首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Global and regional trends in greenhouse gas emissions from livestock   总被引:2,自引:0,他引:2  
Following IPCC guidelines (IPCC 2006), we estimate greenhouse gas emissions related to livestock in 237 countries and 11 livestock categories during the period 1961–2010. We find that in 2010 emissions of methane and nitrous oxide related to livestock worldwide represented approximately 9 % of total greenhouse gas (GHG) emissions. Global GHG emissions from livestock increased by 51 % during the analyzed period, mostly due to strong growth of emissions in developing (Non-Annex I) countries (+117 %). In contrast, developed country (Annex I) emissions decreased (?23 %). Beef and dairy cattle are the largest source of livestock emissions (74 % of global livestock emissions). Since developed countries tend to have lower CO2-equivalent GHG emissions per unit GDP and per quantity of product generated in the livestock sector, the amount of wealth generated per unit GHG emitted from the livestock sector can be increased by improving both livestock farming practices in developing countries and the overall state of economic development. Our results reveal important details of how livestock production and associated GHG emissions have occurred in time and space. Discrepancies with higher tiers, demonstrate the value of more detailed analyses, and discourage over interpretation of smaller-scale trends in the Tier 1 results, but do not undermine the value of global Tier 1 analysis.  相似文献   

2.
Soil moisture variability of various spatial scales is analyzed based on empirical orthogonal function (EOF) method using soil moisture datasets with various spatial resolutions: 1 km eco-hydrological model simulation, 0.25° passive microwave (Advanced Microwave Scanning Radiometer for the Earth Observing System, AMSR-E) dataset, and 0.5° land surface model simulation from Climate Predictor Center (CPC). All three datasets generate EOFs that explain similar variances with those generated from in situ observations from agro-meteorological network. Using AMSR-E product and eco-hydrological model simulation, it is found that the primary spatial pattern of soil moisture obtained from watershed scale has a strong connection to topographic attributes, followed by soil texture and rainfall variability, as suggested by the correlation between the primary EOF mode (EOF1) of soil moisture and landscape attributes. However, the EOF analysis of both AMSR-E and CPC datasets at regional scale reaches the conclusion that soil texture indices, such as sand and clay content, is of higher importance to soil moisture EOF1 spatial pattern (explaining 61 % variance) than topography is. Furthermore, correlation between soil moisture EOF1 and soil property is higher in spring than in autumn, which indicates that soil water-holding and drainage capabilities are more important under dry conditions. At national scale, the combined effects of topographic feature and soil property are clearly exhibited in EOF1. The study results reveal that different emphases should be placed on accurate acquisition of landscape attributes for soil moisture estimation according to various spatial scales.  相似文献   

3.
The regional model REMO, which is the atmospheric component of the coupled atmosphere–ice–ocean–land climate model system BALTIMOS, is tested with respect to its ability to simulate the atmospheric boundary layer over the open and ice-covered Baltic Sea. REMO simulations are compared to ship, radiosonde, and aircraft observations taken during eight field experiments. The main results of the comparisons are: (1) The sharpness and strength of the temperature inversion are underestimated by REMO. Over open water, this is connected with an overestimation of cloud coverage and moisture content above the inversion. (2) The vertical temperature stratification in the lowest 200 m over sea ice is too stable. (3) The horizontal inhomogeneity of sea ice concentration as observed by aircraft could not be properly represented by the prescribed ice concentration in REMO; large differences in the surface heat fluxes arise especially under cold-air advection conditions. The results of the comparisons suggest a reconsideration of the parameterization of subgrid-scale vertical exchange both under unstable und stable conditions.  相似文献   

