首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
管道作为油气资源的最为常用的运输方式之一,穿越不同地质情况的区域,所面临的工程问题各有不同。本文对青海省某冻土区输气管道进行调研,针对出现的管沟融陷、工程构筑物冻胀变形等病害问题,选取典型断面,钻孔埋设温度传感器和沉降磁环测试元器件,对暖季和寒季管道周围土体温度和位移进行监测,研究输气管道周围地温变化及冻胀融沉规律,为冻土区输油气管道的设计、施工、运营、病害治理提供借鉴。研究表明:该冻土区寒暖季地表地温随气温波动较大,越靠近管道,地温年振幅越大;该区域冻土地温范围为-2~-1℃,地温带类型属基本稳定带,正温输气的热扰动,导致周围土体融沉;管道正上方受管道放热影响,地温均为正温,影响范围约1.5m;在近管道处,深度1~4m,地温受多重因素影响,深度4m以下,地温年较差较小,均为负温;冻胀由深处向上发生,时间上有滞后性;10月和11月为冻融剧烈时间段,应及时监测预警。  相似文献   

2.
孟上九  李想  孙义强  程有坤 《岩土力学》2018,39(4):1377-1385
利用光纤光栅开展了为期两年的季冻土路基永久变形现场监测,考虑了不同场地、不同时段、不同轴载组合对永久变形的影响。监测结果显示:(1)受气温影响,路基温度在正冻期和正融期随时间呈振荡线性变化,在一个冻融循环内,市区监测场地埋深30 cm和75 cm位置,地温变化范围分别为-9.0~14.4 ℃和-1.9~15.4 ℃,且随深度增加地温对气温的响应逐渐减弱,滞后性增强;(2)两个监测场地,当路基处于完全冻结状态时,车辆作用下的永久变形均较小,但在正融期,同样车重作用下路基永久变形增大,最大变形是冻结期的4.5倍,是融化期的4.2倍;(3)路基经历了两次冻融循环后,变形仍未稳定,在重载车辆作用下其永久变形仍不可忽视;(4)以轴重40 kN车辆引起的路基最大永久变形为基准,轴重80 kN及250 kN车辆引起的实测永久变形分别增大17倍及215倍,永久变形与轴重非线性关系明显;(5)冻融和重载叠加作用会产生最不利组合,放大路基永久变形,对此需特别关注。  相似文献   

3.
多年冻土区路基分层变形现场观测研究   总被引:2,自引:2,他引:0  
余帆  齐吉琳  姚晓亮 《冰川冻土》2011,33(4):813-818
在人类工程活动和气候变暖的双重作用下,多年冻土区的道路路基普遍产生以路基下沉为主的病害.多年冻土地区的路基沉降涉及多个物理力学过程:未冻土的蠕变,冻土上限下降所产生的融沉,由于多年冻土层升温而产生的高温冻土的蠕变,以及活动层中冻融循环改变了土的工程性质而导致的附加沉降变形.为了进一步探索各个物理力学过程对总沉降量贡献,...  相似文献   

4.
青藏铁路普通路基下部冻土变化分析   总被引:5,自引:2,他引:3  
吴青柏  刘永智  于晖 《冰川冻土》2007,29(6):960-968
高温高含冰量冻土地区,青藏铁路采取了冷却路基、降低多年冻土温度的工程措施.然而青藏铁路仍有大量路段未采用任何工程措施,因此修筑普通路基后冻土变化也是普遍关心的问题.根据青藏铁路普通路基下部土体温度监测的近期结果,分析了季节冻土区、已退化多年冻土区和多年冻土区路基下部冻土变化特征.结果表明,不同区域修筑普通路基,其下部土体温度、最大季节冻结深度、多年冻土上限等存在较大的差异.在季节冻土和已退化多年冻土区,右路肩下部(阴坡)已形成冻土隔年层;在多年冻土强烈退化区,其路基下部形成融化夹层;在高温多年冻土区,其路基下部上限存在抬升和下降,上限附近土体温度有升高的趋势.在低温多年冻土区,其路基下部上限全部抬升,上限附近土体存在"冷量"积累,有利于路基下部多年冻土热稳定性.因此,低温多年冻土区修筑普通路基后,冻土变化基本是向着有利于路基稳定性的方向发展,在其它地段修筑普通路基,冻土变化是向着不利于路基稳定性的方向发展的.特别是阴阳坡太阳辐射差异,导致了土体热状态和多年冻土上限形态产生较大的差异,这种差异将会对路基稳定性产生一定的影响.  相似文献   

