首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Disasters such as floods, storms, heatwaves and droughts can have enormous implications for health, the environment and economic development. In this article, we address the question of how climate change might have influenced the impact of weather-related disasters. This relation is not straightforward, since disaster burden is not influenced by weather and climate events alone—other drivers are growth in population and wealth, and changes in vulnerability. We normalized disaster impacts, analyzed trends in the data and compared them with trends in extreme weather and climate events and vulnerability, following a 3 by 4 by 3 set-up, with three disaster burden categories, four regions and three extreme weather event categories. The trends in normalized disaster impacts show large differences between regions and weather event categories. Despite these variations, our overall conclusion is that the increasing exposure of people and economic assets is the major cause of increasing trends in disaster impacts. This holds for long-term trends in economic losses as well as the number of people affected. We also found similar, though more qualitative, results for the number of people killed; in all three cases, the role played by climate change cannot be excluded. Furthermore, we found that trends in historic vulnerability tend to be stable over time, despite adaptation measures taken by countries. Based on these findings, we derived disaster impact projections for the coming decades. We argue that projections beyond 2030 are too uncertain, not only due to unknown changes in vulnerability, but also due to increasing non-stationarities in normalization relations.  相似文献   

3.
极端事件对人类系统的影响   总被引:1,自引:0,他引:1  
在IPCC特别报告《管理极端事件和灾害风险,推进气候变化适应》中,极端天气气候事件对人类系统的影响是最重要的影响评估内容之一,其评估结果为:极端影响可能缘于极端天气气候事件,但也可能并非极端事件的后果。暴露度和脆弱性是灾害风险的重要决定因素;极端和非极端天气气候事件的严重程度和影响在很大程度上取决于对这些事件的脆弱性和暴露度水平;人居模式、城市化和社会经济状况的变化已经影响观测到的脆弱性和暴露度的变化趋势;无论在发达国家还是发展中国家,沿海人居环境均暴露于极端事件,并受其影响,如小岛屿国家和亚洲大三角洲地区;脆弱人口还包括难民、国内流离失所的人和那些生活在边远地区的人;极端事件将极大地影响与气候联系密切的部门,如水、农业、食物安全、健康和旅游业。  相似文献   

4.
The number of natural catastrophes in this decade is four times greater than in the 1960s; economic losses are eight times greater; and insured losses are 15 times greater. The insurance industry's financial interest is inter-dependent with climate and weather. Natural events drive the demand for insurance coverage and can threaten the viability of an insurer if it is over-exposed in high risk areas. Early in the 1990s, the industry began to recognize that historical data were potentially misleading with respect to future natural catastrophe exposure. The U.S. insurance industry is pursuing a variety of new approaches including: the use of catastrophe computer models to integrate the natural knowledge about extreme events taken from the sciences into the actuarial sciences. The evaluation of building codes and building code enforcement in every community in the country enhanced its support for hazard mitigation.  相似文献   

5.
Climate change, involving both human-induced global warming and natural climate variability, has been called upon to explain the occurrences of weather extremes with their associated natural hazards. The Philippines experienced a dry spell in 2007 specifically in parts of Luzon which occurred during the rainy season. On the other hand, areas in Mindanao, southern Philippines which were supposed to be dry, were wet due to the non-migration of the inter-tropical convergence zone northward. The 2007 dry spell in Luzon, northern Philippines affected the agricultural, power, water and health sectors. The local effects of this weather extreme have to be documented and studied to ensure that the appropriate response measures are adopted should there be a recurrence. The building up of the database on this weather extreme and related natural hazards will definitely help the country cope with future similar events.  相似文献   

6.
Extreme weather events include unusual, severe or unseasonal weather, and weather at the extremes of the historical distribution. They have become more frequent and intense under global warming, especially in mid-latitude areas. They bring about great agricultural and economic losses. It is important to define the threshold of extreme weather event because it is the starting point of extreme weather event research, though it has been of seldom concern. Taking extreme precipitation events in Anhui, China as an example, the detrended fluctuation analysis (DFA) method is introduced to define the threshold of extreme weather events. Based on it, the spatial and temporal distributions of extreme precipitation events are analyzed. Compared to the traditional percentile method, DFA is based on the long-term correlation of time series. Thresholds calculated by DFA are much higher than the 99th percentile and the values are higher in the south and lower in the north. This spatial pattern is similar to the annual precipitation spatial pattern. There is an obvious increasing trend in the number of days with extreme precipitation, especially after the 1980s. This observation supports the point that more extreme events happen under global warming.  相似文献   