4.
The future rate of Greenland Ice Sheet (GrIS) deglaciation and the future contribution of GrIS deglaciation to sea level rise will depend critically on the magnitude of northern hemispheric polar amplification and global equilibrium climate sensitivity. Here, these relationships are analyzed using an ensemble of multi-century coupled ice-sheet/climate model simulations seeded with observationally-constrained initial conditions and then integrated forward under tripled preindustrial CO2. Polar amplifications and climate sensitivities were varied between ensemble members in order to bracket current uncertainty in polar amplification and climate sensitivity. A large inter-ensemble spread in mean GrIS air temperature, albedo and surface mass balance trends stemming from this uncertainty resulted in GrIS ice volume loss ranging from 5 to 40 % of the original ice volume after 500 years. The large dependence of GrIS deglaciation on polar amplification and climate sensitivity that we find indicates that the representation of these processes in climate models will exert a strong control on any simulated predictions of multi-century GrIS evolution. Efforts to reduce polar amplification and equilibrium climate sensitivity uncertainty will therefore play a critical role in constraining projections of GrIS deglaciation and sea level rise in a future high-CO2 world.  相似文献   

5.
Monin–Obukhov similarity theory (MOST) is commonly used to model the wind-speed profile at altitudes relevant to wind-power production (e.g. 10–200 m). Though reasonably accurate for unstable to weakly stable stratification, this approach becomes less accurate under increasingly stable stratification, largely due to the constant-flux surface layer assumed by MOST becoming shallower than the altitude range of interest. Furthermore, above the surface layer, the Coriolis force has a considerable influence on the wind-speed profile (in particular in the formation of low-level jets) that cannot be modelled using similarity theory. Our goal is to compare the accuracy of alternative extrapolation models that are more physically appropriate above the surface layer. Using data from the 213-m Cabauw meteorological tower in the Netherlands between July 2007 and June 2008, it is shown that MOST is accurate only at low altitudes and low stability, and breaks down at high altitudes and high stability. Local similarity is generally more accurate than MOST across all altitudes and stabilities, though the model requires turbulent flux data at multiple altitudes that is generally impractical. In contrast, a two-layer MOST–Ekman model is found to be comparable to the other models at low stability ranges and considerably more accurate in the high stability range, while requiring only a measure of surface stability and the geostrophic wind.  相似文献   

6.
In this paper, we used the Outgoing Longwave Radiation (OLR) data to compare the intraseasonal atmospheric variability patterns over Central Africa, during the last three decades. The spectral analysis indicates that for the three decades, the intraseasonal variability is dominated by 20–80 days periods band with the center near 40–50 days. The results of Empirical Orthogonal Functions (EOFs) analysis have shown that the amount of variance explained by the three retained EOFs are 41.6 % for 1981–1990, 44.2 % for 1991–2000 and 42.6 % for 2001–2010. For the three decades, the three leading EOFs retained exhibit high spatial loadings over Northern Congo, Southern Ethiopia, and Southwestern Tanzania. The power spectra of the leading principal components have their peaks near 40 days for the three decades, indicating MJO signal. The PCs time series revealed that the amplitude of intraseasonal oscillations (ISO) globally decreases from decade to another. The plot of ISO and El Niño-Southern Oscillation (ENSO) indices revealed that the lowest values of ISO strength generally correspond to the relatively large values of ENSO indices and inversely. The mean ISO strength and ISO fluctuations were highest during 1981–1990, and this period also corresponds to the highest fluctuations of ENSO signal.  相似文献   

7.
We present an assessment of climate change impacts on the hydrologic regime of the 600,000 km2 Upper Paraguay River basin, located in central South America based on predictions of 20 Atmospheric/Ocean General Circulation Models (AOGCMs). We considered two climate change scenarios from the Intergovernmental Panel on Climate Change (IPCC) and two 30-years time intervals centered at 2030 and 2070. Projected temperature and precipitation anomalies estimated by the AOGCMs for the study site are spatially downscaled. Time series of projected temperature and precipitation were estimated using the delta change approach. These time series were used as input to a detailed coupled hydrologic-hydraulic model aiming to estimate projected streamflow in climate change scenarios at several control points in the basin. Results show that impacts on streamflow are highly dependent on the AOGCM used to obtain the climate predictions. Patterns of temperature increase persist over the entire year for almost all AOGCMs resulting in an increase in the evapotranspiration rate of the hydrological model. The precipitation anomalies show large dispersion, being projected as either an increase or decrease in precipitation rates. Based on these inputs, results from the coupled hydrologic-hydraulic model show nearly one half of projections as increasing river discharge, and other half as decreasing river discharge. If the mean or median of the predictions is considered, no discernible change in river discharge should be expected, despite the dispersion among results of the AOGCMs that reached +/?10 % in the short horizon and +/? 20 % in the long horizon, at several control points.  相似文献   