5.
沱沱河流域是长江的发源地之一,其广泛分布的多年冻土对长江源区的产汇流过程、生态系统乃至于区域气候都有着重要影响,对该区域多年冻土分布和特征的调查和了解,可为研究江河源区多年冻土与气候、水文、生态的相互作用关系提供基础数据支撑。2020年10—11月,研究团队对沱沱河源区的多年冻土开展了为期50天的野外调查工作,并在不同下垫面类型、不同地貌部位和不同海拔高度共布设钻孔32个,总钻进深度1 200 m。该文是基于钻孔和探坑资料对沱沱河源区多年冻土特征和地下冰发育状况的初步总结。结果显示,沱沱河源区多年冻土在一定程度上受河流和地热影响形成了局部融区,其多年冻土下界大致在4 650~4 680 m之间;钻孔揭示的多年冻土上限平均埋藏深度为(2.47±0.98) m,部分地区存在融化夹层;受浅表层沉积物岩性和地热的影响,多年冻土下限埋藏深度相对较浅,平均为19.3 m,多年冻土相对较薄,平均厚度为15.0 m;多年冻土下限深度和多年冻土的厚度最大为75.0 m和72.7 m;地形地貌、沉积物特征和地热条件是影响多年冻土厚度存在较大空间差异的主要原因。研究区内地下冰主要分布于15.0 m深度以上范围内,同时也发现了处于萎缩状态的冰核丘与石质冻胀丘,这些现象也一定程度上与该研究区多年冻土退化过程有关。  相似文献   

6.
青藏铁路多年冻土区路基变形特征及其来源   总被引:3,自引:0,他引:3  
基于青藏铁路多年冻土区34个路基监测断面2005-2011年的变形与地温资料,分析路基的变形特征及其来源。监测结果表明:①监测期累计变形量大于100 mm的断面均为普通路基,其变形主要来自路基下部因冻土上限下降而引起的高含冰量冻土的融沉变形以及融土的压密变形,其次为路基下部多年冻土因地温升高而产生的高温冻土的压缩变形。②监测期累计变形量小于100 mm的普通路基与块石结构路基断面,其变形主要来自路基下部多年冻土的压缩变形。③总体而言,块石结构路基变形量明显小于普通路基,从而验证了主动冷却措施的长期有效性。其研究结果可为冻土区路基稳定性判断及病害预警提供数据支持。  相似文献   

7.
青藏铁路普通路基下冻土过程动态评价   总被引:1,自引:0,他引:1  
本文主要利用青藏铁路北麓河厚层地下冰试验段中普通路基下部冻土温度的监测资料,对路基下部冻土温度变化和热收支特征进行了分析,并对修筑普通路基后多年冻土热融蚀敏感性和热稳定性进行了计算。结果表明,修筑普通铁路路基后,虽然多年冻土人为上限有较大幅度抬升,但原天然上限以下多年冻土温度却逐年升高,表现为显著的吸热状态。同时冻土热融蚀敏感性增强,冻土热稳定性下降,对路基热稳定性将产生较大的影响。  相似文献   

8.
青藏铁路冻土路基变形监测与分析   总被引:5,自引:0,他引:5  
马巍  刘端  吴青柏 《岩土力学》2008,29(3):571-579
基于现场监测资料,对作为青藏铁路中的主要保护冻土的几种路基形式(如:通风管路基、块石路基、块石护坡路基、保温材料路基和普通素土路基)进行了变形和温度分析,发现所有路基的变形均以沉降变形为主,且其变形与其下伏冻土的地温场变化密切相关。经过2~3个冻融周期后,通风管路基、块石路基、块石护坡路基和保温材料路基的变形已趋于稳定,而无任何措施的普通路基目前变形仍未稳定。另外,各种路基左右路肩均存在变形差。基于以上分析可得到一个启示:在高温、高含冰量冻土地区,由于路基下多年冻土温度升高产生的高温冻土压缩变形而引起的路基沉降变形具有相当大的量级,很有可能成为冻土路基发生破坏的一个重要原因,工程实践中应给予足够的重视。  相似文献   

