首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
章清文  刘耘 《岩石学报》2020,36(12):3853-3870
构造体制极大地制约着地球和其他太阳系类地天体(类地行星、岩石质卫星和小行星等)的地表散热、内部温度和物质演化。现有的少量地质记录表明,地球在板块构造启动之前就存在非常活跃的"前板块构造"运动并可能对其早期壳幔分异产生了重要的影响,在这些构造体制下,物质和能量循环的规模和速率可能是后续的板块运动无法比拟的。但受限于早期地质记录的稀缺以及研究手段不成熟等因素,对前板块构造运动的研究一直被学界所忽视,人们对其的认识主要局限于停滞盖层(stagnant-lid tectonics)等。长期以来的空间探测和地基观测表明,木星系统的木卫一存在大规模的火山活动,随之形成了极高的地表热流和地表更新速率以及活跃的造山作用。这些观测事实不同寻常,颠覆了人们对类地天体构造演化模式的一些固有认识,需要新的构造模式——"热管构造"(heat-pipe tectonics)予以解释,其涵义为:类似木卫一上的大规模火山作用可使类地天体的软流圈-岩石圈-地表之间发生快速的物质和能量循环,该循环以岩浆的形成-上升-喷发-冷却和沉降-折返为主要形式,可将天体内部的热散快速散发到外太空。上述过程涉及类地天体内、外部之间物质的大规模、快速迁移和相变,其导热原理与热管相同,因而被称为"热管构造",其散热效率远高于现今大多数类地天体单纯依赖岩石圈进行内外热传导的停滞盖层构造,以及地球上以板块的形成和俯冲过程主导内部散热的板块构造体制。尽管早期地球与木卫一在内生热机制等方面存在显著差异,但二者的内部温度和内生热率较高,导致其岩浆作用总体均较为活跃,这些关键动力学特征的相似性暗示其构造体制可能类似。因此,研究木卫一的热管构造体制对揭示地球的前板块构造的性质和演化有重要的启示意义。本文综述了近40年来人类对木卫一的主要探测成果,论述了热管构造提出的必要性和依据,总结了该构造体制的特征和发生条件,讨论了早期地球发生热管构造的可能性。早期地球可能经历了热管构造阶段,期间地球通过大规模火山作用散发了内部热量、促进了壳幔分异,并在地球内生热作用减弱、热管构造不能继续维持时被板块构造等取代。由于热管构造的垂向物质循环较为强烈,不利于保留TTG等低密度的壳幔分异产物,我们依据TTG大规模形成的时间上限推测:地球发生热管构造时间可能限于冥古宙-始太古代时期(约38亿年以前)。由于前板块构造时期地球自身的地质记录十分有限,对其热管构造体制的性质和确切的形成条件等很大程度上需要从木卫一获得答案。  相似文献   

2.
行星构造:寻求地球演化的踪迹   总被引:1,自引:0,他引:1  
肖智勇  许志琴 《地质学报》2021,95(1):259-275
地质构造是记录地球内、外动力地质作用过程的标志。和地球相似,太阳系其他天体上也发育丰富的地质构造。以研究天体表面的地质构造及其动力学机制为目的的"行星构造学"是建立在构造地质学、遥感地质学和地球物理学等学科基础上的一门新兴前沿学科。由于天体的大小、组分和轨道位置不同,表面构造特征及其形成机制各异。对比研究地球和其他天体上的构造特征,是完善地球动力学的重要途径。水星和月球的热演化轨迹大致相同,内部持续冷却造成全球收缩,表面形成大量的挤压构造,而伸展构造仅局部发育。火星的岩石圈主要通过热传导散热,表面发育大量的挤压构造,且其形成时间可能呈单峰式分布。同时,火星表面的伸展和挤压构造和大火山群紧密相关,表明深部动力过程影响了火星上的区域构造。金星和地球的大小相似,但金星表面的最大年龄远小于地球大陆地壳的平均年龄,~80%的早期地质记录完全被后期的岩浆-构造活动抹去,表面发育大量的火山-深大裂谷系,说明"幔柱"活动对金星的构造演化至关重要,因此热传导可能也是当前金星岩石圈的主要散热方式。以上天体的岩石圈形变均以垂直运动为主。在外太阳系,一些卫星的表壳主要由冰水和其他挥发分组成,有些卫星存在下伏的液态水圈,潮汐作用可能是驱动其构造演化的主要动力。在特殊的应力来源和物质特性的共同作用下,在这些卫星上发育大量的走滑断层和疑似俯冲消减带。行星地质构造从能量和物质属性的角度探究构造运动的物理和化学过程,与地球动力学研究相辅相成,对揭示地球早期动力学过程的关键科学问题具有重要的指示意义。  相似文献   

