首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The concentration of carbon dioxide in the atmosphere acts to control the stomatal conductance of plants. There is observational and modelling evidence that an increase in the atmospheric concentration of CO2 would suppress the evapotranspiration (ET) rate over land. This process is known as CO2 physiological forcing and has been shown to induce changes in surface temperature and continental runoff. We analyse two transient climate simulations for the twenty-first century to isolate the climate response to the CO2 physiological forcing. The land surface warming associated with the decreased ET rate is accompanied by an increase in the atmospheric lapse rate, an increase in specific humidity, but a decrease in relative humidity and stratiform cloud over land. We find that the water vapour feedback more than compensates for the decrease in latent heat flux over land as far as the budget of atmospheric water vapour is concerned. There is evidence that surface snow, water vapour and cloudiness respond to the CO2 physiological forcing and all contribute to further warm the climate system. The climate response to the CO2 physiological forcing has a quite different signature to that from the CO2 radiative forcing, especially in terms of the changes in the temperature vertical profile and surface energy budget over land.  相似文献   

2.
A deterministic monthly runoff model (MINRUN96)was applied to watersheds with substantially differentclimates. One watershed is in the north-central U.S.(Minnesota) and is heavily timbered. The other is inthe south-central U.S. (Oklahoma) and is mainlycovered with pastures and agricultural crops. Runoffwas simulated for past historical climate and twoprojected 2 × CO2 climate scenarios. The output ofGeneral Circulation Models (GCMs) was used to specifythe two 2 × CO2 climate scenarios. One GCM is theGoddard Institute of Space Studies (GISS) model andthe other is from the Canadian Center of ClimateModelling (CCC). In the northern watershed morerunoff is projected to occur in winter under a warmerclimate and less runoff in spring. About 80%increase in fall runoff and 20% decrease in soilmoisture in June and July is projected for thesouthern watershed. When runoff simulations for the2 × CO2 climate scenarios were compared to pastrunoff, it was apparent that the change in runoffdepended on both the season and the magnitude of theprecipitation change. An increase in springprecipitation caused a significant increase in directrunoff, whereas an increase in fall precipitationcaused only a slight increase in total runoff. Alsothe runoff-precipitation relationship in the warm andseasonally dry southern watershed is very differentfrom that in the temperate and humid climate of thenorth. Therefore, runoff responses to projectedclimate change are substantially different in the tworegions.  相似文献   

3.
We examined the annual exchange of CO2 between the atmosphere and moist tussock and dry heath tundra ecosystems (which together account for over one-third of the low arctic land area) under ambient field conditions and under increased winter snow deposition, increased summer temperatures, or both. Our results indicate that these two arctic tundra ecosystems were net annual sources of CO2 to the atmosphere from September 1994 to September 1996 under ambient weather conditions and under our three climate change scenarios. Carbon was lost from these ecosystems in both winter and summer, although the majority of CO2 evolution took place during the short summer. Our results indicate that (1) warmer summer temperatures will increase annual CO2 efflux from both moist and dry tundra ecosystems by 45–55% compared to current ambient temperatures; (2) deeper winter snow cover will increase winter CO2 efflux in both moist and dry tundra ecosystems, but will decrease net summer CO2 efflux; and (3) deeper winter snow cover coupled with warmer summer temperatures will nearly double the annual amount of CO2 emitted from moist tundra and will result in a 24% increase in the annual CO2 efflux of dry tundra. If, as predicted, climate change alters both winter snow deposition and summer temperatures, then shifts in CO2 exchange between the biosphere and atmosphere will likely not be uniform across the Arctic tundra landscape. Increased snow deposition in dry tundra is likely to have a larger effect on annual CO2 flux than warmer summer temperatures alone or warmer temperatures coupled with increased winter snow depth. The combined effects of increased summer temperatures and winter snow deposition on annual CO2 flux in moist tundra will be much larger than the effects of either climate change scenario alone.  相似文献   