9.
青藏高原脆弱的生态系统以及人类工程活动,加剧了青藏工程走廊线性工程两侧沙漠化、荒漠化发展趋势,尤其冻土块石路基面临日益严重的风积沙灾害问题。以多年冻土区高等级公路块石路基为研究对象,采用数值模拟分析风积沙环境下封闭块石路基的降温性能和长期热稳定性。结果表明:风积沙堆积对封闭块石路基下部土层冻土温度的影响程度高于冻土上限,1.0 m湿沙工况降低冻土温度,0.2 m干沙则增大冻土温度。升温背景下,随年平均气温增加风沙堆积对路基冻土上限影响程度增强,干沙增大冻土融化深度,湿沙抬升冻土上限。随冻土含冰量减小,路基中心冻土上限对气候升温敏感性增加,风沙堆积影响减弱。气候升温和风沙堆积条件下,在年平均气温低于-5.5℃时,宽幅沥青路面封闭块石路基能够满足降温要求,使人为冻土上限保持在块石层内。研究成果可为风沙危害区多年冻土块石路基的病害治理和拟建青藏高速公路块石路基设计提供科学依据。  相似文献   

10.
以青藏铁路西格段季节性冻土区路基冻害为研究背景,在室内分普通和盐化两个试验段填筑路基实体模型,进行封闭系统中反复冻融循环条件下的模型试验,分析冻融循环条件下普通路基和人工盐化路基的温度和位移规律,并探讨水分、盐分的迁移规律。结果表明:路基土体温度与环境温度变化趋势一致,路基土体的温度滞后于环境温度约36 h;越靠近冷端的位置,温度波动范围越大,温度随着深度的增加逐渐减小,温差也随之减小,路基土体温度的波动范围约为环境温度波动的一半;温度是影响水分迁移的主要因素,水分迁移在路基顶面以下一定的范围内达到最大,越靠近冷端,水分迁移量越大;路基土盐化之后冻胀量减小约73.9%,说明人工盐化路基土的方法可以整治季节性冻土区路基冻害。  相似文献   

11.
The distribution of permafrost and taliks is very complex in the Tuotuo River Basin(TRB), which is located in interior of the Qinghai-Tibet Plateau. Characterizing the spatial distribution and the thermal stability of permafrost and taliks is of great significance to community activities and engineering construction in TRB. Based on the zonation of permafrost and talik distribution around TRB conducted in the 1980s, the soil temperature and its variation process of permafrost and taliks in the south and north banks of the Tuotuo River were analyzed by using the observation data of five boreholes(N1~N5)along the Qinghai-Tibet Railway in the north bank and five boreholes(S1~S5)on the first terrace in the south bank. The results showed that, under the climate warming, permafrost and taliks in the north banks experienced significant degradation and warming process. From 2005 to 2020, the permafrost at the N1 borehole has undergone a significant down-draw degradation process, from extremely unstable and high-temperature permafrost to thawed zone. From 2005 to 2013, the annual average ground temperature of the talik at N2 increased at a rate of 0. 3~0. 4 °C·(10a)-1. At Maqutang on the south bank, permafrost prevails from the first-class terrace to the gentle slope of the Kaixinling Mountain, with both through and non-through taliks on the first-class terrace. The spatial distribution and the thermal stability of permafrost and talik in the TRB are further promoted by analyzing the changes in temperatures at boreholes in the basin. However, to meet the requirements of mapping and engineering construction of permafrost and taliks in the TRB, it is still necessary to carry out geological investigation with multiple methods and in-depth research on development mechanism of taliks in the future. © 2022 Nanjing Forestry University. All rights reserved.  相似文献   

12.
令锋  吴青柏 《冰川冻土》2017,39(2):328-335
热融湖是高纬度和高海拔富冰多年冻土区重要的自然景观。这些湖由于富冰多年冻土或地下冰的融化而形成,由于湖水向周边多年冻土传递热量而持续扩张。以青藏高原北麓河地区一个热融湖的信息和冻土监测资料为基础,运用柱坐标系下伴有相变的热传导模型模拟了以不同的横向扩张速率演化的热融湖湖下融区的发展过程。结果表明:在青藏高原多年冻土厚度为75 m的北麓河盆地,分别以横向扩张速率0.10 m·a-1、0.15 m·a-1、0.20 m·a-1和0.25 m·a-1演化的热融湖,在湖形成分别达760 a、703 a、671 a和652 a时,湖下形成贯通融区,相应的多年冻土从上向下融化的平均速率分别为8.22 cm·a-1,8.89 cm·a-1,9.31 cm·a-1和9.74 cm·a-1。热融湖的横向扩张速率对湖下的融区发展和土壤热状况有重要的影响,在现场调查资料的基础上选取正确的热融湖横向扩张速率是热融湖对多年冻土热状况作用数值模拟研究的必要前提。  相似文献   

