首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Debris flow impact force is an important factor for controlling structural damage, and it is the key factor for engineering design and risk assessment. Variation laws of debris flow impact force play an important role in preventing check dam impact damage and providing technology, data and support for check dam construction. Many influencing factors exist in debris flow impact force with different influencing magnitudes. The three main factors, i.e. the debris flow bulk density, the drainage channel slope and the upstream surface gradient of the check dam, were selected to be analyzed. The purpose of the study was to analyze the influencing degree of the three factors. Three levels were set for each factor and nine text schemes were established based on the theory of orthogonal experimental design. What is more, the related miniaturized flume experiment was carried out to measure impact force of debris flow. Finally, taking the impact force mean values of key point as the evaluation index, the flume experiment results were analyzed in detail by extreme difference analysis and variance analysis. Research results indicate: among the three factors, the drainage channel slope has the most significant influence, the upstream surface gradient of the check dam is in the second place and the debris flow slurry density is the third. The form of impact force mean with the maximum value: the drainage channel slope is 15°, the debris flow bulk density is 18.1 kN/m3 and the upstream surface gradient of the check dam is 1:0.  相似文献   

2.
Post-earthquake debris flows often break out in groups frequently, which are usually caused by the abundant loose solid materials that produced by earthquake. Slit dams represent a practical and effective kind of countermeasure for controlling the post-earthquake debris flow. Flume experiments were carried out to study the interaction mechanism and the effect of slit dams on the post-earthquake debris flows. The results showed that affected by the slit dams, some certain types of deposits formed on the upstream. The steeper the flume slope, as well as the greater the width and the density of slits, the easier the lateral deposit became “V” shaped. Otherwise, the lateral deposit was more likely to be “–?” shaped. When the flume slopes were 12°, 16° and 20°, the profiles of the deposits would be long-shallow type, short-thick type and short-shallow type, respectively. The slope of the deposition first decreases and then increases with the flume slope increasing within a certain range. The slit dam can trap the coarse sand and discharge the fine sand. The maximum attenuation rate can reach 44.4%. The effect of this capacity gradually weakens as the flume slope is increased. When the width or the density of slits is smaller, the greater the rate of decrease in peak sand discharge and the greater the effect of peak cutting will be. The reduction in the sediment storage rate is likely due to the increase in the width and the density of the slits. With the increase in flume slope, the sediment storage rate first increases, then decreases, which reaches a maximum value when the flume slope is 16°.  相似文献   

3.
王东坡  张小梅 《岩土力学》2020,41(12):3851-3861
Dam foundation is subjected to a larger impact force when debris flow runs up, causing stress concentration and local impact failure. To address this problem, in this study the vertical structures are optimized into arc-shaped dams. Based on the principle of momentum and energy conservation, the theoretical calculations of the impact process of debris flow and arc-shaped dam are carried out, and the formulas of impact force and maximum run-up height of debris flow are deduced. The theoretical formulas are verified through a series of physical model tests of debris flow impact arc-shaped dam. The results show that the results of the physical model are highly consistent with those of the theoretical calculations, indicating that the proposed theoretical formulas are applicable in the calculation of the impact of debris flow on arc-shaped dam. The debris velocity, impact force and the maximum run-up height are proportional to the flume slope of debris flow. The impact force and the maximum run-up height are mainly controlled by Froude number(Fr), flume slope(?), and arc-shaped radius(R). Both the impact force and the maximum run-up height have quadratic relationships with the Froude number, and are inversely proportional to the cosine of the flume slope. Compared with the rigid vertical structures, the arc-shaped dams have no signicicant influence on the maximum run-up height, but it can reduce the normal impact force on the dam considerably, and the structure strength can also be enhanced by the strengthening of local structure. This study provides a theoretical and technical support for the dam structure design.  相似文献   

