首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The nitrogen-doped TiO(2) nanotube (N-TNT) thin films were synthesized using ZnO nanorods as the template and doped with urea at 623K. Under ultraviolet (UV) and visible light irradiation, the efficiencies for photocatalytic degradation of methylene blue is as high as 30%. About 10% of toluene (representing aromatics in the spill oils) in sea water can be photocatalytically degraded under visible light radiation for 120 min. The aliphatic model compound (1-hexadecene) has, on the contrary, a less efficiency (8%) on the N-TNT photocatalyst. On the average, under visible light radiation, the effectnesses of the N-TNT for photocatalytic degradation of model compounds in the spill oils in sea water are 0.38 mg toluene/gN-TNTh and 0.25 mg 1-hexadecene/gN-TNTh. It is expected that spill oils in the harbors or seashores can be adsorbed and photocatalytically degraded on the N-TNT thin films that are coated onto levee at the sea water surface level.  相似文献   

2.
《Marine pollution bulletin》2009,58(6-12):895-898
Experimentally, a feasibility study for adsorption and catalytic pyrolysis of spill oils on Cu/ZSM-5 for recycling of light oils has been conducted in the present work. The adsorption and pyrolysis of model compounds such as heptane, toluene, and diesel (to stimulate the spill oils) on Cu/ZSM-5 have been investigated on a continuous fixed-bed reactor. By component fitted X-ray absorption near edge structural (XANES) spectroscopy, catalytic active species such as metallic copper (Cu) (77–84%) and Cu2O (6–7%) are found in the channels of ZSM-5 during pyrolysis of heptane or toluene. Pyrolysis of diesel effected by Cu/ZSM-5 yields gas (C1–C5) (32%) and light oil (68%) that can be used as auxiliary fuels.  相似文献   

3.
Experimentally, a feasibility study for adsorption and catalytic pyrolysis of spill oils on Cu/ZSM-5 for recycling of light oils has been conducted in the present work. The adsorption and pyrolysis of model compounds such as heptane, toluene, and diesel (to stimulate the spill oils) on Cu/ZSM-5 have been investigated on a continuous fixed-bed reactor. By component fitted X-ray absorption near edge structural (XANES) spectroscopy, catalytic active species such as metallic copper (Cu) (77-84%) and Cu(2)O (6-7%) are found in the channels of ZSM-5 during pyrolysis of heptane or toluene. Pyrolysis of diesel effected by Cu/ZSM-5 yields gas (C(1)-C(5)) (32%) and light oil (68%) that can be used as auxiliary fuels.  相似文献   

4.
The risk that benzene and toluene from spills of gasoline will impact drinking water wells is largely controlled by the natural anaerobic biodegradation of benzene and toluene. Benzene and toluene, as well as ethanol and other biofuels, are degraded under anaerobic conditions to the same pool of degradation products. Biodegradation of biofuels may produce concentrations of degradation products that make the thermodynamics for degradation of benzene and toluene infeasible under methanogenic conditions and produce larger plumes of benzene and toluene. This study evaluated the concentrations of fuel alcohols that are necessary to inhibit the anaerobic degradation of benzene and toluene under methanogenic conditions. At two ethanol spill sites, concentrations of ethanol greater ≥42 mg/L inhibited the anaerobic degradation of toluene. The pH and concentrations of acetate, dissolved inorganic carbon, and molecular hydrogen were used to calculate the Gibbs free energy for the biodegradation of toluene. In general, the anaerobic biodegradation of toluene was not thermodynamically feasible in water with ≥42 mg/L ethanol. In a microcosm study, when the concentrations of ethanol were ≥14 mg/L or the concentrations of n‐butanol were ≥16 mg/L, the biodegradation of the alcohols consistently produced concentrations of hydrogen, dissolved inorganic carbon, and acetate that would preclude natural anaerobic biodegradation of benzene and toluene by syntrophic organisms. In contrast, iso‐butanol and n‐propanol only occasionally produced conditions that would preclude the biodegradation of benzene and toluene.  相似文献   