8.
Lin Feng  Tim Li  Weidong Yu 《Climate Dynamics》2014,43(7-8):2033-2042
The cause of severe droughts over the Southwest China (SWC) during the local dry season is investigated based on the station rainfall data and the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data during 1951–2010. The droughts are in general consistent with local anomalous descent in the middle troposphere. The diagnosis of the vertical motion (omega) equation indicates that the local descent is primarily maintained by the anomalous cold temperature advection processes. Both the advection of anomalous temperature by mean wind and the advection of mean temperature by anomalous wind contribute to maintaining the anomalous descent over the SWC region. A composite analysis shows that the circulation anomaly over SWC is induced by remote forcing from the tropical Pacific and North Atlantic Oceans. During La Niña years, enhanced heating over the Maritime Continent induces anomalous downward motion over SWC through the connection of local Hadley circulation. Adiabatic warming associated with the downward motion helps to set up and maintain the local anomalous anticyclone. Another possible route is through the North Atlantic-Asia teleconnection, in which downstream Rossby wave energy propagation plays a crucial role. A negative-phase North Atlantic Oscillation may trigger a large-scale wave train pattern that induces an anomalous anticyclone over the subtropical Asia and promotes the dry condition over SWC.  相似文献   

9.
Temperature has long been accepted as the major controlling factor in determining vegetation phenology in the middle and higher latitudes. The influence of water availability is often overlooked even in arid and semi-arid environments. We compared vegetation phenology metrics derived from both in situ temperature and satellite-based normalized difference vegetation index (NDVI) observations from 1982 to 2006 by an example of the arid region of northwestern China. From the satellite-based results, it was found the start of the growing season (SOS) advanced by 0.37 days year?1 and the end of the growing season (EOS) delayed by 0.61 days year?1 in Southern Xinjiang over 25 years. In the Tianshan Mountains, the SOS advanced by 0.35 days year?1 and the EOS delayed by 0.31 days year?1. There were almost no changes in Northern Xinjiang. Compared with satellite-based results, those estimates based on temperature contain less details of spatial variability of vegetation phenology. Interestingly, they show different and at times reversed spatial patterns from the satellite results arising from water limitation. Phenology metrics derived from temperature and NDVI conclude that water limitation of onset of the growing season is more severe than the cessation. Phenology spatial patterns of four oases in Southern Xingjiang show that, on average, there is a delay of the SOS of 1.6 days/10 km of distance from the mountain outlet stations. Our results underline the importance of water availability in determining the vegetation phenology in arid regions and can lead to important consequences in interpreting the possible change of vegetation phenology with climate.  相似文献   