4.
冰湖溃决泥石流形成的临界条件   总被引:2,自引:0,他引:2  
党超  褚娜娜  丁瑜 《冰川冻土》2014,36(5):1176-1183
随着全球气候的变暖, 在世界上许多高山峡谷区的冰湖溃决及其溃决洪水引发的泥石流, 经常对下游居民及其他基础设施造成极为严重的危害. 使用水槽试验的方法, 从单宽流量和库容、沟道纵坡、堆积物粒径3个方面探讨了冰湖溃决泥石流形成的影响因素和临界条件. 结果显示: 冰湖溃决泥石流形成与否不仅与溃决洪水提供的能量有关, 还与参与泥石流活动的沟床物质特性紧密相关. 通过对试验数据的分析, 当泥石流形成的特征参数K>2.66时, 冰湖溃决洪水可以演化为泥石流. 该种方法可以对危险性冰湖的预测提供理论参考.  相似文献   

5.
The 12 May 2008 Wenchuan earthquake (Ms 8.0) in China, produced an estimated volume of 28 × 108 m3 loosened material, which led to debris flows after the earthquake. Debris flows are the dominant mountain hazards, and serious threat to lives, properties, buildings, traffic, and post-earthquake reconstruction in the earthquake-hit areas. It is very important to understand the debris flow initiation processes and characteristics, for designing debris flow mitigation. The main objective of this article is to examine the different debris flow initiation processes in order to identify suitable mitigation strategies. Three types of debris flow initiation processes were identified (designated as Types A, B, and C) by field survey and experiments. In “A” type initiation, the debris flow forms as a result of dam failure in the process of rill erosion, slope failure, landslide dam, or dam failure. This type of debris flow occurs at the slope of 10 ± 2°, with a high bulk density, and several surges following dam failure. “B” type initiation is the result of a gradual increase in headward down cutting, bank and lateral erosion, and then large amount of loose material interfusion into water flow, which increases the bulk density, and forms the debris flow. This type of debris flow occurs mainly on slopes of 15 ± 3° without surges. “C” type debris flow results from slope failures by surface flow, infiltration, loose material crack, slope failure, and fluidization. This type of debris flow occurs mainly on slopes of 21 ± 4°, and has several surges of debris flow following slope failure, and a high bulk density. To minimize the hazards from debris flows in areas affected by the Wenchuan earthquake, the erosion control measures, such as the construction of grid dams, slope failure control measures, the construction of storage sediment dams, and the drainage measures, such as construction of drainage ditches are proposed. Based on our results, it is recommend that the control measures should be chosen based on the debris flow initiation type, which affects the peak discharge, bulk density and the discharge process. The mitigation strategies discussed in this paper are based on experimental simulations of the debris flows in the Weijia, Huashiban, and Xijia gullies of old Beichuan city. The results are useful for post-disaster reconstruction and recovery, as well as for preventing similar geohazards in the future.  相似文献   

6.
柴波  陶阳阳  杜娟  黄平  王伟 《地球科学》2020,45(12):4630-4639
冰湖溃决型泥石流是高原山区特殊的地质灾害,以西藏聂拉木县嘉龙湖为例,建立了一套冰湖溃决型泥石流危险性评价方法.以喜马拉雅山区1970—2015年气温波动频次和聂拉木冰湖溃决历史事件预测了未来10年嘉龙湖溃决的时间概率.利用遥感影像识别嘉龙湖上方不稳定冰体的范围和规模,采用美国土木工程师协会推荐公式和修正的三峡库区涌浪计算方法分析了冰川滑坡产生的涌浪规模,从涌浪波压力和越顶水流推力两方面预测了冰碛坝发生失稳的可能性.采用FLO-2D模拟冰湖溃决泥石流的运动过程,以最大流速和泥深表达了嘉龙湖溃决泥石流的危险程度.评价结果表明:2002年嘉龙湖溃决事件与当年气温偏高有关,未来嘉龙湖发生溃决概率高;冰川滑坡激起涌浪能够翻越坝顶,并引起坝体快速侵蚀而溃决;冰湖溃决泥石流对聂拉木县城河道两侧54栋建筑造成威胁.评价方法实现了冰湖溃决型泥石流危险性的定量分析,评价结果对聂拉木县城泥石流防灾具有现实意义.   相似文献   