4.
Summary A suite of simulations with the HadCM3LC coupled climate-carbon cycle model is used to examine the various forcings and feedbacks involved in the simulated precipitation decrease and forest dieback. Rising atmospheric CO2 is found to contribute 20% to the precipitation reduction through the physiological forcing of stomatal closure, with 80% of the reduction being seen when stomatal closure was excluded and only radiative forcing by CO2 was included. The forest dieback exerts two positive feedbacks on the precipitation reduction; a biogeophysical feedback through reduced forest cover suppressing local evaporative water recycling, and a biogeochemical feedback through the release of CO2 contributing to an accelerated global warming. The precipitation reduction is enhanced by 20% by the biogeophysical feedback, and 5% by the carbon cycle feedback from the forest dieback. This analysis helps to explain why the Amazonian precipitation reduction simulated by HadCM3LC is more extreme than that simulated in other GCMs; in the fully-coupled, climate-carbon cycle simulation, approximately half of the precipitation reduction in Amazonia is attributable to a combination of physiological forcing and biogeophysical and global carbon cycle feedbacks, which are generally not included in other GCM simulations of future climate change. The analysis also demonstrates the potential contribution of regional-scale climate and ecosystem change to uncertainties in global CO2 and climate change projections. Moreover, the importance of feedbacks suggests that a human-induced increase in forest vulnerability to climate change may have implications for regional and global scale climate sensitivity.  相似文献   

5.
水文模式DHSVM与区域气候模式RegCM2/China嵌套模拟试验   总被引:17,自引:4,他引:17  
本研究在改进水文 -土壤 -植被模式DHSVM ,用气候观测资料驱动DHSVM进行模拟试验的基础上 ,建立了区域气候模式RegCM2 /China与水文模式DHSVM的嵌套系统 ,将区域气候模式对中国和东亚地区控制试验 (目前气候情景 )和敏感性试验 (未来 2×CO2 气候情景 )结果用双线性插值方法降尺度 (downscaling)到滦河、桑干河流域的 8个气象站点 ,然后再用数字高程模式DEM插值到DHSVM的细网格点 ,驱动水文模式进行嵌套模拟试验。试验结果表明 ,滦河、桑干河流域在未来大气中CO2 浓度加倍情况下 ,地面气温呈一致的增加趋势 ,年平均气温增加2 .8℃ ;两流域未来降水也呈增加趋势 ,滦河、桑干河流域年降水量分别增加 6mm和 4 6mm ;两流域未来蒸发量有所增加 ,年均蒸发量增加 2 9mm ;未来滦河流域年径流深减少 2 7mm ,流量减少 14 .72× 10 8m3 ,桑干河流域径流深增加 2 6mm ,流量增加 12 .2 2× 10 8m3 ,两流域合计 ,流量减少 2 .5× 10 8m3 ;未来滦河、桑干河流域径流深趋向一致 ,分别为 74和 71mm ,约为全国目前平均径流深 2 84mm的 1/ 4。可见 ,两流域未来总体上仍呈现暖干化趋势。本研究发展的嵌套模式系统具有一定的预测能力 ,而且通过参数移植 ,可应用于中国其他流域  相似文献   

6.
Atmospheric CO2 removal is currently receiving serious consideration as a supplement or even alternative to emissions reduction. However the possible consequences of such a strategy for the climate system, and particularly for regional changes to the hydrological cycle, are not well understood. Two idealised general circulation model experiments are described, where CO2 concentrations are steadily increased, then decreased along the same path. Global mean precipitation continues to increase for several decades after CO2 begins to decrease. The mean tropical circulation shows associated changes due to the constraint on the global circulation imposed by precipitation and water vapour. The patterns of precipitation and circulation change also exhibit asymmetries with regard to changes in both CO2 and global mean temperature, but while the lag in global precipitation can be ascribed to different levels of CO2 at the same temperature state, the regional changes cannot. Instead, ocean memory and heat transfer are important here. In particular the equatorial East Pacific continues to warm relative to the West Pacific during CO2 ramp-down, producing an anomalously large equatorial Pacific sea surface temperature gradient and associated rainfall anomalies. The mechanism is likely to be a lag in response to atmospheric forcing between mixed-layer water in the east Pacific and the sub-thermocline water below, due to transport through the ocean circulation. The implication of this study is that a CO2 pathway of increasing then decreasing atmospheric CO2 concentrations may lead us to climate states during CO2 decrease that have not been experienced during the increase.  相似文献   