10.
In this study, we investigate the impact of atmospheric convection over the western tropical Pacific (100–145°E, 0–20°N) on the boreal winter North Pacific atmosphere flow by analyzing National Center for Environmental Prediction Reanalysis 1, Extended Reconstructed Sea Surface Temperature and Global Precipitation Climatology Project data. The western tropical Pacific convection is not only the main energy source driving the local Hadley and Walker circulations, but it also significantly influences North Pacific circulation, by modifying a mid-latitude Jet stream through the connection with the local Hadley circulation. On the one hand, this strong convection leads to a northward expansion of local Hadley cells simultaneous with a northward movement of the western North Pacific jet because of the close correlation between the Jet and Hadley circulation boundaries. On the other hand, this strong convection also intensifies tropical Pacific Walker circulation, which reduces the eastern Pacific sea surface temperature, resembling a La Nina state through the enhanced equatorial upwelling. The cooling of the eastern tropical Pacific has an inter-tropical convergence zone located further north; thus, the local Hadley circulation moves northward. As a result, the jet axis over the eastern North Pacific, which also corresponds to the boundary of the local Hadley circulation, moves to higher latitude. Consequently, this northward movement of the Jet axis over the North Pacific is reflected as a northwest–southeast dipole sea level pressure (SLP) pattern. The composite analysis of SLP over the North Pacific against the omega (Ω) (Pa/s) at 500 hPa over the western tropical Pacific actually reveals that this northwest-southeast dipole structure is attributed to the intensified tropical western Pacific convection, which pushes the Pacific Jet to the north. Finally we also analyzed south Pacific for the austral winter as did previously to North Pacific, and found that the results were consistent.  相似文献   

11.
Most coupled general circulation models suffer from a prominent warm sea surface temperature bias in the southeast tropical Atlantic Ocean off the coast of Africa. The origin of the bias is not understood and remains highly controversial. Previous studies suggest that the origin of the bias stems from systematic errors of atmospheric models in simulating surface heat flux and coastal wind, or poorly simulated coastal upwelling. In this study, we show, using different reanalysis and observational data sets combined with a set of eddy-resolving regional ocean model simulations, that systematic errors in ocean models also make a significant contribution to the bias problem. In particular (1) the strong warm bias at the Angola-Benguela front that is maintained by the local wind and the convergence of Angola and Benguela Currents is caused by an overshooting of the Angola Current in ocean models and (2) the alongshore warm bias to the south of the front is caused by ocean model deficiencies in simulating the sharp thermocline along the Angola coast, which is linked to biases in the equatorial thermocline, and the complex circulation system within the Benguela upwelling zone.  相似文献   

12.
In this paper, we compare integrated water vapour (IWV) retrievals from the Moderate Resolution Spectrometer (MODIS) instrument on board the polar-orbiting Terra platform with those from the coupled regional climate model system BALTIMOS for a period of 2 years (October 2001 to October 2003). The comparison was made for the whole drainage basin of the Baltic Sea as well as major parts of Central Europe. The qualitative comparison between the two data sets of the integrated water vapour shows a good agreement. The patterns in the spatial distribution of the averaged integrated water vapour in both data sets are quite similar. However, significant differences occur in the Hungarian Lowlands, along the Po River and the Wallachia (Romania) in the order of 2.5 to 7.0 kg/m2. For these areas, the BALTIMOS model is dryer than the MODIS observations. This could be an indication for the known summer drying effect of BALTIMOS but needs further investigations. The annual cycle as well as a diurnal developing of integrated water vapour from 09:00 to 12:00 UTC is well pronounced in both data sets. For both data sets, the overall annual variations are 17.5 kg/m2. The observed overall diurnal variability are 1.4 kg/m2 for MODIS and 1.04 kg/m2 for BALTIMOS, respectively.  相似文献   

