首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 100 毫秒
1.
The characteristics of the Triassic sequences developed in the Lower Yangtze area display some great changes in both environment and climate. The change of environment was a transition from marine to continent via alternating environments. The change of climate was a transition from tropic (torrid) to warm and wet climate via subtropic dry climate. The type variations of the sequences were from the marine sequences to the continental sequences, corresponding to the changes of environments and climates. Sequence 1 is a type II of sequence of mixed elastic and carbonate sediments; sequence 2 is a type I of sequence of carbonate platform; sequence 3 is a type I of sequence of carbonate tidal flat-salt lagoon, sequence 4 is a type iI of sequence of lacustrine within marine layers, and sequence 5 is a sequence of lacustrine-swamp. The development, distribution and preservation of those sequences reveal the tectonic controls and their changes in the background. The collision between the Yangtze plate and the North China plate was a great geological event in the geological history, but the timing of the collision is still disputed. However, the characteristics of Triassic sequence stratigraphy and sea level changes in the Lower Yangtze area responded to this collision. The collision started at the beginning of middle Triassic and the great regression in the Lower Yangtze area started 22Ma earlier than those in the world. The tectonic conditions occurred before and during the collision controlled the development of sequences and type changes.  相似文献   

2.
The Cambrian to Cretaceous paleomagnetic data from Chinese continental and adjacent blocks were collected using principles to obtain reliable and high-precision paleomagnetic data and to pay attention to the similarity of paleobiogeography and the coordination of tectonic evolution. The Chinese continental blocks were laid up on the reconstruction of proposed global paleocontinents with almost the same scale. Thus, it can be clearly recognized that the global continents, including Chinese continental blocks, range along latitudes on the southern side of the equator during the Early Paleozoic. In the Paleozoic, Chinese continental blocks were still located among the Laurentia, Siberia and Gondwana plates, following the fast moving of the Siberia Plate northwards, the amalgamation in a north-south direction at the western parts of the Laurentia and Gondwana plates, and the Iapetus and Rheic Oceans were subducted, eventually to form a uniform Pangea in the Late Paleozoic. The Australian and Indian plates of Eastern Gondwana moved and dispersed gradually southwards, continued to extend the Paleo-Tethys Ocean. The Chinese continental and adjacent blocks were still located in the Paleo-Tethys Ocean, preserved the status of dispersion, gradually moving northwards, showing characteristics of ranging along a north–south orientation until the Permian. In addition, a series of local collisions happened during the Triassic, and consequently most of the Chinese continental blocks were amalgamated into the Pangea, except for the Gangdise and Himalayan blocks. There was a counter-clockwise rotation of the Eastern Asian continent in the Jurassic and northwards migration of the Chinese continent in varying degrees during the Cretaceous, but the Himalayan and Indian plates did not collide into the Chinese continent during this period.  相似文献   

3.
<正>There is a general consensus that Plate Tectonics can explain metallogenesis based on the collisions between oceanic and continental crust.For instance,the large-sized porphyry copper deposits that occur along the Cordillera of the Andes around the east coast of the Pacific,and in the Phillipines,Malaysia and Indonesia along the western coast of the Pacific that sit upon the massive Pacific plates.They are considered to be typical of deposits resulting from collision between the oceanic and continental crust.Many experts,however,have long held a negative view about whether the collision between  相似文献   

4.
The continent of China developed through the coalescence of three major cratons(North China, Tarim and Yangtze) and continental micro-blocks through the processes of oceanic crust disappearance and acceretionary-collision of continental crusts. The strata of the Chinese continental landmass are subdivided into 12 tectonic-strata regions. Based on the composition of geological features among the three main cratons, continental micro-blocks and other major global cratons, their affinities can be preliminarily deduced during the Tonian period, using evidence from sedimentary successions, paleobiogeography, tectonic and magmatic events. The Yangtze and Tarim cratons show that they have close affinities during the assembly-dispersal milestone of the Rodinia Supercontinent. The sedimentary record and magmatic age populations in the blocks suggest that there was a widespread, intensive magmatic event that resulted from a subduction process during ~1000–820 Ma, related to continental rifting around the Yangtze and Tarim cratons. However, they differ greatly from the North China Craton. The continental micro-blocks in the Panthalassic Ocean could have some missing connection with the North China Craton that persisted until the Middle-Late Devonian. In contrast, the Alxa Block showed a strong affinity with the Tarim Craton. The revised Tonian paleogeography of the Rodinia Supercontinent is a good demonstration of how to show the relationship between the main cratons and the continental micro-blocks.  相似文献   