7.
A catchment model coupled with a lake thermal model has been used to simulate the lake water balance of Lake Qinghai, a large inland lake on the northeast Qinghai-Tibet Plateau in China. The sensitivity analyses show that changes in precipitation will produce larger changes in runoff than temperature and cloudiness, whereas changes in lake level are equally sensitive to changes in temperature and precipitation. With a doubling of CO2 in the atmosphere, four GCMs experiments predict warmer and wetter conditions in the Qinghai region than at present. The total runoff in the lake basin and evaporation will, in most cases, increase as conditions become warmer and wetter. The lake level changes would remain uncertain because the effects of an increase in precipitation are countered by the rise of temperature.  相似文献   

8.
Increased atmospheric CO2 concentration and climate change may significantly impact the hydrological and meteorological processes of a watershed system. Quantifying and understanding hydrological responses to elevated ambient CO2 and climate change is, therefore, critical for formulating adaptive strategies for an appropriate management of water resources. In this study, the Soil and Water Assessment Tool (SWAT) model was applied to assess the effects of increased CO2 concentration and climate change in the Upper Mississippi River Basin (UMRB). The standard SWAT model was modified to represent more mechanistic vegetation type specific responses of stomatal conductance reduction and leaf area increase to elevated CO2 based on physiological studies. For estimating the historical impacts of increased CO2 in the recent past decades, the incremental (i.e., dynamic) rises of CO2 concentration at a monthly time-scale were also introduced into the model. Our study results indicated that about 1–4% of the streamflow in the UMRB during 1986 through 2008 could be attributed to the elevated CO2 concentration. In addition to evaluating a range of future climate sensitivity scenarios, the climate projections by four General Circulation Models (GCMs) under different greenhouse gas emission scenarios were used to predict the hydrological effects in the late twenty-first century (2071–2100). Our simulations demonstrated that the water yield would increase in spring and substantially decrease in summer, while soil moisture would rise in spring and decline in summer. Such an uneven distribution of water with higher variability compared to the baseline level (1961–1990) may cause an increased risk of both flooding and drought events in the basin.  相似文献   

9.
Vulnerability of the Asian Typical Steppe to Grazing and Climate Change   总被引:1,自引:0,他引:1  
The vulnerability of grassland vegetation in Inner Mongolia to climate change and grazing was examined using an ecosystem model. Grazing is an important form of land use in this region, yet there are uncertainties as to how it will be affected by climate change. A sensitivity analysis was conducted to study the effects of increased minimum and maximum temperatures, ambient and elevated CO2, increased or decreased precipitation, and grazing on vegetation production. Simulations showed that herbaceous above ground net primary production was most sensitive to changes in precipitation levels. Combinations of increased precipitation, temperature, and CO2 had synergistic effects on herbaceous production, however drastic increases in these climate scenarios left the system vulnerable to shifts from herbaceous to shrub-dominated vegetation when grazed. Reduced precipitation had a negative effect on vegetation growth rates, thus herbaceous growth was not sustainable with moderate grazing. Shifts in temporal biomass patterns due to changed climate have potentially significant implications for grazing management, which will need to be altered under changing climate to maintain system stability.  相似文献   

10.
Water temperature influences the distribution, abundance, and health of aquatic organisms in stream ecosystems, so understanding the impacts of climate warming on stream temperature will help guide management and restoration. This study assesses climate warming impacts on stream temperatures in California’s west-slope Sierra Nevada watersheds, and explores stream temperature modeling at the mesoscale. We used natural flow hydrology to isolate climate induced changes from those of water operations and land use changes. A 21 year time series of weekly streamflow estimates from WEAP21, a spatially explicit rainfall-runoff model were passed to RTEMP, an equilibrium temperature model, to estimate stream temperatures. Air temperature was uniformly increased by 2°C, 4°C, and 6°C as a sensitivity analysis to bracket the range of likely outcomes for stream temperatures. Other meteorological conditions, including precipitation, were unchanged from historical values. Raising air temperature affects precipitation partitioning into snowpack, runoff, and snowmelt in WEAP21, which change runoff volume and timing as well as stream temperatures. Overall, stream temperatures increased by an average of 1.6°C for each 2°C rise in air temperature, and increased most during spring and at middle elevations. Viable coldwater habitat shifted to higher elevations and will likely be reduced in California. Thermal heterogeneity existed within and between basins, with the high elevations of the southern Sierra Nevada and the Feather River watershed most resilient to climate warming. The regional equilibrium temperature modeling approach used here is well suited for climate change analysis because it incorporates mechanistic heat exchange, is not overly data or computationally intensive, and can highlight which watersheds are less vulnerable to climate warming. Understanding potential changes to stream temperatures from climate warming will affect how fish and wildlife are managed, and should be incorporated into modeling studies, restoration assessments, and licensing operations of hydropower facilities to best estimate future conditions and achieve desired outcomes.  相似文献   