7.
A dry debris avalanche will produce different volumes of colluviums or depositions (loose materials), which can have a significant impact on mountainous rivers or gullies. The loose material supply process caused by a debris avalanche is an important issue for understanding secondary disasters that form via the coupling of water flow and loose materials. Two flumes were designed for laboratory tests of the loose materials supply process to rivers/gullies, and the related impact factors were analyzed. Experimental results show that the supply of loose materials is a continuous process that directly relates to the avalanche’s mass movement processes. The sliding masses with smaller particle sizes are more sensitive to the flume slope and exhibited a longer supply time. The time-consuming for the debris avalanche travel in the flume decreased with the increasing particle size (such as flume B, time-consuming is decreased 0.2 s when the particle size increased from <1.0 to 20–60 mm), landslide volume and flume slope (flume A, consuming 1.6–2.1 s when flume slope is 29° decreased to consuming 1.3–1.5 s when flume slope is 41°), which means the increasing mobility of loose materials. The total supply time increased with the increasing landslide volume or decreasing particle size and flume slope. An empirical model for the process is presented based on numerous laboratory tests and numerical simulations, which can successfully describe the supply process for loose materials to a river/gully. The supply process of loose materials to mountainous gully from a dry debris avalanche is controlled by the material compositions of sliding masses, topographical conditions, landslide volume and bed friction, where large-volume debris avalanches that occur in mountainous river regions are more likely to obstruct the river flow and form a landslide-dammed lake.  相似文献   

8.
冰湖溃决泥石流的形成、演化与减灾对策   总被引:14,自引:0,他引:14       下载免费PDF全文
本文分析了主要由冰滑坡和冰崩入湖导致的冰湖溃决的机理和条件.进而,从气候条件、水文条件、终碛堤、冰湖规模、冰滑坡、沟床特征和固体物质补给等方面分析了冰湖溃决泥石流的形成条件和特点,归纳出冰湖溃决泥石流沿程演化的6种模式:溃决洪水-稀性泥石流、溃决洪水-黏性泥石流、溃决洪水-稀性泥石流-黏性泥石流、溃决洪水-黏性泥石流-稀性泥石流、溃决洪水-稀性泥石流-黏性泥石流-稀性泥石流和溃决洪水-黏性泥石流-稀性泥石流-洪水.针对冰湖溃决泥石流突发性强、频度低、洪峰高、流量大、流量过程暴涨暴落、破坏力强和灾害波及范围广等特点,提出了7点减灾对策.  相似文献   

9.
降雨诱发坡面型泥石流形成机理   总被引:7,自引:0,他引:7  
基于野外调查和室内测试分析,依据岩土体破坏准则理论,结合典型坡面型泥石流进行剖析,从坡面型泥石流形成的影响因素、运动学特征、动力条件、形成与演化过程等方面,探讨了降雨诱发坡面型泥石流的形成机理。研究结果表明:坡面流以平移式滑动方式破坏为主,通常发生于残坡积土层厚度小(≤2.0 m)的陡坡地带(坡度≥40°),降雨是坡面型泥石流的主要触发因素,雨水入渗促使斜坡残坡积岩土体饱和软化,当土体含水率超过28%~30%,粘聚力、内摩擦角与含水率关系曲线都出现了明显的拐点,即饱和度超过75%时,其粘聚力和内摩擦角都发生急剧降低,斜坡土体由稳定状态向破坏状态演化。遇持续降雨(或暴雨)作用,此种残坡积土局部发生失稳下滑——流土,进而在动水压力作用下发生下泻造浆形成坡面泥石流。  相似文献   

