首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
滑坡监测的指标体系与技术方法   总被引:17,自引:1,他引:16  
滑坡监测目的:了解和掌握滑坡体的演变过程,及时捕捉崩滑灾害的特征信息,为崩塌滑坡的正确分析、评价、预测、预报及治理工程等提供可靠资料和科学依据。滑坡监测指标包括地质宏观形迹监测、地面位移监测、深部位移监测、诱发因素监测、水压力监测和滑坡地球物理、地球化学场监测等。滑坡监测技术方法通常有地面宏观形迹的简易观测、地面仪器监测、空间遥测和遥感监测、综合的实时监测预报系统等。论文还介绍了宝塔滑坡监测系统实例。   相似文献   

2.
The Suusamyr region is located in the northern part of the Tien Shan Range in Central Asia. In 1992, this region was hit by the Ms = 7.3 Suusamyr earthquake triggering several large landslides along the Suusamyr Valley and on the southern slopes of the adjacent Suusamyr Range. One of these landslides had been investigated by geophysical and geotechnical methods in order to determine local trigger factors. The present paper focuses on the influence of geological and morphological factors upon landslide occurrence on a regional scale. The analysis is based on a digital data set including landslides triggered in 1992 and several older landslides as well as various types of digital elevation models (DEMs), ASTER image data, and geological and active fault maps. These data were combined to compute landslide susceptibility (LS) maps using statistical methods, Landslide Factor and Conditional Analyses (LFA, CA), as well as a geotechnical one, the Newmark's Method (NM). The landslide data set was also analyzed with respect to the size–frequency relationship. An erratum to this article can be found at  相似文献   

3.
The applicability of the Permanent Scatterers Synthetic Aperture Radar Interferometry (PSInSAR) technique for detecting and monitoring ground displacements was tested in the Oltrepo Pavese territory (Northern Italy, southern Lombardia), which could be representative of similar geological contexts in the Italian Apennines. The study area, which extends for almost 1100 km2, is characterized by a complex geological and structural setting and the presence of clay-rich sedimentary formations. These characteristics make the Oltrepo Pavese particularly prone to several geological hazards: shallow and deep landslides, subsidence and swelling/shrinkage of the clayey soils. The PSInSAR technique used in this study overcomes most of the limitations of conventional interferometric approaches by identifying, within the area of interest, a set of “radar benchmarks” (PS), where very precise displacement measurements can be carried out. More than 90,000 PS were identified by processing Synthetic Aperture Radar (SAR) images acquired from 1992 to 2001 by the European Remote Sensing satellites (ERS). The PSInSAR application at a sub-regional scale detected slow ground deformations ranging from + 5 to − 16 mm/year, and resulting from various processes (landslides, swelling/shrinkage of clay soils and water pumping). The PS displacements were analysed by collecting data obtained through geological, geomorphologic field surveys, geotechnical analysis of the soils and the information was integrated within a landslide inventory and the damaged building inventory. Despite the limited number of landslide bodies with PS (7% of the inventoried landslides), the PS data helped to revise the state of activity of several landslides. Furthermore, some previously unknown unstable slopes were detected. Two areas of uplift and two areas of subsidence were identified.  相似文献   

4.
Back-analysis is broadly used for approaching geotechnical problems when monitoring data are available and information about the soils properties is of poor quality.For landslide stability assessment back-analysis calibration is usually carried out by time consuming trial-and-error procedure.This paper presents a new automatic Decision Support System that supports the selection of the soil parameters for three-dimensional models of landslides based on monitoring data.The method considering a pool of possible solutions,generated through permutation of soil parameters,selects the best ten configurations that are more congruent with the measured displacements.This reduces the operator biases while on the other hand allows the operator to control each step of the computation.The final selection of the preferred solution among the ten best-fitting solutions is carried out by an operator.The operator control is necessary as he may include in the final decision process all the qualitative elements that cannot be included in a qualitative analysis but nevertheless characterize a landslide dynamic as a whole epistemological subject,for example on the base of geomorphological evidence.A landslide located in Northeast Italy has been selected as example for showing the system potentiality.The proposed method is straightforward,scalable and robust and could be useful for researchers and practitioners.  相似文献   