13.
Characteristics of snowfall episodes have been investigated for the past ten years in order to study its association with lowlevel stability and air-sea temperature difference over the East Sea. In general, the selected snowfall episodes have similar synoptic setting such as the Siberian High extended to northern Japan along with the Low passing by the southern Korean Peninsula, eventually resulting in the easterly flow in the Yeongdong region. Especially in the heavy snowfall episodes, convective unstable layers have been identified over the East sea due to relatively warm sea surface temperature (SST) about 8~10°C and specifically cold pool around 1~2 km above the surface level (ASL), which can be derived from Regional Data Assimilation and Prediction System (RDAPS), but that have not been clearly exhibited in the weak snowfall episodes. The basic mechanism to initiate snowfall around Yeongdong seems to be similar to that of lake-effect snowstorms around Great Lakes in the United States (Kristovich et al., 2003). Difference of equivalent potential temperature (θ e ) between 850 hPa and surface as well as difference between air and sea temperatures altogether gradually began to increase in the pre-snowfall period and reached their maximum values in the course of the period, whose air (850 hPa) — sea temperature difference and snowfall intensity in case of the heavy snowfall episodes are almost larger than 20°C and 6 tims greater than the weak snowfall episodes, respectively. Interestingly, snowfall appeared to begin in case of an air-sea temperature difference exceeding over 15°C. The current analysis is overall consistent with the previous finding (Lee et al., 2012) that an instabilityinduced moisture supply to the lower atmosphere from the East sea, being cooled and saturated in the lower layer, so to speak, East Sea-Effect Snowfall (SES), would make a low-level ice cloud which eventually moves inland by the easterly flow. In addition, a longlasting synoptic characteristics and convergence-induced invigoration also appear to play the important roles in the severe snowstorms. Improvements in our understanding of mesoscale sea-effect snowstorms require detailed in-situ and remote sensing observations over and around East Sea since observations of the concurrent thermodynamic and microphysical characteristics have not been available there and this study emphasizes the importance of low level stability as quantitative estimation of moist static energy generation over the East Sea.  相似文献   

14.
The gas-phase reaction of ClONO2 with HCl was investigated using two large-volume environmental chambers with analysis by in situ long pathlength Fourier transform infrared absorption spectroscopy. In these chambers the reaction was observed to proceed, at least in part, by heterogenous routes, and an upper limit to the rate constant for the homogeneous gas-phase reaction of geneous routes, and an upper limit to the rate constant for the homogeneous gas-phase reaction of $$k\left( {{\text{ClONO}}_{\text{2}} + {\text{HCl}}} \right) < 1.5 \times 10^{ - 19} {\text{ cm}}^{\text{3}} {\text{ molecule}}^{{\text{ - 1}}} {\text{ s}}^{{\text{ - 1}}}$$ Was derived at 298±2K. Assuming that this room-temperature upper limit to the rate constant is applicable to stratospheric temperatures, this homogeneous gas-phase reaction can be estimated to be of negligible importance as a ClONO2 loss process in the stratosphere.  相似文献   

15.
The preparation of time- and space-dependent input surface parameters for the climate model REMO was one task of the Baltimos project “Validation of Boundary Layer Parameters and Extension of Boundary conditions of Climate Model REMO”. The leaf area index (LAI) is one of these parameters. It is used in REMO as defined value per month for each land-use class with a defined seasonal trend during the year. Since 1982 at the Institute of Meteorology of the Free University Berlin, a high-resolved AVHRR data set of the NOAA satellite has been available (1/100 degree, approximately 1?×?1 km at nadir in a geographic coordination system) (Koslowsky 1996). The vegetation periods of the years 1997 until 2001 were selected from the dataset to estimate the LAI within the Baltimos region on the basis of an algorithm by Sellers et al. (J Climate 9:706–737, 1996) and a modified United States Geological Survey (USGS) land-use classification. The calculated high-resolved NOAA LAI values were converted to the 1/6 degree grid of the REMO climate model. Then, they were compared to the fixed LAI values, which are used in the model.  相似文献   

16.
Land use and land cover (LULC) over Africa have changed substantially over the last 60 years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties of model simulated response in the African monsoon system and Sahel precipitation due to LULC change using a set of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Although the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubs and an increase in surface air temperature. The relationship between the model responses to LULC change and the climatologists of the control simulations is also examined. Simulations that are climatologically too dry or too wet compared to observations and reanalyses have weak response to land use change because they are in moisture or energy limited regimes respectively. The ones that lie in between have stronger response to the LULC changes, showing a more significant role in land–atmosphere interactions. Much of the change in precipitation is related to changes in circulation, particularly to the response of the intensity and latitudinal position of the African Easterly Jet, which varies with the changes in meridional surface temperature gradients. The study highlights the need for measurements of the surface fluxes across the meridional cross-section of the Sahel to evaluate models and thereby allowing human impacts such as land use change on the monsoon to be projected more realistically.  相似文献   