10.
藏东南部泥石流堵河试验研究   总被引:4,自引:0,他引:4  
通过模型试验对泥石流入汇主河后堵塞坝形成过程以及堵塞坝体溃决后主河河床形态特征进行了研究。实验历时3个月,共13组试验。在支主沟交汇角为90°的情况下,通过改变支沟泥石流容重、支主沟的流量比和动量比,建立了泥石流堵河的判别公式,当r>1 001.16时容易发生堵河现象,并对培龙沟两次泥石流堵河事件进行了判定;定义了主河的束窄率S与主河流速变异系数Fv,并发现了主河的束窄率与支主沟动量比之间存在线性关系;主河稳定后的平均宽度与流速变异系数之间存在幂的关系。该实验能够较好地模拟泥石流堵塞坝形成的过程,结果比较合理,并为泥石流灾害的防治提供了相应的理论基础。  相似文献   

11.
为了解堰塞坝在不同沟床坡度地段的溃口展宽历程,进行了沟床坡度为7°~13°,间隔为1°的7组水槽试验。对比分析7组试验观测数据,评价不同沟床坡度对堰塞坝溃口展宽历程的影响。得到如下结果及结论:(1)漫顶破坏的堰塞坝在不同沟床坡度地段的溃口展宽历程是十分相似的,根据其溃决特征,可将其展宽历程划分为溃口贯通、突变和稳定边坡形成等3个阶段。(2)在突变阶段溃口边坡沿x轴方向会发生多次失稳,溃口顶部形态在背水坡呈“S”型,在坝顶呈“U”型,在迎水坡呈“弧”型。(3)不同沟床坡度条件会影响突变阶段的溃决特征,随沟床坡度的增加突变阶段溃口边坡单次失稳规模表现出先增大后减小的特征,溃口边坡失稳次数呈现出先减少后增加的特征。(4)溃口边坡的稳定性主要取决于溃口的侧蚀宽度和下蚀深度,其与溃口顶、底部侧蚀宽度之差呈负相关关系,与溃口下蚀深度呈正相关关系。(5)不同沟床坡度堰塞坝的溃决流量随溃决时间的延长具有相同的变化趋势,但不同沟床坡度堰塞坝的溃决峰值流量和峰值流量到达时间却不尽相同,随沟床坡度的增加峰值流量逐渐减小,峰值流量到达时间先提前后推迟。  相似文献   

12.
The moraine dam of the Tam Pokhari glacial lake breached on 3 September 1998 and caused a catastrophic flood in the downstream areas. To learn from the event, a field survey was conducted. The survey team found that a landslide, which is considered to be responsible for the outburst flood, occurred in the northeast-facing slope of the moraine dam. The dam internal structure played a crucial role in forming a landslide that triggered the excess overflow and finally the breach of the dam. The internal structure of the dam was made of alternating layers of finer and coarser sediments inclining at 30° downstream and layers are truncated in the upslope direction by a huge pile of unconsolidated and structureless moraine materials. Since the upstream slope angle of the dam i.e., 40° is larger than the angle of repose i.e. 35° of sediments, the increased pore water pressure in the dam triggered a landslide. The rainfall and seismological activities of that particular day, which hit the record high, were crucial in triggering the failure. It is estimated that the dam’s north and northeast-facing slopes completely slid involving about 30,000 m3 of sediment mass of unconsolidated moraine materials above the shear plane. A slope stability analysis was also performed. The calculated safety factor was 0.85, and the calculated slip circle agreed with the shear plane marked in the dam. About 18 million cubic metres of water was swiftly released due to the sudden breach of the moraine dam.  相似文献   

13.
通过开展室内水槽试验,利用孔隙水压力传感器记录工程弃渣泥石流形成过程中的孔隙水压力变化情况,并运用高清摄像机拍摄工程弃渣的运移及骨架颗粒的破坏现象。试验发现:在相同清水流量作用下,堆积渣体破坏方式主要受渣体中粒径为2 mm的砾粒含量影响较大,当粒径大于2 mm的砾粒含量大于50%时,渣体呈现出的破坏模式主要为冲刷破坏造成的顶面下切,孔隙水压力呈现出陡增的趋势,然后处于平缓;当粒径小于2 mm的砾粒含量均大于65%时(即粒径大于2 mm的砾粒含量小于50%),渣体呈现出的破坏模式主要为渗流作用造成的底面冲蚀,孔隙水压力呈现出弧线上升的特征。  相似文献   