11.
Great Lakes Hydrology Under Transposed Climates   总被引:3,自引:0,他引:3  
Historical climates, based on 43 years of daily data from areas south and southwest of the Great Lakes, were used to examine the hydrological response of the Great Lakes to warmer climates. The Great Lakes Environmental Research Laboratory used their conceptual models for simulating moisture storages in, and runoff from, the 121 watersheds draining into the Great Lakes, over-lake precipitation into each lake, and the heat storages in, and evaporation from, each lake. This transposition of actual climates incorporates natural changes in variability and timing within the existing climate; this is not true for General Circulation Model-generated corrections applied to existing historical data in many other impact studies. The transposed climates lead to higher and more variable over-land evapotranspiration and lower soil moisture and runoff with earlier runoff peaks since the snow pack is reduced up to 100%. Water temperatures increase and peak earlier. Heat resident in the deep lakes increases throughout the year. Buoyancy-driven water column turnover frequency drops and lake evaporation increases and spreads more throughout the annual cycle. The response of runoff to temperature and precipitation changes is coherent among the lakes and varies quasi-linearly over a wide range of temperature changes, some well beyond the range of current GCM predictions for doubled CO2 conditions.  相似文献   

12.
Grassland is one of the most widespread vegetation types worldwide and plays a significant role in regional climate and global carbon cycling. Understanding the sensitivity of Chinese grassland ecosystems to climate change and elevated atmospheric CO2 and the effect of these changes on the grassland ecosystems is a key issue in global carbon cycling. China encompasses vast grassland areas of 354 million ha of 17 major grassland types, according to a national grassland survey. In this study, a process-based terrestrial model the CENTURY model was used to simulate potential changes in net primary productivity (NPP) and soil organic carbon (SOC) of the Leymus chinensis meadow steppe (LCMS) under different scenarios of climatic change and elevated atmospheric CO2. The LCMS sensitivities, its potential responses to climate change, and the change in capacity of carbon stock and sequestration in the future are evaluated. The results showed that the LCMS NPP and SOC are sensitive to climatic change and elevated CO2. In the next 100 years, with doubled CO2 concentration, if temperature increases from 2.7-3.9˚C and precipitation increases by 10% NPP and SOC will increase by 7-21% and 5-6% respectively. However, if temperature increases by 7.5-7.8˚C and precipitation increases by only 10% NPP and SOC would decrease by 24% and 8% respectively. Therefore, changes in the NPP and SOC of the meadow steppe are attributed mainly to the amount of temperature and precipitation change and the atmospheric CO2 concentration in the future.  相似文献   

13.
Jinwon Kim 《Climatic change》2005,68(1-2):153-168
The effects of increased atmospheric CO2 on the frequency of extreme hydrologic events in the Western United States (WUS) for the 10-yr period of 2040–2049 are examined using dynamically downscaled regional climate change signals. For assessing the changes in the occurrence of hydrologic extremes, downscaled climate change signals in daily precipitation and runoff that are likely to indicate the occurrence of extreme events are examined. Downscaled climate change signals in the selected indicators suggest that the global warming induced by increased CO2 is likely to increase extreme hydrologic events in the WUS. The indicators for heavy precipitation events show largest increases in the mountainous regions of the northern California Coastal Range and the Sierra Nevada. Increased cold season precipitation and increased rainfall-portion of precipitation at the expense of snowfall in the projected warmer climate result in large increases in high runoff events in the Sierra Nevada river basins that are already prone to cold season flooding in todays climate. The projected changes in the hydrologic characteristics in the WUS are mainly associated with higher freezing levels in the warmer climate and increases in the cold season water vapor influx from the Pacific Ocean.  相似文献   

