首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Coastal Engineering》2004,51(2):155-172
The bed load transport rate under random waves plus current has been predicted for a large range of wave–current conditions. A parameterized model valid for regular waves plus current has been used in Monte Carlo simulations, assuming the wave amplitudes to be Rayleigh distributed. The mean value, standard deviation and numerical estimates of the probability density function of the bed load transport rate are presented for a wide range of wave–current conditions. It appears that overall the effect of the current is dominating the bed load transport rate. Moreover, a significant scatter of the bed load transport rate under random waves plus current is found. Such a scatter is also found in field measurements by Amos et al. [J. Coast. Res. 15 (1999) 1]. Predicted ripple migration rates in the bed load regime have been compared with those obtained from field measurements by Amos et al. [J. Coast. Res. 15 (1999) 1], taking the bed load transport rate to be proportional to the ripple migration rate times the ripple height. Overall, the predictions capture the qualitative as well as the quantitative behaviour of the ripple migration rates in a wide range of wave–current conditions; the ripple migration rates, and thereby the bed load, are predicted within the correct order of magnitude for a wide range of wave–current conditions.  相似文献   

2.
1 IntroductionIn coastal areas a ubiquitous phenomenon is theformation of ripples in the seabed. It is now widelyaccepted that the flow and sediment transport overseabed are vital in relation to erosion, surface wavedissipation and pollution dispersion et…  相似文献   

3.
Three years of temperature data along two transects extending to 90 m depth, at Palau, Micronesia, show twice-a-day thermocline vertical displacements of commonly 50–100 m, and on one occasion 270 m. The internal wave occurred at a number of frequencies. There were a number of spectral peaks at diurnal and semi-diurnal frequencies, as well as intermediate and sub-inertial frequencies, less so at the inertial frequency. At Palau the waves generally did not travel around the island because there was no coherence between internal waves on either side of the island. The internal waves at a site 30 km offshore were out-of-phase with those on the island slopes, suggesting that the waves were generated on the island slope and then radiated away. Palau Island was thus a source of internal wave energy for the surrounding ocean. A numerical model suggests that the tidal and low-frequency currents flowing around the island form internal waves with maximum wave amplitude on the island slope and that these waves radiate away from the island. The model also suggests that the headland at the southern tip of Palau prevents the internal waves to rotate around the island. The large temperature fluctuations (commonly daily fluctuations ≈10 °C, peaking at 20 °C) appear responsible for generating a thermal stress responsible for a biologically depauperate biological community on the island slopes at depths between 60 and 120 m depth.  相似文献   

4.
The current study focuses on the response analysis of triangular tension leg platform (TLP) for different wave approach angles varying from 0° through 90° and its influence on the coupled dynamic response of triangular TLPs. Hydrodynamic loading is modeled using Stokes fifth-order nonlinear wave theory along with various other nonlinearities arising caused by change in tether tension and change in buoyancy caused by set down effect. Low frequency surge oscillations and high frequency tension oscillations of tethers are ignored in the analysis. Results show that wave approach angle influences the coupled dynamic response of triangular TLP in all degrees of freedom except heave. Response in roll and sway degrees of freedom are activated which otherwise are not present in TLP's response to unidirectional waves. Pitch and roll responses are highly stochastic in nature indicating high degree of randomness. Variation in surge, sway and heave responses are nonlinear and are not proportional to change in wave height for the same period.  相似文献   

5.
Tide-driven bed load transport is an important portion of the net annual sediment transport rate in many shoreface and shelf environments. However, bed load transport under waves cannot be measured in the field and bed load transport by currents without waves is barely measurable, even in spring tidal conditions. There is, consequently, a strong lack of field data and validated models. The present field site was on the shoreface and inner shelf at 2 to 8.5 km offshore the central Dutch coast (far outside the surfzone), where tidal currents flow parallel to the coast. Bed load transports were carefully measured with a calibrated sampler in spring tidal conditions without waves at a water depth of 13–18 m with fine and medium sands. The near-bed flow was measured over nearly a year and used for integration to annual transport rates. An empirical bed load model was derived, which predicts bed load transports that are a factor of > 5 smaller than predicted by existing models. However, they agree with laboratory data of sand and gravel transport in currents near incipient motion. The damped transport rates may have been caused by cohesion of sediment or turbulence damping due to mud or biological activity. The annual bed load transport rate was calculated using a probability density function (pdf) derived from the near-bed current and orbital velocity data which represented the current and wave climate well when compared to 30 years of data from a nearby wave station. The effect of wave stirring was included in the transport calculations. The net bed load transport rate is a few m2/year. This is much less than predicted in an earlier model study, which is partly due to different bed load models but also due to the difference in velocity pdf. The annual transport rate is very sensitive to the probability of the largest current velocities.  相似文献   

6.
7.
Unsteady two-dimensional Navier-Stokes equations and Navier-Stokes type model equations for porous flow were solved numerically to simulate the propagation of water waves over a permeable rippled bed. A boundary-fitted coordinate system was adopted to make the computational meshes consistent with the rippled bed. The accuracy of the numerical scheme was confirmed by comparing the numerical results concerning the spatial distribution of wave amplitudes over impermeable and permeable rippled beds with the analytical solutions. For periodic incident waves, the flow field over the wavy wall is discussed in terms of the steady Eulerian streaming velocity. The trajectories of the fluid particles that are initially located close to the ripples were also determined. One of the main results herein is that under the action of periodic water waves, fluid particles on an impermeable rippled bed initially moved back and forth around the ripple crest, with increasing vertical distance from the rippled wall. After one or two wave periods, they are then lifted towards the next ripple crest. All of the marked particles on a permeable rippled bed were shifted onshore with a much larger displacement than those on an impermeable bed. Finally, the flow fields and the particle motions close to impermeable and permeable beds induced by a solitary wave are elucidated.  相似文献   