5.
6.
With the increasing demand for and consumption of crude oils, oil spill accidents happen frequently during the transportation of crude oils and oil products, and the environmental hazard they pose has become increasingly serious in China. The exact identification of the source of spilled oil can act as forensic evidence in the investigation and handling of oil spill accidents. In this study, a weathering simulation experiment demonstrates that the mass loss of crude oils caused by short-term weathering mainly occurs within the first 24h after a spill, and is dominated by the depletion of low-molecular weight hydrocarbons (相似文献   

7.
The air–sea ice CO2 flux was measured over landfast sea ice in the Chukchi Sea, off Barrow, Alaska in late May 2008 with a chamber technique. The ice cover transitioned from a cold early spring to a warm late spring state, with an increase in air temperature and incipient surface melt. During melt, brine salinity and brine dissolved inorganic carbon concentration (DIC) decreased from 67.3 to 18.7 and 3977.6 to 1163.5 μmol kg−1, respectively. In contrast, the salinity and DIC of under-ice water at depths of 3 and 5 m below the ice surface remained almost constant with average values of 32.4±0.3 (standard deviation) and 2163.1±16.8 μmol kg−1, respectively. The air–sea ice CO2 flux decreased from +0.7 to −1.0 mmol m−2 day−1 (where a positive value indicates CO2 being released to the atmosphere from the ice surface). During this early to late spring transition, brought on by surface melt, sea ice shifted from a source to a sink for atmospheric CO2, with a rapid decrease of brine DIC likely associated with a decrease in the partial pressure of CO2 of brine from a supersaturated to an undersaturated state compared to the atmosphere. Formation of superimposed ice coincident with melt was not sufficient to shut down ice–air gas exchange.  相似文献   

8.
Seven years after the April 2000 spill of 140,000 gallons of a mixture of No. 6 and No. 2 fuel oils in the Patuxent River, Maryland, heavily oiled brackish marshes showed continuing effects. Stem density and stem height were significantly lower in oiled versus unoiled sites for Spartina alterniflora but not Spartina cynosuroides habitats. In contrast, belowground biomass was significantly lower in S. cynosuroides habitats but not S. alterniflora habitats. Total PAH concentrations were up to 453 mg/kg in surficial soils (0-10 cm) and 2921 mg/kg with depth (10-20 cm). The oil had lost 22-76% of its initial PAH content after seven years, although the oil in marsh soils has undergone little to no additional weathering since Fall 2000. Based on amphipod acute toxicity tests and sediment quality guidelines, 25% of the soils in the marsh are expected to be toxic (ESB-TUFCV values > 3.0; PMax > 0.65).  相似文献   

9.
In the summer of 2005, continuous surface water measurements of fugacity of CO2 (fCO2sw), salinity and temperature were performed onboard the IB Oden along the Northwest Passage from Cape Farwell (South Greenland) to the Chukchi Sea. The aim was to investigate the importance of sea ice and river runoff on the spatial variability of fCO2 and the sea–air CO2 fluxes in the Arctic Ocean. Additional data was obtained from measurements of total alkalinity (AT) by discrete surface water and water column sampling in the Canadian Arctic Archipelago (CAA), on the Mackenzie shelf, and in the Bering Strait. The linear relationship between AT and salinity was used to evaluate and calculate the relative fractions of sea ice melt water and river runoff along the cruise track. High-frequency fCO2sw data showed rapid changes, due to variable sea ice conditions, freshwater addition, physical upwelling and biological processes. The fCO2sw varied between 102 and 678 μatm. Under the sea ice in the CAA and the northern Chukchi Sea, fCO2sw were largely CO2 undersaturated of approximately 100 μatm lower than the atmospheric level. This suggested CO2 uptake by biological production and limited sea–air CO2 gas exchange due to the ice cover. In open areas, such as the relatively fresh water of the Mackenzie shelf and the Bering Strait, the fCO2sw values were close to the atmospheric CO2 level. Upwelling of saline and relatively warm water at the Cape Bathurst caused a dramatic fCO2sw increase of about 100 μatm relative to the values in the CAA. At the southern part of the Chukchi Peninsula we found the highest fCO2sw values and the water was CO2 supersaturated, likely due to upwelling. In the study area, the calculated sea–air CO2 flux varied between an oceanic CO2 sink of 140 mmol m−2 d−1 and an oceanic source of 18 mmol m−2 d−1. However, in the CAA and the northern Chukchi Sea, the sea ice cover prevented gas exchange, and the CO2 fluxes were probably negligible at this time of the year. Assuming that the water was exposed to the atmosphere by total melting and gas exchange would be the only process, the CO2 undersaturated water in the ice-covered areas will not have the time to reach the atmospheric CO2 value, before the formation of new sea ice. This study highlights the value of using high-frequency measurements to gain increased insight into the variable and complex conditions, encountered on the shelves in the Arctic Ocean.  相似文献   