14.
M. D. Bryant 《Climatic change》2009,95(1-2):169-193
General circulation models predict increases in air temperatures from 1°C to 5°C as atmospheric CO2 continues to rise during the next 100 years. Thermal regimes in freshwater ecosystems will change as air temperatures increase regionally. As air temperatures increase, the distribution and intensity of precipitation will change which will in turn alter freshwater hydrology. Low elevation floodplains and wetlands will flood as continental ice sheets melt, increasing sea-levels. Although anadromous salmonids exist over a wide range of climatic conditions along the Pacific coast, individual stocks have adapted life history strategies—time of emergence, run timing, and residence time in freshwater—that are often unique to regions and watersheds. The response of anadromous salmonids will differ among species depending on their life cycle in freshwater. For pink and chum salmon that migrate to the ocean shortly after they emerge from the gravel, higher temperatures during spawning and incubation may result in earlier entry into the ocean when food resources are low. Shifts in thermal regimes in lakes will change trophic conditions that will affect juvenile sockeye salmon growth and survival. Decreased summer stream flows and higher water temperatures will affect growth and survival of juvenile coho salmon. Rising sea-levels will inundate low elevation spawning areas for pink salmon and floodplain rearing habitats for juvenile coho salmon. Rapid changes in climatic conditions may not extirpate anadromous salmonids in the region, but they will impose greater stress on many stocks that are adapted to present climatic conditions. Survival of sustainable populations will depend on the existing genetic diversity within and among stocks, conservative harvest management, and habitat conservation.  相似文献   

15.
Recent and Future Climate Change in Northwest China   总被引:24,自引:0,他引:24  
As a consequence of global warming and an enhanced water cycle, the climate changed in northwest China, most notably in the Xinjiang area in the year 1987. Precipitation, glacial melt water and river runoff and air temperature increased continuously during the last decades, as did also the water level of inland lakes and the frequency of flood disasters. As a result, the vegetation cover is improved, number of days with sand-dust storms reduced. From the end of the 19th century to the 1970s, the climate was warm and dry, and then changed to warm and wet. The effects on northwest China can be classified into three classes by using the relation between precipitation and evaporation increase. If precipitation increases more than evaporation, runoff increases and lake water levels rise. We identify regions with: (1) notable change, (2) slight change and (3) no change. The future climate for doubled CO2 concentration is simulated in a nested approach with the regional climate model-RegCM2. The annual temperature will increase by 2.7 ^ C and annual precipitation by 25%. The cooling effect of aerosols and natural factors will reduce this increase to 2.0 ^C and 19% of precipitation. As a consequence, annual runoff may increase by more than 10%.  相似文献   

16.
A significant change in mean precipitation occurred over much of Australia between 1913–45 and 1946–78. This is described on a seasonal basis and related to possible changes in the atmospheric circulation. It now appears that during this time mean surface temperatures in the mid southern latitude zone increased by up to 1 °C. This temperature change could be at least partly due to an increase in atmospheric CO2 concentrations from about 260 ppmv in the early nineteenth century. In any case the observed temperature increase is similar to the predicted future effects of a 50% increase in atmospheric CO2 concentrations. Thus the climatic change which occurred earlier this century is at least a good analogy for the effects of a CO2-induced global warming which is expected to occur over a similar time interval in the future. This allows the construction of more detailed and quantitative climate scenarios. The most noteworthy conclusion is that marked changes in the seasonally of precipitation should be anticipated, with seasonal changes in some areas being of the order of 50% or more for a doubling of CO2 content. The results are in general consistent with earlier more qualitative scenarios for Australia.  相似文献   