17.
18.
Directional dependence of horizontal wind direction fluctuations (Σθ) is studied at the coastal site of Madras Atomic Power Project, Kalpakkam with significant inhomogeneity in roughness element distribution around the location of measurement. Σθ is measured by a potentiometric wind vane mounted on a 30 m meteorological tower. Values of Σθ showed as high as threefold variation for the same atmospheric stability depending on the effective roughness length of the upwind sector. Average Σθ values separated for sea- and land-breeze conditions, when correlated with Pasquill stability categories showed a monotonic decrease with increasing stability for land breeze but was found to increase for change from D to F category during sea breezes presumably due to the influence of an internal boundary-layer development.  相似文献   

19.
Chinese temperate grasslands play an important role in the terrestrial carbon cycle. Based on the parameterization and validation of Terrestrial Ecosystem Model (TEM, Version 5.0), we analyzed the carbon budgets of Chinese temperate grasslands and their responses to historical atmospheric CO2 concentration and climate variability during 1951–2007. The results indicated that Chinese temperate grassland acted as a slight carbon sink with annual mean value of 7.3 T?g C, ranging from -80.5 to 79.6 T?g C yr-1. Our sensitivity experiments further revealed that precipitation variability was the primary factor for decreasing carbon storage. CO2 fertilization may increase the carbon storage (1.4 %) but cannot offset the proportion caused by climate variability (-15.3 %). Impacts of CO2 concentration, temperature and precipitation variability on Chinese temperate grassland cannot be simply explained by the sum of the individual effects. Interactions among them increased total carbon storage of 56.6 T?g C which 14.2 T?g C was stored in vegetation and 42.4 T?g C was stored in soil. Besides, different grassland types had different responses to climate change and CO2 concentration. NPP and RH of the desert and forest steppes were more sensitive to precipitation variability than temperature variability while the typical steppe responded to temperature variability more sensitively than the desert and forest steppes.  相似文献   

20.
This study investigates the global warming response of the Walker Circulation and the other zonal circulation cells (represented by the zonal stream function), in CMIP3 and CMIP5 climate models. The changes in the mean state are presented as well as the changes in the modes of variability. The mean zonal circulation weakens in the multi model ensembles nearly everywhere along the equator under both the RCP4.5 and SRES A1B scenarios. Over the Pacific the Walker Circulation also shows a significant eastward shift. These changes in the mean circulation are very similar to the leading mode of interannual variability in the tropical zonal circulation cells, which is dominated by El Niño Southern Oscillation variability. During an El Niño event the circulation weakens and the rising branch over the Maritime Continent shifts to the east in comparison to neutral conditions (vice versa for a La Niña event). Two-thirds of the global warming forced trend of the Walker Circulation can be explained by a long-term trend in this interannual variability pattern, i.e. a shift towards more El Niño-like conditions in the multi-model mean under global warming. Further, interannual variability in the zonal circulation exhibits an asymmetry between El Niño and La Niña events. El Niño anomalies are located more to the east compared with La Niña anomalies. Consistent with this asymmetry we find a shift to the east of the dominant mode of variability of zonal stream function under global warming. All these results vary among the individual models, but the multi model ensembles of CMIP3 and CMIP5 show in nearly all aspects very similar results, which underline the robustness of these results. The observed data (ERA Interim reanalysis) from 1979 to 2012 shows a westward shift and strengthening of the Walker Circulation. This is opposite to what the results in the CMIP models reveal. However, 75 % of the trend of the Walker Circulation can again be explained by a shift of the dominant mode of variability, but here towards more La Niña-like conditions. Thus in both climate change projections and observations the long-term trends of the Walker Circulation seem to follow to a large part the pre-existing dominant mode of internal variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号