7.
Managing disaster risk is increasingly being considered a key line of response in climate adaptation. While funding support for adaptation has been pledged, rationales for support and cost implications are essentially unclear, which may explain why financing is currently only forthcoming at low levels. Various estimates for the costs of adaptation have been suggested, yet the rationale and robustness of the estimates have been difficult to verify. Focusing on weather-related extreme events, we conduct a global assessment of the public finance costs for financially managing extreme event risks. In doing so, we assess countries’ fiscal disaster vulnerability, which we operationalize as the public sector's ability to pay for relief to the affected population and support the reconstruction of lost assets and infrastructure. Methods employed include minimum-distance techniques to estimate the tail behaviour of country disaster risks as well as the inclusion of non-linear loss and financing resources relationships. We find that many countries appear fiscal vulnerable and would require assistance from the donor community in order to bolster their fiscal resilience. Our estimates may inform decisions pertaining to a global fund for absorbing different levels of country risks. We find the costs of funds covering different risk layers to be in the lower billions of dollars annually, compared to estimates of global climate adaptation which reach to more than USD 100 billion annually. Our estimates relate to today's climate, and while disaster losses have currently not been robustly linked to climate change, physical science has made a strong case in attributing changes in climate extremes to anthropogenic Climate Change. We suggest that estimates of current weather variability and related risks, although also associated with substantial uncertainty, can be interpreted as a baseline for discussion and any future projections of risks.  相似文献   

8.
不断变化的气候可导致前所未有的极端天气和气候事件。这些事件能否构成灾害,在很大程度上取决于脆弱性和暴露度水平。虽然无法完全消除各种灾害风险,但灾害风险管理和气候变化适应的重点是减少脆弱性和暴露度,并提高对各种潜在极端事件不利影响的恢复力,从而促进社会和经济的可持续发展。全面的灾害风险管理要求更加合理地分配对减灾、灾害管理等方面所付出的努力。过去的主流是强调灾害管理,但目前减灾成为关注焦点和挑战。这种主动积极的灾害风险管理与适应有助于避免未来的风险和灾害,而不仅仅是减少已有的风险和灾害,同时这也是灾害风险管理和气候变化适应更加紧密联系的一个背景。灾害风险管理促进气候变化适应从应对当前的影响中汲取经验,而气候变化适应帮助灾害风险管理更加有效地应对未来变化的条件。  相似文献   

9.
A number of indices have been employed to describe weather extremes on the basis of climate regimes and public concerns. In this study, we combined these traditional indices into four groups according to whether they relate to warm (Twarm), cold (Tcold), wet (Pwet), or dry (Pdry) extremes. Analysis of the combined indices calculated for the daily temperatures and precipitation at 750 meteorological stations in Korea, China, and Japan for 1960s?C2000s shows increasing trends in Twarm and Pdry events and decreasing trends in Tcold events in recent decades, particularly in the northern part of East Asia. A notable regional variation is an increase in the Pwet events in the Korean Peninsula. We applied the same analysis to a 200-year global climate model simulation for 1900?C2099 using the National Center for Atmospheric Research-Community Climate System Model 3. During the 20th century, the changes in Twarm and Tcold calculated from the model data are largely consistent with those calculated from the observations, especially in northern East Asia. The model projections for the 21st century indicate statistically significant increasing Twarm and decreasing Tcold trends in extreme events over the region. Results obtained from historical archives and model simulations using our combined weather extreme indices suggest that northern East Asia will be subject to increased warm and dry extremes and the Korea Peninsula will experience more wet extremes.  相似文献   

10.
近50年中国气温、降水极值分区的时空变化特征   总被引:17,自引:5,他引:12  
黄琰  封国林  董文杰 《气象学报》2011,69(1):125-136
在全球增暖背景下,当前极端天气气候事件频发,由此引发的气象灾害及其所带来的社会经济损失日益增加.深入了解与社会生活密切相关的气温和降水极值的特征,对开展防灾减灾工作有指导意义.文中用百分位阈值求算变量极值的概率密度值,从极值概率角度用系统聚类分析法合并站点,根据方差稳定性特征和变量最概然值的均值确定划分区域个数和对区域...  相似文献   

11.
Developing countries are vulnerable to extremes of normal climatic variability, and climate change is likely to increase the frequency and magnitude of some extreme weather events and disasters. Adaptation to climate change is dependent on current adaptive capacity and the development models that are being pursued by developing countries. Various frameworks are available for vulnerability and adaptation (V&A) assessments, and they have both advantages and limitations. Investments in developing countries are more focused on recovery from a disaster than on the creation of adaptive capacity. Extreme climatic events create a spiral of debt burden on developing countries. Increased capacity to manage extreme weather events can reduce the magnitude of economic, social and human damage and eventually, investments, in terms of borrowing money from the lending agencies. Vulnerability to extreme weather events, disaster management and adaptation must be part of long-term sustainable development planning in developing countries. Lending agencies and donors need to reform their investment policies in developing countries to focus more on capacity building instead of just investing in recovery operations and infrastructure development.  相似文献   