5.
The area from the Greater Caucasus to the southeast Turkey is characteri:;.ed and shaped by several major continental blocks. These are Scythian Platform, Pontian-Transcaucasu.,; Continent-Arc System (PTCAS), the Anatolian-lranian and the Arabian Platforms. The aim of this paper is to define these continental blocks and describe and also compare their boundary relationships along the suture zones. The Scythian Platform displays the evidence of the Hercynian and Alpine orogens. This platform is separated from the PTCAS by the Greater Caucasus Suture Zone. The incipient collision began along this suture zone before middle-late Carboniferous whereas the final collision occurred before Oligocene. The PTCAS can be divided into four structural units: (1) the Georgian Block - northern part of the Pontian-Transcaucasian island-arc, (2) the southern and eastern Black Sea Coast-Adjara-Trialeti Unit, (3) the Artvin-Bolnisi Unit, comprising the northern part of the southern Transcaucasus, and (4) the Imbricated Bayburt-Garabagh Unit. The PTCAS could be separated from the Anatolian Iranian Platform by the North Anatolian-Lesser Caucasus Suture (NALCS) zone. The initial collision was developed in this suture zone during Senonian-early Eocene and final collision before middle Eocene or Oligocene-Miocene. The Anatolian-lranian Platform (AIP) is made up of the Tauride Platform and its metamorphic equivalents together with Iranian Platform. It could be separated from the Arabian Platform by the Southeastern Anatolian Suture (SEAS) zone. The collision ended before late Miocene along this suture zone. The southernmost continental block of the geotraverse is the Arabian Platform, which constitutes the northern part of the Arabian-African Plate. This platform includes a sequence from the Precambrian felsic volcanic and clastic rocks to the Campanian-early Maastrichtian fiyschoidal clastics. All the suture zones include MORB and SSZ-types ophiolites in different ages. However, the ages of the suture  相似文献   

6.
The following geochemical types of granitoids have been investigated in the Mongol-Okhotsk belt:tholetitic,palingenic calc-alkaline,latitic,plumasitic and arpaitic rare-metal granites.Plagiogranites of the tholeiitic series occur within the Mongol-Okhotsk suture,indicating a subduction environment.The calc-alkaline granitoids responsible for the batholith-like intrusions and their formation are related to collision environments.The latest granitoids of the latite series and rare-metal granites came into existence after the collision of continental masses,providing evidence of intraplate magmatism.  相似文献   

7.
After Rodinia supercontinent was disintegrated in Late Proterozoic, an ocean, namely, Tethys Ocean, occurred between Gondwana continental group and Pan-Cathaysian continental group from Late Proterozoic to Mesozoic. From Early Paleozoic to Mesozoic, Tethys Ocean was subducted toward Pan-Cathaysian block group, which results in backarc expansion, arc-land collision and forearc accretion. When the backarc basin expands and reaches the small oceanic basin, ophiolite melange will be generated. As accretion had already occurred in the south of the continental margin in the earlier stage, the succeeding backarc expansion and the frontal arc position were migrated toward south correspondingly. Therefore, multiple ophiolite belts and magmatic rock belts occurred, and show a trend of decreasing age from north toward south. As the continental margin was split and migrated toward south and reached a high latitude position, i.e., with the shortening and subduction of oceanic crust, the sedimentary bodies at high latitude was accreted continuously toward low latitude area together with the formation of oceanic island, mixing of cold-type and warm-type organism was generated. Moreover, blocks split and separated from Pan-Cathaysian or Gondwana continental group cannot traverse the oceanic median ridge and joins with another continental block. As a result, the Kunlun belt on the SW margin of the Pan-Cathaysian land was resulted from the multi-arc orogenesis such as the backarc seabed expansion, arc-arc collision, arc-land collision oceanic bed, and the continuous southward accretion process.  相似文献   

8.
Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision,especially its four-dimensional temporal-spatial evolution, is a subject that geological communities have long been concerned about and studied. Continent-continent collision is mainly manifested by strong underthrnsting (subduction) of the underlying block along an intracontinental subduction zone and continuous obduction (thrusting propagation) of the overlying block along the intracontinental subduction zone, the occurrence of a basin-range tectonic framework in a direction perpendicular to the subduction zone and the flexure and disruption of the Moho. On the basis of numerical modeling, the authors discuss in detail the couplings between various amounts and rates of displacement caused by basin subsidence, mountain uplift and Moho updoming and downflexure during obduction (thrusting propagation) and subduction and the migration pattern of basin centers. They are probably indications or criteria for judgment or determination of continent-continent collision.  相似文献   