5.
明确滑坡每次活动准确的年代对于揭示一个地区滑坡在时间上的活动规律,进而评价该地区的滑坡灾害风险至关重要.本文对宇宙成因核素(TCN)、光释光(OSL)和14C等古滑坡测年方法研究的现状和成果进行了总结,简要介绍了不同的古滑坡测年方法,重点阐释了滑坡体、次生沉积物、滑动面、滑坡塘、滑坡后壁、滑床以及滑坡伴生堰塞湖等不同的...  相似文献   

6.
Statistical analyses have been often used for landslide susceptibility zoning at small to medium scale when relevant base and thematic maps are available. Since the beginning of the last decade, images remotely acquired by spaceborne Synthetic Aperture Radar (SAR) and processed via Differential SAR Interferometry (DInSAR) proved extremely useful for non-invasive and non-destructive monitoring of displacements of the topographic surface. The present paper proposes an original procedure for the definition of the state of activity of slow-moving landslides via the combined use of multivariate statistical analyses and DInSAR data. The procedure is based on the following essential elements: distinction between terrain units used for computational purposes and the final zoning units; independent statistical and DInSAR analyses and activity models leading to first-level state of activity zoning maps; a consistency model between statistical and DInSAR analyses; two confidence and combination models leading, respectively, to second- or third-level state of activity zoning maps. The application in a test area including 19 municipalities in southern Italy, where slow-moving landslides are widespread and accurately mapped by using geomorphological criteria, allowed the generation of the three above-mentioned levels of zoning maps. The results were successfully crosschecked by exploiting a different DInSAR dataset and the results of previous works based on the use of slow-moving landslide-induced damage to facilities surveys.  相似文献   

7.
Mass movements of different thicknesses and types affect the slope where the Greci and Piscopie villages lie (Lago, Calabria, Italy). The study concerns a moderately urbanized area where the lithological, structural, and hydrogeological conditions have produced a large and complex unstable area. In the study area, a multi-temporal field survey has allowed for detailed landslide inventory mapping and definition of the geometric and kinematic characteristics of mass movements with long-term monitoring. In particular, an integrated monitoring network was progressively put in place, since 1996 to measure superficial and deep displacements (GPS stations and inclinometers). The network dataset shows that the mass movements in the study area are characterized by an extremely slow or very slow rate of displacement. The elements acquired by a long-term monitoring of the deep displacements point out that the landslide bodies are prone to develop new failure surfaces progressively shallower, with a consequent increase of the hazard. Moreover, medium-deep and deep-seated landslides may rapidly accelerate in relation to rainfall conditions and significantly affect structures and infrastructures. The integration of the geological and geomorphological knowledges with the monitoring data allows for distinguishing six different homogeneous sectors on the slope, as well as the relative geometric and kinematic characteristics, and the type of mass movements. In the study area, which is representative of several aspects of other areas, the method proposed and the knowledge acquired by long-term monitoring could be useful to define mass movement mechanisms, geotechnical models, and risk mitigation strategies.  相似文献   

8.
In this article, the interaction between active faults and landslide phenomenon is studied. The case study concerns the landslide in the east of Latian Dam to the northeast of Tehran, the Capital of Iran. The methodology was based on geological studies, geomorphologic studies, the study of landslide phenomenon including its characteristics and its parameters, hydrogeology, geological engineering and the geotechnical studies. The results show that landslide is located in the crush and mylonitized zone of the Roodehen active fault. The geological formation includes the landslides of the Eocene tuffs, which have been severely crushed and pulverized by the Roodehen Fault’s actions, and for this reason, they show very weak geotechnical characteristics compared to the natural tuffs. The layering slope of the formation is according to the natural ground slope and facilitates their slips. According to the results, the main reason for landslide is the impact of the Roodehen active fault and the creation of crush and mylonitized zone in the Eocene tuffs, while the secondary parameters are the local geological structures, the unfavorable conditions of the groundwater and their inadequate drainage and the construction of a road along the ground layers. The existence of groundwater, the low impermeability of the landslide materials and the inadequate drainage are also under the influence of the fault. Moreover, based on the results of this research and the location of the considered landslide and a number of others along the Roodehen Fault, it became possible to study the fault’s activity from a seismotectonic point of view and to estimate the magnitude of such an eventuality by methods other than the conventional ones.  相似文献   