3.
《Comptes Rendus Geoscience》2007,339(14-15):907-916
Collisions played a very important role in the formation of terrestrial planets. These planets are believed to have formed from a system of planetary embryos, with masses comparable to that of the Moon or of Mars. Giant collisions between proto-planets and embryos were, therefore, the rule. The collision which gave origin to the Earth’s moon was just one of these collisions. We review the state of the art concerning numerical modeling of the terrestrial planets accretion process and we compare the results with the available observational or geochemical constraints. After the completion of the formation process, the history of the bombardment of the terrestrial planets was peculiar. After a period most likely characterized by a weak bombardment rate, about 3.9 Gyr ago, the planets experienced the ‘Late Heavy Bombardment’, a cataclysmic episode characterized by a bombardment rate of about 20,000 times the current one, during a time-span of 50–150 Myr. We review a recent model that has been proposed to explain the origin of this cataclysm.  相似文献   

4.
Eight lines of evidence indicate that the Orosirian Period in mid-Paleoproterozoic time was characterized by plate tectonics: ophiolites, low T/P metamorphism including eclogites, passive margin formation, tall mountains, paleomagnetic constraints, ore deposits, abundant S-type granites, and seismic images of paleo-subduction zones. This plate tectonic episode occurred about 1 billion years earlier than the present plate tectonic episode began in Neoproterozoic time. The two plate tectonic episodes bracket the ‘Boring Billion’, which may have been a protracted single lid tectonic episode that began when the supercontinent Nuna or Columbia formed. Recognition of multiple lines of evidence for Orosirian plate tectonics demonstrates that Earth’s tectonic style can be reconstructed with some confidence back to at least Early Paleoproterozoic time, and thus the absence of compelling evidence for Mesoproterozoic plate tectonics is not obvious due to poor preservation. A tectono-magmatic lull ~2.3 Ga suggests an earlier episode of single lid tectonics. Evidence for two episodes of plate tectonics and two episodes of single lid tectonics indicates that Earth switched between single lid and plate tectonics multiple times during the last 2.4 Ga.  相似文献   

5.
张健 《地质科学》2014,(3):739-753
太阳系内类地行星具有相似的岩石层包围金属核的圈层结构,在行星幔的热演化历史起源方面具有同时性和同源性,并且都在早期变形重力位能加热的基础上随放射性热能衰减而冷却。但是,由于半径、密度、粘度以及表层构造属性等物理条件的差异,其热演化历史各具特色。依据基本的热对流和热传导方程,我们计算分析了类地行星热物理条件差异对行星幔热演化历史的影响。计算表明,类地行星热演化的早期,行星幔热对流是主要的散热方式。半径较大的行星表面热流密度大,平均散热量也大。半径较小的行星内部温差小,粘滞系数高,对流能力低,提早进入传导散热状态,且传导散热的岩石层也比大行星厚。不同边界层热物理条件下,类地行星幔热演化历史会分别出现逐渐冷却的平稳式、包含热柱上涌的波动式、行星幔幕次翻转的周期式等特点不同的热演化过程。火星内部曾经存在的地幔热柱构造与火星地幔热动力学演化过程密切相关。我们从火星地幔热动力学演化模型出发,定量计算与地幔热柱构造演化相关的地幔热动力学演化特征,通过三维球壳数值模拟,研究了火星地幔热演化历史上可能存在的热柱活动造成的火星热演化历史的非单调变化,火星地幔对流环结构随时间的演变方式,以及与边界相关的地幔热柱对火星地形的影响。  相似文献   