9.
Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block.Geologic characters and spatial distributions of fve of these unconformities,which have resulted from different geological processes,have been studied.The unconformity beneath the Dahongyu Formation is interpreted as a breakup unconformity,representing the time of transition from continental rift to passive continental margin.The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fuctuations,leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands.The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting,whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event.It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.  相似文献   

10.
REVIEWS     
Genesis of the so-called Bentong–Raub Suture of Malay Peninsula does not fit to the model of subduction-related collision. It has evolved from transpression tectonics resulting closure and exhumation of the inland basin which underwent extensive back-arc extension during Triassic. Crust having similar thickness (average ~35 km) below entire Malay Peninsula nagate collision of two separate continental blocks rather supports single continental block that collided with South China continental block during Permo-Triassic. Westward subduction of intervening sea (Proto South China Sea) below Malay Peninsula resulted in widespread I- and S-Type granitization and volcanism in the back-arc basins during Triassic. Extensive occurrence of Permo-Triassic Pahang volcanics of predominantly rhyolitic tuff suggest its derivation from back-arc extension. Back-arc extension, basin development and sedimentation of the central belt of the peninsula continued until Cretaceous. A-Type granite of metaluminous to peraluminous character indicates their emplacement in an intraplate tectonic setting. Malay Peninsula suffered an anticlockwise rotation due to the rifting of Luconia–Dangerous Grounds from the east Asia in the Late Cretaceous–Early Tertiary. Extensive ductile and brittle deformation including crustal segmentation, pull-apart fracturing and faulting occurred during the closure and exhumation of the basins developed in the peninsula during Late Cretaceous–Early Tertiary. Crustal shortening in the central belt of the peninsula has been accomodated through strike-slip displacement, shearing and uplift.  相似文献   

11.
中生代东亚大陆边缘构造演化   总被引:18,自引:2,他引:16  
刘德来  马莉 《现代地质》1997,11(4):444-451
摘 要 根据东亚陆缘增生带生物古地理、放射虫时代研究的进展并结合同位素年代及东亚 地区火山活动、构造演化探讨了中生代东亚大陆与古太平洋板块之间的运动学关系及俯冲带 后退特征。中、晚三叠世那丹哈达岭、美浓等地体还位于北纬12°以内及赤道附近,晚侏罗世 到达中高纬度。东亚活动大陆边缘开始于中侏罗世末,在此之前属转换大陆边缘。洋壳板块 向大陆下俯冲之后,由于地体拼贴引起俯冲带快速、长距离后退。  相似文献   

12.
It is proposed that major continental collision normally causes two orogenies. The first is characterized by ophiolite obduction, and the second by widespread deformation, often accompanied by metamorphism and granite intrusion. The two orogenies are separated by a relatively quiescent orogenic pause of 40–60 Ma. The two stages of continental collision are illustrated by examples from the Paleozoic Newfoundland Appalachians, and the Mesozoic-Cenozoic Tethyan collision belts of the Zagros and Himalayas.

The stages of continental collision are explained in terms of the forces driving plate motions, which are dominated by the downward pull of subducting oceanic lithosphere and, to a lesser extent, by the outward push of spreading oceanic ridges.

The Taconic stage marks attempted subduction of continental crust. The buoyancy of continental crust offsets the negative buoyancy of subducting oceanic lithosphere and other driving forces so that plate motion is halted. Orogeny involves vertical buoyancy forces and is concentrated along the narrow belt of plate overlap at the subduction zone.

In a major collision the Taconic stage destroys a substantial proportion of the earth's subducting capacity. It is an event of such magnitude that it has global consequences, reducing sea-floor spreading and the rate of convection. This results in retention of heat within the earth and a consequent increase in the forces driving the plates. The orogenic pause represents the time taken for these forces to become strong enough to overcome the obstruction of buoyant continental crust and renew subduction at the collision zone.

The Acadian stage of collision occurs when renewed subduction is achieved by detachment of continental crust from its underlying lithosphere. As the subcrustal lithosphere is subducted, the crust moves horizontally. The result is crustal shortening with widespread deformation and generation of anatectic granitic magma, as well as subduction related volcanism.

