-大别-苏鲁造山带内最古老的超高压变质记录, 代表华南与华北板块之间最早的一期增生碰撞事件, 然而目前对于该地区早古生代的构造演化过程仍存在较大争议.对北秦岭官坡超高压榴辉岩中的一个长英质脉体开展了详细的锆石形态学、微量元素和U-Pb年代学研究.结果表明, 脉体中的锆石呈自形的棱柱状晶形, 发育弱的振荡环带、面状分带或无明显分带特征, 具有高的HREE、Y、U含量, 低的Th含量和Th/U比值, 说明锆石生长自含水熔体.另外, 这些变质锆石具有LREE亏损、HREE相对富集的配分模式以及明显的Eu负异常, 表明含水熔体形成于角闪岩相退变质过程.锆石的206Pb/238U加权平均年龄为494±10 Ma (MSWD=2.2), 与北秦岭超高压变质作用的峰期年龄(490.4±5.8 Ma)在误差范围内基本一致.北秦岭地体经历深俯冲作用之后发生快速折返, 并在折返过程中发生角闪岩相退变质作用诱发俯冲板片部分熔融产生含水熔体.   相似文献   

20.
唐勇  张辉  吕正航 《矿物岩石》2012,32(1):8-15
新疆阿勒泰可可托海地区出露大量花岗岩和伟晶岩脉,利用阴极发光显微照相(CL)、电子探针背散射(BSE)和激光剥蚀电感耦合等离子质谱技术(LA-ICP-MS),观察和分析岩石中锆石的内部结构、稀土元素及Th,U含量后结果表明:该区花岗岩锆石具振荡环带和强烈的阴极发光特征,Th/U比值较高(Th/U=0.16~0.99),轻稀土亏损、重稀土富集,具较大的Ce正异常,为典型岩浆成因锆石。伟晶岩(KP-08-11)锆石为热液锆石,不具振荡环带和阴极发光,具低的Th/U比值(0.01~0.13),强烈富集稀土元素,尤其是轻稀土元素较花岗岩锆石高一个数量级,Ce的正异常相对较低。伟晶岩(KP3-08-1)锆石为变质重结晶锆石,Th/U比值分布范围较广(0.01~0.78),强烈亏损稀土元素,稀土元素配分模式存在显著的"REE四分组效应"。微量元素特征表明,伟晶岩(KP-08-11)锆石可能结晶自富U贫Th的残余岩浆流体,而伟晶岩(KP3-08-1)的锆石经历了蜕晶质化和变质重结晶作用,但依然保持了共存伟晶岩熔体的微量元素特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号