9.
长时间序列SBAS-InSAR形变监测,能够减弱误差带来的影响,提高监测精度,有效识别地质灾害隐患。研究获取了兰州地区2019年9月至2020年4月的L波段升轨ALOS-2编程数据,利用"空-天-地"一体化地质灾害监测体系,基于小基线集(SBAS-InSAR)技术对兰州市普兰太有限公司滑坡进行了有效识别。经现场核查,滑坡宏观变形迹象明显,并与同期C波段Sentinel-1A升轨数据处理对比分析,表明基于L波段的SBAS-InSAR形变监测在兰州市典型滑坡早期识别中发挥了很好的作用,可以在区域滑坡早期识别中推广应用。  相似文献   

10.
A comprehensive analytical as well as numerical treatment of seismological, geological, geomorphological and geotechnical concepts has been implemented through microzonation projects in the northeast Indian provinces of Sikkim Himalaya and Guwahati city, representing cases of contrasting geological backgrounds — a hilly terrain and a predominantly alluvial basin respectively. The estimated maximum earthquakes in the underlying seismic source zones, demarcated in the broad northeast Indian region, implicates scenario earthquakes of M W 8.3 and 8.7 to the respective study regions for deterministic seismic hazard assessments. The microzonation approach as undertaken in the present analyses involves multi-criteria seismic hazard evaluation through thematic integration of contributing factors. The geomorphological themes for Sikkim Himalaya include surface geology, soil cover, slope, rock outcrop and landslide integrated to achieve geological hazard distribution. Seismological themes, namely surface consistent peak ground acceleration and predominant frequency were, thereafter, overlaid on and added with the geological hazard distribution to obtain the seismic hazard microzonation map of the Sikkim Himalaya. On the other hand, the microzonation study of Guwahati city accounts for eight themes — geological and geomorphological, basement or bedrock, landuse, landslide, factor of safety for soil stability, shear wave velocity, predominant frequency, and surface consistent peak ground acceleration. The five broad qualitative hazard classifications — ‘low’, ‘moderate’, ‘high’, ‘moderate high’ and ‘very high’ could be applied in both the cases, albeit with different implications to peak ground acceleration variations. These developed hazard maps offer better representation of the local specific seismic hazard variation in the terrain.  相似文献   

11.
Urban areas are frequently affected by ground instabilities of various origins. The location of urban zones affected by ground instability phenomena is crucially important for hazard mitigation policies. Satellite-based Interferometric Synthetic Aperture Radar (InSAR) has demonstrated its remarkable capability to detect and quantify ground and building motion in urban areas, especially since the development of Advanced Differential Interferometric SAR techniques (A-DInSAR). In fact, the high density of reflectors like buildings and infrastructures in urban areas improves the quality of the InSAR signal, allowing sub-centimetric displacements to be reliably detected. The A-DInSAR techniques allow urban zones affected by ground deformation to be located and mapped, but clearly they are not able to point out the causes of the instability phenomena. These can only be highlighted by an integrated analysis of multidisciplinary data, like geological, geotechnical, SAR interferometric and historical data. The overlay of these data, which is possible within a Geographic Information System (GIS), is a useful tool to identify ground motion phenomena affecting urban zones. In this study we apply this kind of approach to Caltanissetta, a provincial capital in Sicily (Italy), where local damage has been detected. The reconstruction of the local near-surface geology shows the presence of zones affected by local natural hazard factors, essentially due to the local presence of soils with poor mechanical properties or swelling soils, high topographic gradients and steep slopes on loose soils. Processing 17 ASAR-ENVISAT SAR images covering the time interval October 2002–December 2005 by means of an A-DInSAR procedure, the Caltanissetta deformation map has been realized. It shows that most of the city is stable, with the exception of three zones, situated in the northwestern, northeastern and southern parts of the city, respectively. Two of them, characterized by high topographic gradients and steep slopes on sandy soils, are affected by subsidence ground motion. An uplift motion is recognized in the other zone, characterized by the local presence of expansible clays. Geotechnical swelling tests carried out on them have shown a swelling behavior. On site surveys have highlighted the presence of damage in the zones affected by ground motion.  相似文献   