6.
地球早期演化的Hf-W同位素制约   总被引:1,自引:1,他引:0  
梅清风  杨进辉 《岩石学报》2018,34(1):207-216
~(182)Hf-~(182)W作为短周期放射性衰变体系,可有效约束地球早期演化吸积增生和内部分异过程。本文通过系统总结、归纳太阳系形成初期地球核幔分异过程中Hf-W同位素变化规律、月球与地球硅酸盐的W同位素组成,提出利用~(182)Hf-~(182)W体系测定地球核幔分异时间不确定性的主要原因是地球核幔分异的持续性及开放性,大碰撞时间的~(182)Hf-~(182)W同位素限定主要受控于硅酸盐地球和硅酸盐月球的Hf/W比值,讨论了地幔W同位素不均一性的形成机制,与现代地幔不同的~(182)W/~(184)W组成可能代表了后增生作用之前整体硅酸盐地球的W同位素组成,也可能是~(182)Hf未完全灭绝时形成的区域性Hf/W比值差异经~(182)Hf衰变形成的结果。这些结论为探索类地行星形成与演化提供了重要制约。  相似文献   

7.
《Comptes Rendus Geoscience》2007,339(14-15):917-927
Plate tectonics shaped the Earth, whereas the Moon is a dry and inactive desert, Mars probably came to rest within the first billion years of its history, and Venus, although internally very active, has a dry inferno for its surface. Here we review the parameters that determined the fates of each of these planets and their geochemical expressions. The strong gravity field of a large planet allows for an enormous amount of gravitational energy to be released, causing the outer part of the planetary body to melt (magma ocean), helps retain water on the planet, and increases the pressure gradient. The weak gravity field and anhydrous conditions prevailing on the Moon stabilized, on top of its magma ocean, a thick buoyant plagioclase lithosphere, which insulated the molten interior. On Earth, the buoyant hydrous phases (serpentines) produced by reactions between the terrestrial magma ocean and the wet impactors received from the outer solar system isolated the magma and kept it molten for some few tens of million years. The planets from the inner solar system accreted dry: foundering of wet surface material softened the terrestrial mantle and set the scene for the onset of plate tectonics. This very same process also may have removed all the water from the surface of Venus and added enough water to its mantle to make its internal dynamics very strong and keep the surface very young. Because of a radius smaller than that of the Earth, not enough water could be drawn into the Martian mantle before it was lost to space and Martian plate tectonics never began. The radius of a planet is therefore the key parameter controlling most of its evolutional features.  相似文献   

8.
水星是离太阳最近的类地行星,它有着类似月球的外表和类似地球的内部,其重要的构造特征主要表现在以下方面:广泛分布的撞击坑;全球线性构造(格子构造)体系;叶片状悬崖;与Caloris盆地相关的构造;局部的拉张构造,其中叶片状悬崖是仅存在于水星的独特构造.类地行星(除地球以外)的构造形迹主要形成于星球历史的早、中期,同时小行星体的构造演化通常被认为是行星热演化以及外部作用(如强烈撞击或者潮汐)共同作用的结果.  相似文献   