13.
青藏铁路多年冻土区普通路基热状况监测分析   总被引:1,自引:1,他引:0  
基于现场地温监测数据,选取年平均地温不同的监测断面对青藏铁路普通路基的热状况进行分析,包括多年冻土上限变化及其地温变化、下伏多年冻土温度变化、原天然地表附近热收支等方面. 结果表明:在低温多年冻土区,路基下部多年冻土上限均有所提升,且新近形成的人为上限较为稳定,冷季时负温积累显著;路基下伏多年冻土总体热稳定性较好. 而在高温多年冻土区,左(阳坡)路肩下部多年冻土上限多表现为下降,右(阴坡)路肩下部多年冻土上限有升有降,但是新近形成的上限均温度较高且有进一步升温的趋势;与天然场地地温相比,路基下部多年冻土均出现一定的升温. 尤其在高温极不稳定多年冻土区,天然场地多年冻土自身处于吸热升温状态;路基修筑后,下部多年冻土已经出现了融化夹层及双向退化的情况,路基热稳定性较差. 对于普通路基来说,由于青藏高原强烈的太阳辐射及青藏铁路总体走向原因,普通阴阳坡效应显著,左、右路肩下部多年冻土热稳定性差异较大.  相似文献   

14.
座落在岛状融区中的青藏高原沱沱河兵站楼房,由于跨年度施工,楼房各部位季节冻深和融化速度不一,引起不均匀下沉,致使墙体产生严重裂缝。岛状融区是工程地质环境敏感区。在太阳辐射强烈的青藏高原,现行建筑规范中房屋采暖对冻深的影响系数偏小,建议对北外墙中段和角端应比规范规定系数分别增大0.2和0.3。  相似文献   

15.
青藏铁路块石路基冷却降温效果对比分析   总被引:2,自引:0,他引:2  
穆彦虎  马巍  孙志忠  刘永智 《岩土力学》2010,31(Z1):284-292
基于现场地温监测数据,对青藏铁路两种主要块石路基(块石护坡及U型块石路基)在不同年平均地温分区的冷却降温效果进行对比分析,发现不论是在低温基本稳定区(年平均温度-2.0 ℃≤TCP<-1.0 ℃)还是高温极不稳定区(TCP>-0.5 ℃),两种块石路基的应用都能够有效地提升路基下部多年冻土上限。但两种不同块石结构路基表现出不同的冷却降温效果,其中U型块石路基冷却降温效果较好,在路基下多年冻土上限提升及下伏浅层多年冻土降温的同时,深层多年冻土温度保持稳定;而块石护坡路基下人为多年冻土上限的提升及浅层多年冻土温度的降低一定程度上消耗了下伏深层多年冻土的冷量,从而导致其温度有所升高。同时,在不同的年平均地温分区块石路基表现出不同的冷却降温效果:年平均地温较低断面,块石路基冷却降温效果显著。在年平均地温较高的断面,尤其是高温极不稳定多年冻土区,块石护坡路基下伏深层多年冻土温度升高明显,路基长期稳定性难以得到保证。  相似文献   

16.
青藏高原热喀斯特湖分布广泛,近年来在气候变暖背景下快速发展。热喀斯特湖的形成和发展与地下冰含量及气候变化有着密切关系,强烈影响多年冻土的热稳定性。为了更深入理解在气候变暖背景下热喀斯特湖的发展及其对下伏多年冻土的影响,以青藏高原北麓河地区一个典型热喀斯特湖的长期监测数据为资料,发展了耦合大气—湖塘—冻土三个过程要素的一维热传导模型,模拟了四种不同深度热喀斯特湖在气候变暖背景下的发展规律及其对多年冻土的热影响。结果表明:浅湖(<1.0m)在目前稳定气候背景下处于较稳定状态,湖冰能够回冻至湖底,对下伏多年冻土影响较小;较深湖塘(≥1.0m)冬季不能回冻至湖底,湖深不断增加,且底部在50年内将会形成不同深度的融区。随着气候变暖,热喀斯特湖的热效应显著,深度快速增加,较深湖塘的最大湖冰厚度减小,底部多年冻土快速融化形成开放融区。研究将有助于理解气候变化对青藏高原多年冻土区地貌演化及水文过程的影响。  相似文献   