12.
汶川地震在龙门山地区激发了大量的次生地质灾害,其中尤以滑坡灾害分布最为广泛和严重。在所有滑坡灾害中,东河口滑坡发生在北川破裂带的北东端点,具有相当的特殊性,并造成了大量的生命财产损失。东河口滑坡是一种抛射型滑坡,具有与其他如重力或者降雨作用导致的滑坡不同的特点,即没有统一连续的滑动面,由上部比较深陡和下部比较浅缓的截然分开的两部分组成,在强地震加速度的作用下,滑坡体被抛射并在与地面发生碰撞之前沿抛物线轨迹运行。文章综合分析了东河口抛射型滑坡发生的地质地貌条件,并解释了该抛射型滑坡发生的动力源机制。结果显示,东河口滑坡区的滑坡带和翼状裂隙带在北川破裂带两侧的规则分布受控于断层的运动方式和滑坡的空间分布位置;此外,除地震动水平加速度和地质地貌条件外,垂直加速度和断层的运动方式对地震滑坡的激发也起着重要的作用。  相似文献   

13.
阶地型古老滑坡体形成后,长期受各种营力影响,导致古老滑坡地貌形态破坏严重甚至消失。目前遥感技术和普通工程地质调绘很难发现这些滑坡的存在,给工程建设和后期运营造成较大安全隐患。为准确识别形态特征不明显的古老滑坡体,从阶地物质结构特征演变入手,找到阶地受剪切破坏产生的典型物质结构特征,将地层结构错断、卵砾石异常定向排列、摩擦镜面和泥包粒的眼球构造等作为滑坡准确识别依据。首先采用沿沟谷进行工程地质测绘的纵横交错追踪法确定滑坡体纵向范围和滑面形状,再结合地貌特征推测各级、块滑坡平面范围和分布,最后用点状勘探工程验证和校正推测结论。可将其总结为由"地貌异常、沿沟追踪、面上推断、点状校验"组成的阶地型滑坡识别方法,即物质结构异常推断法。结合线状工程勘察设计各阶段工作特点,提出线状工程前期工作中阶地型滑坡识别步骤,并在临渭高速公路工程建设项目中取得成功应用。  相似文献   

14.
Statistical approach to earthquake-induced landslide susceptibility   总被引:13,自引:0,他引:13  
Susceptibility analysis for predicting earthquake-induced landslides has most frequently been done using deterministic methods; multivariate statistical methods have not previously been applied. In this study, however, we introduce a statistical methodology that uses the intensity of earthquake shaking as a landslide triggering factor. This methodology is applied in a study of shallow earthquake-induced landslides in central western Taiwan. The results show that we can accurately interpret landslide distribution in the study area and predict the occurrence of landslides in neighboring regions. This susceptibility model is capable of predicting shallow landslides induced during an earthquake scenario with similar range of ground shaking, without requiring the use of geotechnical, groundwater or failure depth data.  相似文献   

15.
李海如 《探矿工程》2020,47(12):72-78
滑坡是重大地质灾害之一,严重危害着人类的生命和财产安全。滑坡防治工程勘察是滑坡防治设计的重要基础工作。本文针对福建省平和县西环路滑坡防治工程开展了滑坡区工程地质测绘与调查,结合工程地质钻探成果,分析了滑坡的成因、滑坡稳定性计算及评价,提出了合理的防治措施。推测滑动面位置,确定岩土设计参数,选择合适的安全系数,对滑坡防治工程的综合治理至关重要。  相似文献   

16.
QXY-5型存储式钻孔倾斜仪的研制与应用   总被引:2,自引:0,他引:2  
滑坡深部位移变形监测是滑坡稳定性监测的一种重要手段,是滑坡整体位移变形动态综合监测的重要组成部分。目前国内外在实现滑坡深部位移监测方面主要采用钻孔倾斜方法解决。文章针对目前国内外深部位移监测设计孔的监测情况及手段,指出了目前测量仪器及测量方法的不足,提出并研制了一种全新的无缆存储式钻孔倾斜仪—QXY-5型存储式钻孔倾斜仪,介绍了其研制及使用情况。该仪器测量方式为数据自动存储,不使用电缆和地面仪表克服了随着孔深的增加电缆长度也随之增加带来的工作强度及天气对地面仪表的影响;设计了数据自动存储功能,避免了人工记录所带来的误差影响,提高了测量的效率和准确率;深孔测量配合准确计数的手动绞车对孔深无限制,测量操作非常方便。  相似文献   