9.
The evolution of terrestrial planets (the Earth, Venus, Mars, Mercury, and Moon) was proved to have proceeded according to similar scenarios. The primordial crusts of the Earth, Moon, and, perhaps, other terrestrial planets started to develop during the solidification of their global magmatic “oceans”, a process that propagated from below upward due to the difference in the adiabatic gradient and the melting point gradient. Consequently, the lowest melting components were “forced” toward the surfaces of the planets in the process of crystallization differentiation. These primordial crusts are preserved within ancient continents and have largely predetermined their inner structure and composition. Early tectono-magmatic activity at terrestrial planets was related to the ascent of mantle plumes of the first generation, which consisted of mantle material depleted during the development of the primordial crusts. Intermediate evolutionary stages of the Earth, Moon, and other terrestrial planets were marked by an irreversible change related to the origin of the liquid essentially iron cores of these planets. This process induced the ascent of mantle superplumes of the second generation (thermochemical), whose material was enriched in Fe, Ti, incompatible elements, and fluid components. The heads of these superplumes spread laterally at shallower depths and triggered significant transformations of the upper shells of the planets and the gradual replacement of their primordial crusts of continental type by secondary basaltic crusts. The change in the character of the tectono-magmatic activity was associated with modifications in the environment at the surface of the Earth, Mars, and Venus. The origin of thermochemical mantle plumes testifies that the tectono-magmatic process involved then material of principally different type, which had been previously “conserved” at deep portions of the planets. This was possible only if (1) the planetary bodies initially had a heterogeneous inner structure (with an iron core and silicate mantle made up of chondritic material); and (2) the planetary bodies were heated from their peripheral toward central portions due to the passage of a “thermal wave”, with the simultaneous cooling of the outer shells. The examples of the Earth and Moon demonstrate that the passage of such a “wave” through the silicate mantles of the planets was associated with the generation of mantle plumes of the first generation. When the “wave” reached the cores, whose composition was close to the low-temperature Fe + FeS eutectic, these cores started to melt and gave rise to superplumes of the second generation. The “waves” are thought to have been induced by the acceleration of the rotation of these newly formed planets due to the decrease of their radii because of the compaction of their material. When this process was completed, the rotation of the planets stabilized, and the planets entered their second evolutionary stage. It is demonstrated that terrestrial planets are spontaneously evolving systems, whose evolution was accompanied by the irreversible changes in their tectono-magmatic processes. The evolution of most of these planets (except the Earth) is now completed, so that they “dead” planetary bodies.  相似文献   

10.
To better understand Earth's present tectonic style-plate tectonics—and how it may have evolved from single plate(stagnant lid) tectonics, it is instructive to consider how common it is among similar bodies in the Solar System. Plate tectonics is a style of convection for an active planetoid where lid fragment(plate) motions reflect sinking of dense lithosphere in subduction zones, causing upwelling of asthenosphere at divergent plate boundaries and accompanied by focused upwellings, or mantle plumes;any other tectonic style is usefully called "stagnant lid" or "fragmented lid". In 2015 humanity completed a 50+ year effort to survey the 30 largest planets, asteroids, satellites, and inner Kuiper Belt objects,which we informally call "planetoids" and use especially images of these bodies to infer their tectonic activity. The four largest planetoids are enveloped in gas and ice(Jupiter, Saturn, Uranus, and Neptune)and are not considered. The other 26 planetoids range in mass over 5 orders of magnitude and in diameter over 2 orders of magnitude, from massive Earth down to tiny Proteus; these bodies also range widely in density, from 1000 to 5500 kg/m~3. A gap separates 8 silicate planetoids with ρ = 3000 kg/m~3 or greater from 20 icy planetoids(including the gaseous and icy giant planets) with ρ = 2200 kg/m~3 or less. We define the "Tectonic Activity Index"(TAI), scoring each body from 0 to 3 based on evidence for recent volcanism, deformation, and resurfacing(inferred from impact crater density). Nine planetoids with TAI = 2 or greater are interpreted to be tectonically and convectively active whereas 17 with TAI 2 are inferred to be tectonically dead. We further infer that active planetoids have lithospheres or icy shells overlying asthenosphere or water/weak ice. TAI of silicate(rocky) planetoids positively correlates with their inferred Rayleigh number. We conclude that some type of stagnant lid tectonics is the dominant mode of heat loss and that plate tectonics is unusual. To make progress understanding Earth's tectonic history and the tectonic style of active exoplanets, we need to better understand the range and controls of active stagnant lid tectonics.  相似文献   

11.
Earlier work on the simultaneous accumulation of the asteroid belt and the terrestrial planets is extended to investigate the relative contribution to the final planets made by material from different heliocentric distances. As before, stochastic variations intrinsic to the accumulation processes lead to a variety of final planetary configurations, but include systems having a number of features similar to our solar system. Fifty-nine new simulations are presented, from which thirteen are selected as more similar to our solar system than the others. It is found that the concept of "local feeding zones" for each final terrestrial planet has no validity for this model. Instead, the final terrestrial planets receive major contributions from bodies ranging from 0.5 to at least 2.5 AU, and often to greater distances. Nevertheless, there is a correlation between the final heliocentric distance of a planet and its average provenance. Together with the effect of stochastic fluctuations, this permits variation in the composition of the terrestrial planets, such as the difference in the decompressed density of Earth and Mars. Biologically important light elements, derived from the asteroidal region, are likely to have been significant constituents of the Earth during its formation.  相似文献   