10.
Raindrops falling on the sea surface produce turbulence. The present study examined the influence of rain-induced turbulence on oil droplet size and dispersion of oil spills in Douglas Channel in British Columbia, Canada using hourly atmospheric data in 2011–2013. We examined three types of oils: a light oil (Cold Lake Diluent - CLD), and two heavy oils (Cold Lake Blend - CLB and Access Western Blend - AWB). We found that the turbulent energy dissipation rate produced by rainfalls is comparable to what is produced by wind-induced wave breaking in our study area. With the use of chemical dispersants, our results indicate that a heavy rainfall (rain rate > 20 mm h? 1) can produce the maximum droplet size of 300 μm for light oil and 1000 μm for heavy oils, and it can disperse the light oil with fraction of 22–45% and the heavy oils of 8–13%, respectively. Heavy rainfalls could be a factor for the fate of oil spills in Douglas Channel, especially for a spill of light oil and the use of chemical dispersants.  相似文献   

11.
湖泊富营养化导致沉水植被大面积衰退和群落逆向演替,诱发一系列次生环境问题,并严重影响到水域生态环境质量.为了从对植物表型生长与C-N代谢生理指标影响的角度深度揭示富营养化水体中沉水植被的致衰退机制,本文以我国长江中下游淡水湖泊常见沉水植物优势种群——苦草(Vallisneria natans)为研究对象,利用L_(16)(4~5)正交试验设计方法,实验模拟研究富营养化水体中低氧、高铵和低光3种重要因素对苦草生长与C-N代谢生理指标的胁迫影响特征.本试验设置了3因素4水平,分别为4个低光照强度(50%、40%、30%和20%自然光照)和4个高铵浓度水平(0.5、1、2和4 mg/L)以及4个低氧处理浓度(7.5、6.5、5.5和4 mg/L).结果显示:光照强度低于30%、溶解氧浓度低于5.5 mg/L时,植株生长与C代谢受阻严重,碳水化合物储存量降低;铵态氮1.0 mg/L时,苦草N代谢活跃,游离氨基酸(FAA)含量明显升高,可溶性糖(SC)/FAA比降低,淀粉呈降低趋势.研究表明富营养湖泊中苦草的衰退是多种因素综合作用的结果,低氧、高铵与低光均会对苦草的生长与C-N代谢产生不利影响;受损沉水植被在藻-草稳态转换的富营养化湖泊中应通过控制水体高铵浓度,严控低氧出现,及时提高水下照度或透明度(如控磷)来予以保护和科学管理;而在次生裸地且藻类占优势的富营养化水体中沉水植被的恢复与重建过程不仅要降低水体营养盐水平尤其是氨氮的水平,还应着重考虑如何有效提高水下光强与溶解氧浓度,并将如上环境因子控制在一定变幅范围内,且控制条件应原则上严于保护受损沉水植被所需的条件.  相似文献   

12.
Novel photocatalysts i.e., metallic nickel and zinc oxide nanoparticles embedded in the carbon-shell ((Ni–ZnO)@C) have been used for photocatalytic splitting of seawater to generate H2. The (Ni–ZnO)@C core–shell nanoparticles having the Zn/Ni ratios of 0–3 were prepared by carbonization of Ni2+- and Zn2+-β-cyclodextrin at 673 K for 2 h. To increase the collision frequency of water and photoactive sites within the carbon-shell, Ni and ZnO are partially etched from the (Ni–ZnO)@C core–shell to form yolk–shell nanoparticles with a H2SO4 solution (2 N). By X-ray diffraction spectroscopy, mainly Ni and ZnO crystallites are observed in the core– and yolk–shell nanoparticles. The sizes of the Ni and ZnO in the (Ni–ZnO)@C nanoreactors are between 7 and 23 nm in diameters determined by TEM and small angel scattering spectroscopy. Under a 5-h UV–Vis light irradiation, 5.01 μmol/hgcat of H2 are yielded from photocatalytic splitting of seawater effected by (Ni–ZnO)@C nanoreactors.  相似文献   