12.
丁一汇  张锦  宋亚芳 《气象》2002,28(3):3-7
2002年3月23日世界气象日的主题是“减低天气和气候极端事件的脆弱性”。针对这个主题,作者对以下四方面问题作了阐述:(1)天气与气候极端事件以及脆弱性的定义;(2)近百年来全球天气与气候极端事件的变化及其与全球气候变化的关系;(3)未来天气与气候极端事件及其影响的预测;(4)天气与气候极端事件的适应与减缓对策。由于篇幅有限,未介绍中国在这方面的研究。  相似文献   

13.
Synoptic weather typing and regression-based downscaling approaches have become popular in evaluating the impacts of climate change on a variety of environmental problems, particularly those involving extreme impacts. One of the reasons for the popularity of these approaches is their ability to categorize a complex set of meteorological variables into a coherent index, facilitating the projection of changes in frequency and intensity of future daily extreme weather events and/or their impacts. This paper illustrated the capability of the synoptic weather typing and regression methods to analyze climatic change impacts on a number of extreme weather events and environmental problems for south–central Canada, such as freezing rain, heavy rainfall, high-/low-streamflow events, air pollution, and human health. These statistical approaches are helpful in analyzing extreme events and projecting their impacts into the future through three major steps or analysis procedures: (1) historical simulation modeling to identify extreme weather events or their impacts, (2) statistical downscaling to provide station-scale future hourly/daily climate data, and (3) projecting changes in the frequency and intensity of future extreme weather events and their impacts under a changing climate. To realize these steps, it is first necessary to conceptualize the modeling of the meteorology, hydrology and impacts model variables of significance and to apply a number of linear/nonlinear regression techniques. Because the climate/weather validation process is critical, a formal model result verification process has been built into each of these three steps. With carefully chosen physically consistent and relevant variables, the results of the verification, based on historical observations of the outcome variables simulated by the models, show a very good agreement in all applications and extremes tested to date. Overall, the modeled results from climate change studies indicate that the frequency and intensity of future extreme weather events and their impacts are generally projected to significantly increase late this century over south–central Canada under a changing climate. The implications of these increases need be taken into consideration and integrated into policies and planning for adaptation strategies, including measures to incorporate climate change into engineering infrastructure design standards and disaster risk reduction measures. This paper briefly summarized these climate change research projects, focusing on the modeling methodologies and results, and attempted to use plain language to make the results more accessible and interesting to the broader informed audience. These research projects have been used to support decision-makers in south–central Canada when dealing with future extreme weather events under climate change.  相似文献   

14.
The terms “weather extremes” and “climate extremes” are widely used in meteorology, often in relation to climate change. This paper reviews the empirical investigations into parallel changes in extreme events and climate change published in recent years and looks at their relevance for the global energy system. Empirical investigation into the correlation of extremes with global warming covers five groups: changes in temperature, precipitation, wind (storm) extremes, tropical and extra-tropical circulation phenomena. For temperature extremes, extensive analyses demonstrate that extreme hot days and nights will likely become more frequent, and extreme cold days and nights less frequent. Intense precipitation events will likely become more frequent in most continental regions. Scientific confidence in the trends of the frequency, duration, and intensity of tropical cyclones, is still low. A poleward shift is observed for extratropical cyclones, whereas no convincing tendencies of many smaller-scale phenomena, for example, tornados, or hail, can yet be detected. All these extremes have serious implications for the energy sector.  相似文献   

15.
《Climate Policy》2013,13(3):233-248
Abstract

Developing countries are vulnerable to extremes of normal climatic variability, and climate change is likely to increase the frequency and magnitude of some extreme weather events and disasters. Adaptation to climate change is dependent on current adaptive capacity and the development models that are being pursued by developing countries. Various frameworks are available for vulnerability and adaptation (V&A) assessments, and they have both advantages and limitations. Investments in developing countries are more focused on recovery from a disaster than on the creation of adaptive capacity. Extreme climatic events create a spiral of debt burden on developing countries. Increased capacity to manage extreme weather events can reduce the magnitude of economic, social and human damage and eventually, investments, in terms of borrowing money from the lending agencies. Vulnerability to extreme weather events, disaster management and adaptation must be part of long-term sustainable development planning in developing countries. Lending agencies and donors need to reform their investment policies in developing countries to focus more on capacity building instead of just investing in recovery operations and infrastructure development.  相似文献   

16.
利用1960~2003年新疆阿勒泰地区7测站及塔城地区北部5测站当年11月至次年1月,44a气温、降水资料,研究了北疆北部冬季气候变化特征,解释了2000年该地区冬季特大雪灾极端气候事件出现的必然性,最后探讨了该地区冬季降水的预测问题;并得出一点很有意义的结论:在气候增暖、增湿背景下,特大雪灾也是可以预报的。  相似文献   