12.
The tectono-magmatic evolution of the Earth and Moon started after the solidification of their magmatic “oceans”, whose in-situ crystallization produced the primordial crusts of the planets, with the composition of these crusts depending on the depths of the “oceans”. A principally important feature of the irreversible evolution of the planetary bodies, regardless of their sizes and proportions of their metallic cores and silicate shells, was a fundamental change in the course of their tectono-magmatic processes during intermediate evolutionary stages. Early in the geological evolution of the Earth and Moon, their magmatic melts were highly magnesian and were derived from mantle sources depleted during the solidification of the magmatic “oceans”; this situation can be described in terms of plume tectonics. Later, geochemically enriched basalts with high concentrations of Fe, Ti, and incompatible elements became widespread. These rocks were typical of Phanerozoic within-plate magmatism. The style of tectonic activity has also changed: plate tectonics became widespread at the Earth, and large depressions (maria) started to develop at the Moon. The latter were characterized by a significantly thinned crust and basaltic magmatism. These events are thought to have been related to mantle superplumes of the second generation (thermochemical), which are produced (Dobretsov et al., 2001) at the boundary between the liquid core and silicate mantle owing to the accumulation of fluid at this interface. Because of their lower density, these superplumes ascended higher than their precursors did, and the spreading of their head parts resulted in active interaction with the superjacent thinned lithosphere and a change in the tectonic regime, with the replacement of the primordial crust by the secondary basaltic one. This change took place at 2.3–2.0 Ga on the Earth and at 4.2–3.9 Ga on the Moon. Analogous scenarios (with small differences) were also likely typical of Mars and Venus, whose vast basaltic plains developed during their second evolutionary stages. The change in the style of tectonic-magmatic activity was associated with important environmental changes on the surfaces of the planets, which gave rise to their secondary atmospheres. The occurrence of a fundamental change in the tectono-magmatic evolution of the planetary bodies with the transition from depleted to geochemically enriched melts implies that these planets were originally heterogeneous and had metal cores and silicate shells enriched in the material of carbonaceous chondrites. The involvement of principally different material (that had never before participated in these processes) in tectono-magmatic processes was possible only if these bodies were heated from their outer to inner levels via the passage of a heating wave (zone) with the associated cooling of the outermost shells. The early evolutionary stages of the planets, when the waves passed through their silicate mantles, were characterized by the of development of super-plumes of the first generation. The metallic cores were the last to melt, and this processes brought about the development of thermochemical super-plumes.  相似文献   

13.
http://www.sciencedirect.com/science/article/pii/S1674987112001570   总被引:2,自引:2,他引:0  
The supercontinent cycle,by which Earth history is seen as having been punctuated by the episodic assembly and breakup of supercontinents,has influenced the rock record more than any other geologic phenomena,and its recognition is arguably the most important advance in Earth Science since plate tectonics.It documents fundamental aspects of the planet’s interior dynamics and has charted the course of Earth’s tectonic,climatic and biogeochemical evolution for billions of years.But while the widespread realization of the importance of supercontinents in Earth history is a relatively recent development,the supercontinent cycle was first proposed thirty years ago and episodicity in tectonic processes was recognized long before plate tectonics provided a potential explanation for its occurrence.With interest in the supercontinent cycle gaining momentum and the literature expanding rapidly,it is instructive to recall the historical context from which the concept developed.Here we examine the supercontinent cycle from this perspective by tracing its development from the early recognition of long-term episodicity in tectonic processes,through the identification of tectonic cycles following the advent of plate tectonics,to the first realization that these phenomena were the manifestation of episodic supercontinent assembly and breakup.  相似文献   