13.
Exposure to contaminants other than petroleum hydrocarbons could confound interpretation of Exxon Valdez oil spill effects on biota at Prince William Sound, Alaska. Hence, we investigated polychlorinated biphenyls (PCBs) in blood of sea otters and harlequin ducks sampled during 1998. PCB concentrations characterized by lower chlorinated congeners were highest in sea otters from the unoiled area, whereas concentrations were similar among harlequin ducks from the oiled and unoiled area. Blood enzymes often elevated by xenobiotics were not related to PCB concentrations in sea otters. Only sea otters from the unoiled area had estimated risk from PCBs, and PCB composition or concentrations did not correspond to reported lower measures of population performance in sea otters or harlequin ducks from the oiled area. PCBs probably did not influence limited sea otter or harlequin duck recovery in the oiled area a decade after the spill.  相似文献   

14.
Spills from wrecks are a potential major source of pollution in the deep ocean. However, not much is known about the fate of a spill at several kilometers depth, beyond the oceans continental shelves. Here, we report the phase distribution of hydrocarbons released from the wrecks of the Prestige tanker, several years after it sank in November 2002 to depths between 3500 and 3800 m. The released oil reached the surface waters above the wrecks without any signs of weathering and leaving an homogenous signature throughout the water column. At depths of several kilometers below the sea surface, the occurrence and spread of the deep sea oil spill could be evaluated better by quantifying and characterizing the dissolved hydrocarbon signature, rather than just the investigation of hydrocarbons in the suspended particulate matter.  相似文献   

15.
The M/V Cosco Busan spill: source identification and short-term fate   总被引:1,自引:0,他引:1  
Understanding the fate of heavy fuel oils (HFOs) in the environment is critical for sound decisions regarding its usage and spill cleanup. To study weathering of HFOs, we examined the M/V CoscoBusan spill (November 2007; San Francisco Bay, CA, USA). In this baseline report, we identified which ruptured tank (port tank 3 or 4) was the source of the spilled oil and characterized changes in the oil composition across location and time. Samples from three impacted shorelines, collected within 80 days of the spill, were analyzed using one- and two-dimensional gas chromatography (GC and GC × GC, respectively). Weathering varied across sites, but compounds with GC retention times less than n-C16 were generally lost by evaporation and dissolution. Changes in n-C18/phytane and benz[a]anthracene/chrysene ratios indicated some biodegradation and photodegradation, respectively.  相似文献   

16.
A microbial consortium was obtained by enrichment culture of sea water samples collected from Botan oil port in Xiamen, China, using the persistent high concentration of a mixture of polycyclic aromatic hydrocarbons enrichment strategy. Denaturing gradient gel electrophoresis (DGGE) was used to investigate the bacterial composition and community dynamic changes based on PCR amplification of 16S rRNA genes during batch culture enrichment. Using the spray-plate method, three bacteria, designated as BL01, BL02 and BL03, which corresponded to the dominant bands in the DGGE profiles, were isolated from the consortium. Sequence analysis showed that BL01, BL02 and BL03 were phylogenetically close to Ochrobactrum sp., Stenotrophomonas maltophilia and Pseudomonas fluorescens, respectively. The degradation of benzo(a)pyrene (BaP), a model high-molecular-weight polycyclic aromatic hydrocarbon (HMW PAH) compound was investigated using individual isolates, a mixture of the three isolates, and the microbial consortium (BL) originally isolated from the oil port sea water. Results showed that the order of degradative ability was BL > the mixture of the three isolates > individual isolates. BL degraded 44.07% of the 10 ppm BaP after 14 days incubation, which showed the highest capability for HMW PAH compound degradation.Our results revealed that this high selective pressure strategy was feasible and effective in enriching the HMW PAH-degraders from the original sea water samples.  相似文献   