14.
泥石流运动规律及其冲击性能对于泥石流灾害的影响范围及严重程度具有重要决定意义。出于泥石流这类多相介质的复杂性,本文采用离散元仿真软件EDEM 2018对碎屑流冲击流槽试验进行了数值模拟研究,考虑流槽坡度、底部拦挡结构角度以及颗粒级配的影响,在已有研究成果的基础上对固体颗粒运动过程及冲击性能展开了系统研究。本文将数值模拟结果与现存试验数据进行了对比分析,验证了数值模拟方法的可靠性,在此基础上得出了以下结论:(1)在拦挡结构角度与颗粒级配相同的情况下,流槽坡度越大,对应的碎屑流运动速度与冲击力的峰值也越大;(2)在流槽坡度与级配相同的情况下,拦挡结构越陡,与其相互作用的固体颗粒数量越多,碎屑流越快达到速度和冲击力峰值,且对应的速度与冲击力峰值也越大;(3)在运动过程中,各颗粒级配的碎屑流均出现反序现象,且细颗粒含量的提升可提高碎屑流运动速度,但同时冲击力降低,而粗颗粒含量的提升可增大碎屑流对拦挡结构的冲击力,对于运动速度的影响较小。  相似文献   

15.
恒定渗流作用下泥石流起动过程冲刷试验分析   总被引:2,自引:0,他引:2  
杨顺  欧国强  王钧  陆桂红  宇岩  潘华利 《岩土力学》2014,35(12):3489-3495
渗流是泥石流水动力条件主要来源之一,不同渗流流量具有不同的渗流力和冲刷力,从而可引起不同规模泥石流。通过开展室内水槽试验,利用测压管量测渗流过程中的孔隙水压力,并结合高清摄像技术从微观角度记录堆积土体内部细颗粒的运移、骨架颗粒的坍塌现象,以此分析研究土体渗透破坏、起动形成泥石流过程中的渗流和冲刷作用。在此基础上设定水槽坡度为7°,调节恒定渗流流量分别为120、170、265、320 ml/s,分析不同恒定渗流流量对固体堆积物失稳、泥石流起动过程中流态变化的影响。分析结果表明,在恒定渗流流量作用下,堆积土体内部细颗粒迁移、骨架颗粒坍塌造成土体颗粒重排列、孔隙水压力上升进而导致土体抗力降低是泥石流土体颗粒失稳、起动、冲刷的重要原因;随着渗流流量增加,流速迅速上升,土体内孔隙水压力逐步增大,骨架颗粒的失稳、移动主要受渗流及水流冲刷两方面共同作用,堆积土体颗粒的移动分别表现出缓慢小幅滑动后稳定、过渡型滑动和快速流滑现象。  相似文献   

16.
滑坡堵江坝溃决洪水及其演进的理论分析   总被引:1,自引:0,他引:1  
崩滑堵江事件在世界范围内,尤其在山区广泛存在。溃坝后形成的洪水异常凶猛,洪峰高达几米至几十米,演进过程中常造成下游严重灾害。因此,崩滑堵江事件及其灾害链已严重影响人类的工程经济活动。本文对溃决洪水流量,洪峰及其演进过程进行了理论分析,建立了一套预测溃坝洪水特征的计算公式,并用实例验证,取得了较好的效果。  相似文献   