17.
以1960年以来西藏境内已有记载的27次冰湖溃决灾害事件作为研究对象,基于西藏国家气象站点长时间序列(有效记录至今)日气温和日降雨数据,计算得到16个极端气温指数和6个极端降雨指数。通过主成分变换,提取综合极端气温指数和综合极端降雨指数,并进行历史(10年内对比)极端气候特征对比,获得冰湖溃决灾害发生当年及当月极端气候状态,结果表明西藏冰湖溃决灾害发生期(当年及当月)极端气候特征显著,反映极端气候状态对于激发西藏冰湖溃决灾害发生的重要贡献,具体表现为:(1) 67%(18次)的冰湖溃决事件发生当年综合极端气温指数和综合极端降雨指数均大于前期50%年份的综合极端气候指数,其中,13次灾害发生当年极端气候异常水平超过前期70%年份;(2)已有灾害暴发月份记载的25次冰湖溃决事件中,19次冰湖溃决事件发生当月极端气候指数异常偏高,11次冰湖溃决事件发生当月极端气温和极端降水均大于75%往年同期综合极端气候指数;(3)部分灾害事件如扎日错(1981年6月)、龙纠错溃决(2000年8月)等,灾害发生当年极端气温状态低于往年,而暴发当月综合极端气温指数和综合极端降雨指数均大于历史同期水平,表现为加剧状态;(4)所有冰湖溃决灾害发生当月的综合极端气温指数均高于往年同期指数,表明短历时极端气温事件对高原冰湖溃决灾害形成具有重要影响。  相似文献   

18.
The frequency of extreme weather events, which cause severe crop losses, is increasing. This study investigates the relationship between crop losses and extreme weather events in central Taiwan from 2003 to 2015 and determines the main factors influencing crop losses. Data regarding the crop loss area and meteorological information were obtained from government agencies. The crops were categorised into the following five groups: ‘grains’, ‘vegetables’, ‘fruits’, ‘flowers’ and ‘other crops’. The extreme weather events and their synoptic weather patterns were categorised into six and five groups, respectively. The data were analysed using the z score, correlation coefficient and stepwise regression model. The results show that typhoons had the highest frequency of all extreme weather events (58.3%). The largest crop loss area (4.09%) was caused by two typhoons and foehn wind in succession. Extreme wind speed coupled with heavy rainfall is an important factor affecting the losses in the grain and vegetable groups. Extreme wind speed is a common variable that affects the loss of ‘grains’, ‘vegetables’, ‘fruits’ and ‘flowers’. Consecutive extreme weather events caused greater crop losses than individual events. Crops with long production times suffered greater losses than those with short production times. This suggests that crops with physical structures that can be easily damaged and long production times would benefit from protected cultivation to maintain food security.  相似文献   

19.
2008年1月中旬~3月中旬,四川省甘孜州石渠县发生特大雪灾冻害,尽管此次灾害是在全国大范围低温雨雪冰冻灾害的背景下发生的,但在很多方面都有其特殊性,尤其是局地性特征突出。为今后更好地做好雪灾冻害预测预报及防御工作,作者对此次极端灾害性天气气候事件造成的影响和成因及防灾减灾效果进行了认真分析。结果表明,此次雪灾冻害的强度之大,持续时间之长,危害和损失之重均为当地有气象记录以来少有;2007年8月~2008年5月的拉尼娜事件造成的大气环流异常、地面冷空气活动频繁、西太平洋副热带高压异常偏北、南支槽异常活跃是石渠发生特大雪灾冻害的重要原因,当地特殊的地理位置和地形是雪灾冻害的又一个客观因素;天气气候预报预测、气象服务和相关部门同步开展的防灾救灾工作对最大限度地减轻灾害造成的损失作用明显。   相似文献   

20.
近50a华东地区夏季极端降水事件的年代际变化   总被引:4,自引:1,他引:3  
利用中国华东地区90站点1960--2009年夏季(6—8月)逐日降水资料,分析了近50a来华东地区各类极端降水事件的强度和发生频次的年代际变化。结果表明:华东地区极端降水事件年代际变化特征明显。近20a来,不论是极端降水事件的平均强度还是发生次数都要明显高于前30a;1990年代是极端事件多发且强度较强的年代;华东区域极端强降水过程事件的连续降水日数多在9d以下,而极端连续降水日数事件基本在9d以上;较之华东地区其他区域,福建地区存在更多的强度大、持续久的降水过程;华东地区最大极端降水量出现在江西北部与安徽南部的交界区域。极端降水事件频发带存在南北摆动的年代际变化,这一特征在极端日降水事件和极端强降水过程事件上表现得更为明显。同时,存在两个极端事件频发带,分别位于长江流域附近。在后3个年代,这两个频发带呈现出分一合一分的年代际变化特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号