17.
The photocatalytic decolorization and mineralization of Reactive Black 5 (RB5) dye in presence of TiO2 Degussa P25 has been studied using artificial light radiation in a shallow pond slurry reactor. The equilibrium adsorption of dye, influence of pH (3–11), catalyst load (0.5–3.0 g/L), and dye concentration (20–100 mg/L) on decolorization kinetics were studied. The effect of area to volume ratio of photoreactor on decolorization kinetics has been also studied. Mineralization studies were performed at optimized conditions of pH (3) and catalyst load (1.5 g/L). The maximum adsorption (26.5 mg/g) of dye was found to occur at pH 3. The apparent pseudo first order decolorization rate constant (kapp) value followed the order pH 3 > pH 11 > pH 9 > pH 7. As compared to available literature reduction in total organic carbon (TOC) was minimal by the time there was complete decolorization. Initial reduction in TOC was followed by subsequent increasing trend till complete decolorization. Final decreasing trend in TOC was observed only after complete decolorization. Twelve hours of treatment under experimental conditions reduced TOC content by 70% only. Discussion of results suggest that photocatalytic treatment of colored effluent under low UV intensity, and low A/V ratio may result in completely decolorized effluent but still having high COD.  相似文献   

18.
A vertical soil column setup integrated with wetlands is developed to study the biodegradation and transport of toluene, a light non‐aqueous phase liquid (LNAPL), in the subsurface environment. LNAPL‐contaminated water is applied to infiltrate from the top of the soil column. The observed and simulated breakthrough curves show high equilibrium concentration at top ports rather than at lower ports, indicating effective toluene biodegradation with soil depth. The observed equilibrium concentration of toluene is higher in the case of unplanted wetland, asserting an accelerated biodegradation rate in the planted case. A difference in the relative concentration of toluene between input and output fluxes at 100 h is found as 13.34% and 30.86% for planted and unplanted wetland setups, respectively. Estimated biodegradation rates show that toluene degradation is 2.5 times faster in the planted wetland setup. In addition, the difference in the observed bacterial count and dissolved oxygen prove that toluene degraded aerobically at a faster rate in the planted setup. Simulations show that as time reached 80–100 h, there is no significant change in concentration profile, thereby confirming the equilibrium condition. The results of this study will be useful to frame plant‐assisted bioremediation techniques for LNAPL‐contaminated soil–water resources in the field.  相似文献   

19.
Lacustrine sediments were sampled from the inaccessible acidic (pH = 0.43) Nakadake crater lake of Aso Volcano, Japan by a simple method. The sediments contain an extremely high content (74 wt.%) of sulfur, which exits as elemental sulfur, gypsum and anhydrite. The abundant elemental sulfur is likely formed by the reaction of SO2 and H2S gases and by the SO2 disproportionation reaction in magmatic hydrothermal system below the crater lake. Based on the sulfur content of sediments and measurements of elevation change of the crater bottom, the sulfur accumulation rate at the Nakadake crater lake was calculated as 250 tonne/day, which is comparable with the SO2 emission rate (200–600 tonne/day) from the Nakadake crater. The sediments include a small amount (9%) of clear glass shards that are apparently not altered in spite of the high reactivity of hyperacid lake water. This finding suggests that the clear glass shards are fragments of recently emitted magmas from fumaroles on the bottom of the crater lake and the magma emissions continuously occur even in quiescent periods.  相似文献   

20.
El Chichón crater lake appeared immediately after the 1982 catastrophic eruption in a newly formed, 1-km wide, explosive crater. During the first 2 years after the eruption the lake transformed from hot and ultra-acidic caused by dissolution of magmatic gases, to a warm and less acidic lake due to a rapid “magmatic-to-hydrothermal transition” — input of hydrothermal fluids and oxidation of H2S to sulfate. Chemical composition of the lake water and other thermal fluids discharging in the crater, stable isotope composition (δD and δ18O) of lake water, gas condensates and thermal waters collected in 1995–2006 were used for the mass-balance calculations (Cl, SO4 and isotopic composition) of the thermal flux from the crater floor. The calculated fluxes of thermal fluid by different mass-balance approaches become of the same order of magnitude as those derived from the energy-budget model if values of 1.9 and 2 mmol/mol are taken for the catchment coefficient and the average H2S concentration in the hydrothermal vapors, respectively. The total heat power from the crater is estimated to be between 35 and 60 MW and the CO2 flux is not higher than 150 t/day or ~ 200 gm− 2 day− 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号