17.
Numerous studies have shown that increased atmospheric CO2 concentration is one of the most important factors altering land water balance. In this study, we investigated the effects of increased CO2 on global land water balance using the dataset released by the Coupled Model Intercomparison Project Phase 5 derived from the Canadian Centre for Climate Modelling and Analysis second-generation Earth System Model. The results suggested that the radiative effect of CO2 was much greater than the physiological effect on the water balance. At the model experiment only integrating CO2 radiative effect, the precipitation, evapotranspiration (ET) and runoff had significantly increased by 0.37, 0.12 and 0.31 mm year?2, respectively. Increases of ET and runoff caused a significant decrease of soil water storage by 0.05 mm year?2. However, the results showed increases of runoff and decreases of precipitation and ET in response to the CO2 fertilisation effect, which resulted into a small, non-significant decrease in the land water budget. In the Northern Hemisphere, especially on the coasts of Greenland, Northern Asia and Alaska, there were obvious decreases of soil water responding to the CO2 radiative effect. This trend could result from increased ice–snow melting as a consequence of warmer surface temperature. Although the evidence suggested that variations in soil moisture and snow cover and vegetation feedback made an important contribution to the variations in the land water budget, the effect of other factors, such as aerosols, should not be ignored, implying that more efforts are needed to investigate the effects of these factors on the hydrological cycle and land water balance.  相似文献   

18.
使用新版RegCM2区域气候模式,单向嵌套澳大利亚CSIROR21L9全球海-气耦合模式,在C02加倍情况下引人人为硫酸盐气溶胶直接气候效应,进行了其对中国气候变化影响的试验。结果表明,硫酸盐气溶胶的直接气候效应,对地面气温为降温作用,其中在冬半年和在南方更明显;对降水的影响为全国各月平均降水将以减少为主,年平均降水变化的基本特点为在中国东部以减少为主,西部以增加为主。但无论温度还是降水变化的数值都很小。  相似文献   

19.
Recent studies have shown that changes in solar radiation affect the hydrological cycle more strongly than equivalent CO2 changes for the same change in global mean surface temperature. Thus, solar radiation management ??geoengineering?? proposals to completely offset global mean temperature increases by reducing the amount of absorbed sunlight might be expected to slow the global water cycle and reduce runoff over land. However, proposed countering of global warming by increasing the albedo of marine clouds would reduce surface solar radiation only over the oceans. Here, for an idealized scenario, we analyze the response of temperature and the hydrological cycle to increased reflection by clouds over the ocean using an atmospheric general circulation model coupled to a mixed layer ocean model. When cloud droplets are reduced in size over all oceans uniformly to offset the temperature increase from a doubling of atmospheric CO2, the global-mean precipitation and evaporation decreases by about 1.3% but runoff over land increases by 7.5% primarily due to increases over tropical land. In the model, more reflective marine clouds cool the atmospheric column over ocean. The result is a sinking motion over oceans and upward motion over land. We attribute the increased runoff over land to this increased upward motion over land when marine clouds are made more reflective. Our results suggest that, in contrast to other proposals to increase planetary albedo, offsetting mean global warming by reducing marine cloud droplet size does not necessarily lead to a drying, on average, of the continents. However, we note that the changes in precipitation, evaporation and P-E are dominated by small but significant areas, and given the highly idealized nature of this study, a more thorough and broader assessment would be required for proposals of altering marine cloud properties on a large scale.  相似文献   

20.
Mass and energy fluxes between the atmosphere and vegetation are driven by meteorological variables, and controlled by plant water status, which may change more markedly diurnally than soil water. We tested the hypothesis that integration of dynamic changes in leaf water potential may improve the simulation of CO2 and water fluxes over a wheat canopy. Simulation of leaf water potential was integrated into a comprehensive model (the ChinaAgrosys) of heat, water and CO2 fluxes and crop growth. Photosynthesis from individual leaves was integrated to the canopy by taking into consideration the attenuation of radiation when penetrating the canopy. Transpiration was calculated with the Shuttleworth-Wallace model in which canopy resistance was taken as a link between energy balance and physiological regulation. A revised version of the Ball-Woodrow-Berry stomatal model was applied to produce a new canopy resistance model, which was validated against measured CO2 and water vapour fluxes over winter wheat fields in Yucheng (36°57′ N, 116°36′ E, 28 m above sea level) in the North China Plain during 1997, 2001 and 2004. Leaf water potential played an important role in causing stomatal conductance to fall at midday, which caused diurnal changes in photosynthesis and transpiration. Changes in soil water potential were less important. Inclusion of the dynamics of leaf water potential can improve the precision of the simulation of CO2 and water vapour fluxes, especially in the afternoon under water stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号