17.
青藏铁路冻土与融区过渡段路基变形特性试验研究   总被引:1,自引:1,他引:0  
冻胀和融沉是影响寒区路基稳定性的两大问题.对于多年冻土到融区过渡段路基,除考虑冻胀和融沉外,还应考虑多年冻土区和融区路基沉降变形差和冻胀变形差问题.根据青藏铁路沱沱河试验段路基在竣工后3a内的现场试验数据,分析了有代表性路基的地温变化、路基基底变形以及整个试验段的冻胀、沉降变形差问题,计算出了多年冻土与融区过渡段路基的合理长度.结果表明:多年冻土与融区过渡地带沉降总变形量相差较大,但从年沉降速率来看,路基不会产生突降,且随着沉降速率逐渐减小,路基趋于稳定;试验段内冻胀量差异不大,不会影响线路平顺度.对于本试验段此类工程地质条件,可以采用允许多年冻土融化原则的工程措施.  相似文献   

18.
Direct current resistivity and ground penetrating radar surveys were employed to obtain the value of the resistivity and dielectric constant in the brine near the Barrow, Alaska. The geophysical surveys were undertaken together with the permafrost drilling program for the measuring of the ground temperature regime and for the core sampling. The sampled cores were measured for their physical and chemical properties in the laboratory under different temperature conditions (-60 to 20 ℃). Laboratory results support field observations and led to the development of a technique for distinguishing freshwater taliks and brine layers in permafrost. These methods were also employed in freshwater taliks near Council,Alaska. The electrical resistivity is a powerful and sensitive parameter for brine detection. However, the resistivity is a less sensitive indicator of the soil type or water content under highly saline conditions.High frequency dielectric constant is an ideal second parameter for the indication of the soil type, liquid water content and other physical properties. The imaginary part of the dielectric constant and resistivity have a significant dependence upon salinity, i.e. upon freezing temperature. The ground temperature regime and the freezing point of the brine layer are important parameters for studying the electric properties of permafrost terrain.  相似文献   

19.
多年冻土南界附近青藏铁路路基下的冻土退化   总被引:1,自引:0,他引:1  
基于2006-2012年青藏铁路多年冻土区唐古拉山南侧安多断面地温监测资料,分析了多年冻土南界附近路基下多年冻土的退化过程及其影响因素.结果表明:该监测断面天然场地多年冻土退化表现为多年冻土天然上限下降与多年冻土地温升高,观测期内多年冻土天然上限下降0.29 m,下降速率为4 cm·a-1;路基下10 m处多年冻土温度升高0.03℃,升温速率为0.004℃·a-1.该监测断面路基左路肩下多年冻土退化表现为多年冻土人为上限下降、多年冻土地温升高、多年冻土下限抬升以及多年冻土厚度减少.观测期内多年冻土人为上限下降0.41 m,下降速率为6 cm·a-1;路基下10 m处多年冻土地温升高0.06℃,升温速率为0.009℃·a-1;多年冻土下限抬升0.50 m,抬升速率为7 cm·a-1;多年冻土厚度减少0.90 m,减少速率为13 cm·a-1.工程作用是导致路基下多年冻土退化的主要原因,气温升温与局地因素中的冻结层上水发育促进了这一退化过程.路基下融化夹层的出现,导致多年冻土垂向上由衔接型变为不衔接型.  相似文献   

20.
青藏高原唐古拉山南北两侧在地形地貌、地理和气候特征上存在显著差异,多年冻土的发育状况和特征也明显不同。受第二次青藏高原综合科学考察研究等项目资助,多年冻土对亚洲水塔的影响专题考察分队分别于2019年和2020年的10—11月对唐古拉山各拉丹冬南侧的色林错上游扎加藏布源区(简称“湖源区”)和北侧的长江上游沱沱河源区(简称“江源区”)进行了多年冻土野外考察。利用钻探、坑探、地球物理勘探等方法对多年冻土的分布边界、多年冻土剖面的地层、地下冰等特征进行了描述和取样,同步构建了多年冻土温度和活动层水热观测网络,为多年冻土对亚洲水塔影响的机理分析、数值模拟以及情景预估提供数据保障。对野外调查资料的初步分析认为,各拉丹冬南北两坡地层沉积类型和地下冰赋存状态存在明显差异,北坡多年冻土的热稳定性、地下冰含量、冰缘地貌类型多样性均高于南坡,但由于受到构造地热、河流融区等多种因素的影响,北坡的冻土分布形式更为复杂。江源区100 m钻孔剖面揭示了连续分布的、厚度大于50 m的地下冰;在该区域发现了多年生冻胀丘分布群,并利用钻探和地球物理勘探方法对该区域规模最大、结构最完整的冰核型冻胀丘进行了较为系统的勘察剖析。两次野外调查工作共采集钻孔岩心、表层土壤、冰水等各类样本近1.2万件,为后期区域冻土理化指标分析,冻土环境化学、古气候环境研究的开展奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号