14.
We consider the influence of water on the near-surface rheology of Venusian and terrestrial rocks and hence the way their heat transfer processes have been able to shape their planetary surfaces. We suggest that Earth is now unique in having plate-like surface movements at velocities characteristic of ‘deep’ material in self-regulating convective states (~ few cm/year) only because liquid water is there available to facilitate mechanical failure of its lithosphere (sic). The relative absence of free water on Venus is thought to more than compensate for the effect of higher temperatures on the deformability of its surface rocks and is interpreted as the reason for an absence of Earth-like platetectonics and the distinctive distributions of volcanism and seismicity accompanying such a process for > 109 years. The characteristics of Venusian volcanism in its post plate-tectonic era are now expected to be similar to Earth's intraplate (‘hotspot’) volcanism.  相似文献   

15.
As we continue searching for exoplanets,we wonder if life and technological species capable of communicating with us exists on any of them.As geoscientists,we can also wonder how important is the presence or absence of plate tectonics for the evolution of technological species.This essay considers this question,focusing on tectonically active rocky(silicate) planets,like Earth,Venus,and Mars.The development of technological species on Earth provides key insights for understanding evolution on exoplanets,including the likely role that plate tectonics may play.An Earth-sized silicate planet is likely to experience several tectonic styles over its lifetime,as it cools and its lithosphere thickens,strengthens,and becomes denser.These include magma ocean,various styles of stagnant lid,and perhaps plate tectonics.Abundant liquid water favors both life and plate tectonics.Ocean is required for early evolution of diverse single-celled organisms,then colonies of cells which specialized further to form guts,appendages,and sensory organisms up to the complexity of fish(central nervous system,appendages,eyes).Large expanses of dry land also begin in the ocean,today produced above subduction zones in juvenile arcs and by their coalescence to form continents,although it is not clear that plate tectonics was required to create continental crust on Earth.Dry land of continents is required for further evolution of technological species,where modification of appendages for grasping and manipulating,and improvement of eyes and central nervous system could be perfected.These bioassets allowed intelligent creatures to examine the night sky and wonder,the beginning of abstract thinking,including religion and science.Technology arises from the exigencies of daily living such as tool-making,agriculture,clothing,and weapons,but the pace of innovation accelerates once it is allied with science.Finally,the importance of plate tectonics for developing a technological species is examined via a thought experiment using two otherwise identical planets:one with plate tectonics and the other without.A planet with oceans,continents,and plate tectonics maximizes opportunities for speciation and natural selection,whereas a similar planet without plate tectonics provides fewer such opportunities.Plate tectonics exerts environmental pressures that drive evolution without being capable of extinguishing all life.Plate tectonic processes such as the redistribution of continents,growth of mountain ranges,formation of land bridges,and opening and closing of oceans provide a continuous but moderate environmental pressure that stimulates populations to adapt and evolve.Plate tectonics may not be needed in order for life to begin,but evolution of technological species is favored on planets with oceans,continents,plate tectonics,and intermittently clear night sky.  相似文献   

16.
Composition of terrestrial planets records planetary accretion, core–mantle and crust–mantle differentiation, and surface processes. Here we compare the compositional models of Earth and Mars to reveal their characteristics and formation processes. Earth and Mars are equally enriched in refractory elements (1.9 × CI), although Earth is more volatile-depleted and less oxidized than Mars. Their chemical compositions were established by nebular fractionation, with negligible contributions from post-accretionary losses of moderately volatile elements. The degree of planetary volatile element depletion might correlate with the abundances of chondrules in the accreted materials, planetary size, and their accretion timescale, which provides insights into composition and origin of Mercury, Venus, the Moon-forming giant impactor, and the proto-Earth. During its formation before and after the nebular disk's lifetime, the Earth likely accreted more chondrules and less matrix-like materials than Mars and chondritic asteroids, establishing its marked volatile depletion. A giant impact of an oxidized, differentiated Mars-like (i.e., composition and mass) body into a volatile-depleted, reduced proto-Earth produced a Moon-forming debris ring with mostly a proto-Earth's mantle composition. Chalcophile and some siderophile elements in the silicate Earth added by the Mars-like impactor were extracted into the core by a sulfide melt (∼0.5% of the mass of the Earth's mantle). In contrast, the composition of Mars indicates its rapid accretion of lesser amounts of chondrules under nearly uniform oxidizing conditions. Mars’ rapid cooling and early loss of its dynamo likely led to the absence of plate tectonics and surface water, and the present-day low surface heat flux. These similarities and differences between the Earth and Mars made the former habitable and the other inhospitable to uninhabitable.  相似文献   