17.
Landslides of the flow type involving granular geo-materials frequently result in casualties and damage to property because of the long travel distance and the high velocities that these may attain. This was true for the events that took place in Campania Region (Southern Italy) in May 1998, involving pyroclastic soils originating from explosive activities of the Somma-Vesuvius volcano. Although these phenomena have frequently affected various areas of the Campania region over the last few centuries, there were no useful geological and geotechnical references available in the aftermath of the May 1998 events. For this reason Salerno University, which was involved in the scientific management of the emergency, addressed the issue of acquiring data on the geological, geomorphological and hydrogeological features of the slopes where the landslides had taken place. The information acquired made it possible to set up a slope evolution model that is able to interpret, from a geological point of view, past and more recent landslides that had occurred in the same area. As preliminary geotechnical analyses had already validated the above model, more detailed investigations were performed both on the pore pressure regimen of the covers still in place as well as on the physical and mechanical properties of pyroclastic soils, in saturated and unsaturated conditions. The present paper begins by discussing the data acquired during the .rst phase of the studies and then goes on to illustrate the laboratory results so far obtained with the aid of approximate procedures. These help advance our knowledge of pyroclastic soils within a reasonable time frame, thus improving landslide triggering analysis.  相似文献   

18.
Abstract: Landslide research at the British Geological Survey (BGS) is carried out through a number of activities, including surveying, database development and real-time monitoring of landslides. Landslide mapping across the UK has been carried out since BGS started geological mapping in 1835. Today, BGS geologists use a combination of remote sensing and ground-based investigations to survey landslides. The development of waterproof tablet computers (BGS·SIGMAmobile), with inbuilt GPS and GIS for field data capture provides an accurate and rapid mapping methodology for field surveys. Regional and national mapping of landslides is carried out in conjunction with site-specific monitoring, using terrestrial LiDAR and differential GPS technologies, which BGS has successfully developed for this application. In addition to surface monitoring, BGS is currently developing geophysical ground-imaging systems for landslide monitoring, which provide real-time information on subsurface changes prior to failure events. BGS’s mapping and monitoring activities directly feed into the BGS National Landslide Database, the most extensive source of information on landslides in Great Britain. It currently holds over 14?000 records of landslide events. By combining BGS’s corporate datasets with expert knowledge, BGS has developed a landslide hazard assessment tool, GeoSure, which provides information on the relative landslide hazard susceptibility at national scale.  相似文献   

19.
In the last several decades, population growth in the cities of the Andes has caused urban areas to expand into landslide-prone areas. Fatal landslides affecting urban settlements are especially frequent in cities located in the Neogene intramontane basins of the Andes. These basins have similar situations and include geographical and geological features that frequently generate ground instabilities. We studied the characteristics of the mass movements observed in these basins by carrying out a detailed analysis of four landslides that have occurred in the Loja Basin (Ecuador). This multi-method study integrated geophysical, geotechnical methods, mineralogical studies and analyses of precipitation time series. Our study characterizes the slope movements as active, slow-moving, complex earthslide earthflows. According to Differential GPS measurements, these landslides move at velocities of up to several metres per year. Electrical resistivity tomography profiles show that most of the landslides are mainly surficial. Time-series analyses of precipitation reveal that rainfall events that are not exceptionally intensive can reactivate these landslides. This characteristic and the development of these landslides on low-gradient slopes are explained using the results obtained from the geotechnical and mineralogical analyses. We find that the smectite clay minerals detected in the mobilized geological formations, combined with the tropical climate of the northern Andean region, induce the observed weak slope stability conditions. The conceptual model for the studied landslides may aid in assessing landslide-prone areas in Loja and other Neogene intramontane basins of the Andes and can help to mitigate the associated risks.  相似文献   

20.
Debris flows and soil and rock slides are among the main geological hazards in the mountain foothills of Central Chile. Geological risk associated with the development of landslides, especially debris flows triggered in the basins of ravines that drain into the capital city, Santiago, has increased in time due to accelerated urban expansion. A landslide hazard evaluation in the San Ramón Ravine, located within the foothills of Santiago is presented. Hazard evaluation is based on a methodology that combines the determination of landslide susceptibility calculated by integration of conditioning factors, with the assessment of slope failure and runout probabilities incorporating geotechnical engineering approaches. The methodology is appropriate for medium or subregional scale studies with limited data. The results show that in San Ramón Ravine the landslide hazard consists mainly of debris flows, rock block slides, rock falls and shallow soil slides. Among these, debris flows are the most important due to the urban area that can be affected. Other case studies show that the method can be used in other regions with minor adaptations for territorial planning or for engineering and environmental purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号