17.
Soil crust and slope angle are of important factors affecting runoff production and sediment yield. In the hilly areas of the Loess Plateau, North China, slope lands are distributed extensively and subjected to soil crusting; therefore, the research on the responses of runoff and soil loss to soil crust and slope angle is essential to soil and water conservation. In the study, five pairs of 1 m × 5 m plots with slope angles of 5°, 10°, 15°, 20° and 25° respectively, were established in Wangjiagou watershed, which was located at the Loess Plateau, China. Based on the two simulated rainfall events, uncrusted surface prior to the first simulated rainfall event, and crusted surface prior to the second rainfall event were distinguished. The runoff production and soil loss were measured at intervals of 5 min during the simulated events. It indicated that both soil crust and slope angle played an important role in runoff production and soil loss. With the reference slope angle of 5°, the relative importance of soil crust and slope angle in runoff production was calculated. It showed that soil crust effect on the total runoff volume decreased from 100 to ~40%, while slope angle effect increased from 0 to ~60% with increasing slope angle because soil crust less developed on the steeper slopes. Furthermore, soil crust effect was associated with rainfall duration. At the same slope angle, the relative importance of soil crust decreased with rainfall duration because new crust was formed on the uncrusted surface. The critical slope of erosion was also discussed. Soil loss increased with slope angle when the slope angle was less than 20°. Generally speaking, soil crust effect decreased with slope angle and/or rainfall duration.  相似文献   

18.
Temporary dams can be formed by the sudden injection of debris flow into main streams by some favorable geomorphologic and hydraulic conditions, resulting in extensive inundations upstream and catastrophic floods downstream due to dam breaches and consequently dramatic changes of channels and valleys. Expeditious means of assessing dam-forming potential are necessary, particularly in geologically active regions. Complete blockages or dam formations are significantly related to the discharge ratio and velocity ratio between the tributary and the main stream, the bulk density of the debris flow, confluent angles and the degree of unevenness of grain sizes. In order to set up a critical index/C for dam formation, 19 groups of flume tests were conducted. The results showed that there were three types of blockage in the intersections, and dam-forming processes were mainly controlled by the product of the dimensionless momentum ratio and the degree of unevenness of grain sizes in the debris flow. Complete blockages or dam formations occurred when C > 83.4, whereas semi-blockages were formed or no dams were formed when C < 71.5, which had been judged to be feasible by historical instances of dam formation in China. Dam failures commonly resulted from overtopping. No piping was observed in the course of dam failure, and the time elapsed between dams can be denoted by a linear relation with the momentum ratio.  相似文献   

19.
沟岸被侧蚀掉的松散物质会通过动量交换将能量传递给龙头,从而影响泥石流的形成和运动过程。前人建立了许多模型来研究泥石流的侵蚀过程对泥石流形成和运动过程的影响,但是模型中大多以底蚀作用为前提条件。通过侧蚀模型和底蚀模型两种水槽实验的对比,针对泥石流的形成和运动过程展开研究。实验发现侧蚀作用更有利于泥石流的形成和运动,泥石流的龙头高度和速度都有波动特征,但侧蚀作用使得这种波动特征更加明显。侧蚀作用使得泥石流的龙身速度更快于龙头速度,龙身颗粒源源不断地堆积于龙头,使得龙头有较大的高度和附加坡降,因此,侧蚀条件下龙头的速度更快。  相似文献   

20.
坡面土体的崩塌活动是泥石流形成的初始过程。为了研究降雨条件下该过程中蕴含的随机性,选择典型泥石流源地坡面进行人工降雨实验,观测坡面径流和坡面土体活动特征。结果表明:坡面径流的产生与坡面土体的供给是2个相对独立的过程;坡面产流过程在时间上具有连续性,空间上具有均匀性,规模上具有稳定性;即使是在恒定的降雨强度条件下,泥石流的源地土体活动也表现为一个离散的土体崩塌序列,具有时间上的间歇性、空间上的聚集性、规模上的随机性,且在时间上服从泊松分布,在规模上服从规模-频率的幂率关系;坡面的水土过程是不完全同步的,泥石流的形成依赖于坡面土体补给的时间、空间和规模分布,这也决定了泥石流阵流的多变和流量的涨落。建立基于土体活动特征的随机性补给模型,结合分布式水文模型,是建立科学的泥石流预报模型的有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号