17.
地球圈层耦合扭转机制及其成因   总被引:1,自引:1,他引:0  
全球扭转构造体系不仅是球面现象,而且波及整个地球.本文着重指出地球圈层耦合扭转的机制,揭示该机制对于板块构造的控制规律.赤道面与银道面的交角达62°36′,当银心从北天球移动到南天球时,在公转离心力的驱动下,塑性地幔将向南半球运移而大陆板块则向北半球漂移,从而导致南、北半球的非对称性和两半球的相对扭转.地球的大陆漂移的节律与银河系涡旋周期一致,太阳系内旋转状态相同的行(卫)星与地球同步扭转.  相似文献   

18.
Models of the volume of continental crust through Earth history vary significantly due to a range of assumptions and data sets; estimates for 3 Ga range from <10% to >120% of present day volume. We argue that continental area and thickness varied independently and increased at different rates and over different periods, in response to different tectonic processes, through Earth history. Crustal area increased steadily on a pre-plate tectonic Earth, prior to ca. 3 Ga. By 3 Ga the area of continental crust appears to have reached a dynamic equilibrium of around 40% of the Earth's surface, and this was maintained in the plate tectonic world throughout the last 3 billion years. New continental crust was relatively thin and mafic from ca. 4–3 Ga but started to increase substantially with the inferred onset of plate tectonics at ca. 3 Ga, which also led to the sustained development of Earth's bimodal hypsometry. Integration of thickness and area data suggests continental volume increased from 4.5 Ga to 1.8 Ga, and that it remained relatively constant through Earth's middle age (1.8–0.8 Ga). Since the Neoproterozoic, the estimated crustal thickness, and by implication the volume of the continental crust, appears to have decreased by as much as 15%. This decrease indicates that crust was destroyed more rapidly than it was generated. This is perhaps associated with the commencement of cold subduction, represented by low dT/dP metamorphic assemblages, resulting in higher rates of destruction of the continental crust through increased sediment subduction and subduction erosion.  相似文献   

19.
The plate tectonic paradigm has been the dominant model for understanding the solid Earth for over 40 years. However, although the model is hugely successful, there is still great uncertainty as to when the plate tectonic process began. Two recent papers have highlighted this difficulty by proposing two very different start times for plate tectonics. One model argues that plate tectonic processes took over from an earlier (unspecified) tectonic regime in a hotter, younger Earth at 1.0 Ga, whereas the other proposes a much earlier start at 4.4–4.5 Ga, and within a 100 Ma of planetary accretion. This feature discusses the evidence for the early and late start hypotheses and argues for a middle position in which plate tectonic processes began during the Archaean (>2.5 Ga ago).  相似文献   

20.
Conjectures on the thermal and tectonic evolution of the Earth   总被引:6,自引:0,他引:6  
Geoffrey F. Davies 《Lithos》1993,30(3-4):281-289
The tectonic modes operating at any given time in the Earth are intimately related to the thermal evolution, since tectonics is driven by heat removal from the Earth's interior. Conversely, the viability of a proposed tectonic mode depends on its ability to remove heat from the interior as well as on its inferred consistency with geological evidence. On this basis it seems that plate tectonics may have been dominant only in the later part of Earth history, and that proposed earlier modes involving only a subcrustal thermal boundary layer may never have been dominant unless the effects of the basalt-eclogite transition or of latent heat removal were able to enhance their heat transport efficiency. More generally, the tectonic mode driven by the cool thermal boundary layer at the top of the mantle may have depended very sensitively on the effects of composition and latent heat on density.

Calculations indicate that plumes could have operated through most of Earth history at about the present level of activity, unless heat conduction from the core into the mantle has been inhibited in later times, in which case they would have been hotter and more active in earlier times. Plumes could not have substituted for plate tectonics because plumes and plates are driven by different thermal boundary layers that operate largely independently.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号