The effects of continental collision on the rate of sea-floor spreading can be related to eustatic changes in sea level, glaciations, and mass extinctions. There may also be connections, through changes in the rate of mantle convection, to the earth's magnetic polarity bias and rotation rate.  相似文献   


13.
寒武纪秦岭古海洋演化   总被引:1,自引:0,他引:1       下载免费PDF全文
李杰 《地球科学》1995,20(6):612-616
华北与扬子块体在中元古代拼合成中国古大陆,但自晚震旦世又分离成两大板块,各自有其发展历史,其间以商丹断裂为界,至晚三叠世完成最终对接、拼合、寒武纪时期华北南部陆缘区为活动大陆边缘,扬子北部陆缘区为被动大陆边缘,各自又分成若干隆凹相间的次级构造岩相带,晚寒武世从扬子北部陆缘区分离出中秦岭微板块,据岩相,古生物地理,并参考古地磁资料,再造了寒武纪古大陆及秦岭古海洋面貌。  相似文献   

14.
大陆碰撞成矿理论的创建及应用   总被引:15,自引:10,他引:5  
陈衍景 《岩石学报》2013,29(1):1-17
本文阐明了大陆碰撞成矿理论的重要性,将大陆碰撞成矿理论的发展史划分为1970年以前的预备期,1971~1990年的孕育期,1991~2000年的诞生期,2001~2010年的成长期和2011年以后的成熟期;指出大陆碰撞成矿理论的核心内容是4个不同尺度(全球构造、造山带、地体、矿床)的碰撞造山流体成矿模式(CMF模式)和4种类型成矿系统的特征及其与其它环境同类成矿系统的对比;介绍了运用大陆碰撞成矿理论指导找矿预测的成功范例.事实证明,中国学者发挥中国碰撞造山带丰富的自然优势,为发展大陆碰撞成矿理论做出了重大贡献.  相似文献   

15.
Paleoclimatic data to be useful in the evaluation of continental drift models must generally be quantitative and globally distributed. Few such sets of data are available. Consideration is given to the “state of the art” for several of the most promising or widely applied techniques, including18O/16O paleotemperatures, biological methods such as paleobiogeography, distribution of certain sediment types and paleomagnetism. No results which appear unequivocal have yet been obtained.  相似文献   

16.
大陆边缘成矿   总被引:26,自引:12,他引:14  
大陆陆壳的形成与发展经历了陆核—地块 (台 )—联合大陆—大陆裂解—陆缘增生—碰撞造山的演化过程。地壳通过不均一性分异而形成大陆型和大洋型地壳,大陆裂解、洋壳向陆缘消减和陆 -陆碰撞拼接则形成具有不同构造特征的大陆边缘。以中国大陆已存在的 3条陆壳对接消减带为界划分了 5个大陆边缘构造带,进一步区分出 13个次一级的边缘构造区及其内的 53个时空配置结构,并据现有矿产地计算了边缘构造区的矿产发现几率。将中国大陆边缘划分为离散型、会聚型、对接型和转换型 4类,总结了其成矿系列类型专属;认为大陆边缘普遍性成矿有利因素的耦合对成矿至关重要,而最佳耦合的机制及其发生在大陆边缘区的时空位置是圈定有利成矿靶区的关键科学问题。  相似文献   

17.
Rocks of the Ventersdorp Supergroup were deposited in a system of northeast trending grabens on the Kaapvaal Craton approximately 2.64 Ga ago contemporary with a continental collision between the Kaapvaal and Zimbabwe Cratons. We suggest that it was this collision that initiated the Ventersdorp rifting. Individual grabens strike at high angles toward the continental collision zone now exposed in the Limpopo Province where late orogenic left-lateral strike-slip faulting and anatectic granites are recognized. We relate the Ventersdorp rift province to extension in the Kaapvaal Craton associated with the collision, and see some analogy with such rifts as the Shansi and Baikal Systems associated with the current India-Asia continental collision.  相似文献   

18.
笔者等通过对不同类型大陆碰撞造山带环境下铅锌矿床进行归纳总结,并进行对比分析,认为在陆陆碰撞的主碰撞阶段,由于板块的汇聚挤压,在碰撞造山带两侧或一侧形成的前陆盆地中发育碳酸盐岩台地,碳酸盐岩未变形或弱变形,来自盆地的卤水在造山带隆升造成的重力势的驱动下,向盆地边缘汇聚,萃取盆地中的成矿元素,在碳酸盐岩的岩溶或断裂中形成MVT型铅锌矿床。在晚碰撞走滑转换阶段,盆地卤水和地层水萃取盆地地层或基底内的成矿物质形成成矿流体,陆陆碰撞持续挤压力使盆地强烈变形,同时在盆地内发育一系列逆冲推覆系统,并驱动成矿流体发生侧向迁移;在挤压后的短暂松弛阶段,成矿流体灌入逆冲断裂及其伴生的次级走滑断裂或张裂隙中形成独具特色的沉积岩容矿铅锌多金属矿床。大陆碰撞造山带挤压至伸展这一应力转换阶段,成矿流体灌入张性构造中,形成类似秦岭碰撞造山带环境产出的脉状铅锌矿床。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号