8.
Near-bed horizontal (cross-shore) and vertical velocity measurements were acquired in a laboratory wave flume over a 1:8 sloping sand beach of finite depth. Data were acquired using a three-component acoustic Doppler velocimeter to measure the velocity field close to, but at a fixed distance from the bed. The near-bed velocity field is examined as close as 1.5 cm above a trough and crest of a ripple under three different types of wave forcing (Stokes waves, Stokes groups, and irregular waves). Although both horizontal and vertical velocity measurements were made, attention is focused primarily on the vertical velocity. The results clearly indicate that the measured near-bed vertical velocity (which was outside the wave-bottom boundary layer) is distinctly nonzero and not well predicted by linear theory. Spectral and bispectral analysis techniques indicate that the vertical velocity responds differently depending on the location over a ripple, and that ripple-induced effects on the velocity field are present as high as 4–8 cm above the bed (for vortex ripples with wavelengths on the order of 8 cm and amplitudes on the order of 2 cm). At greater heights above the bed, the observed wave-induced motion is adequately predicted by the linear theory.  相似文献   

9.
A thorough discussion of results from laboratory experiments with regular waves sheds light on the gap that lies between the sediment transport associated with ripple migration and the performance of a standard bedload transport formula in terms of bed shear concept. It is found that the extent of deviations of the bedload transport formula by Ribberink (1998) from the measured rate of sediment transport associated with ripple migration becomes systematically apparent under conditions of increasing settling time factor Ωs (= η/(w0T); η is the ripple height, w0 the settling velocity and T the wave period). Re-examination of previous two field studies demonstrates a further reinforcement for phase-lag argument addressed in this paper.  相似文献   

10.
The effect of wave steepness on the wave force exerted on an elliptical caisson subjected to regular wave is presented in this paper. Laboratory results are compared with the modified linear diffraction theory proposed by Mogridge and Jamieson (1976). The caisson was tested for angles of orientations of 0°, 30°, 60° and 90° of its major axis with the direction of wave propagation.  相似文献   

11.
Experimental investigations on internal solitary wave (ISW) propagation and their reflection from a smooth uniform slope were conducted in a two-layered fluid system with a free surface. A 12-meter-long wave flume was in use which incorporated with: (1) a movable vertical gate for generating ISW; (2) six ultrasonic probes for measuring the fluctuation of an ISW; and (3) a steep uniform slope (from one of θ=30°, 50°, 60°, 90°, 120° and 130°) much greater than those ever published in the literature. This paper presents the wave profile properties of the ISW recorded in the flume and their nonlinear features in comparison with the existing Korteweg de Vries (KdV) and modified Korteweg-de Vries (MKdV) theories. Experimental results show that the KdV theory is suitable for most small-amplituded ISWs and MKdV theory is appropriate for the reflected ISWs from various uniform slopes. In addition, both the amplitude-based reflection coefficient and reflected energy approach a constant value asymptotically when plotted against the slope and the characteristic length ratio, respectively. The reflected wave amplitudes calculated from experimental data agree well with those reported elsewhere. The optimum reflection coefficient is found within the limit of 0.85 for wave amplitude, among the test runs from steep normal slope of 30° to inverse angle of 130°, and around 0.75 for the reflected wave energy, produced by an ISW on a vertical wall.  相似文献   

12.
The potential accuracy of local models is investigated to determine the mean direction of waves from the time history of locally observed significant wave height (or peak frequency) and locally observed wind. This is done by comparing results of such models with observations at a location in the southern North Sea for a period of six weeks. The model results are also compared with results of two synoptic models which require large scale wind information to estimate the local mean wave direction.For significant wave heights larger than 1.5 m the rms-error of the estimated mean wave direction was about 30° for the best performing local model and about 15° for the best performing synoptic model.  相似文献   

13.
We present new quantitative data on the sorting of sediments on a sandy seabed under standing waves. Starting from a flat bed composed of a homogeneous mixture of a coarse and a fine sand with mean diameters 0.11 and 0.21 mm, we observed simultaneous ripple and sand bar formation and sand sorting on the seabed. Over days of wave action, sand bars formed with crests beneath the surface wave nodes and flat plateaus flanked by mounds beneath the antinodes. Bar crests were composed of sand coarser on average than 0.21 mm, while the flat plateaus were covered by sand finer on average than 0.11 mm. Comparison with two experiments involving sand beds of more homogeneous size distributions shows that the mounds are characteristic of the motion of fine suspensions.  相似文献   

14.
Field measurements of cross-shore currents 0.25 m from the bed were made on two natural beaches under a range of incident wave conditions. The results indicated the presence of a relatively strong, offshore-directed mean current, both within and seaward of the surf zone. Typical velocities within the surf zone were of the order of 0.2–0.3 m/s. This bed return flow, or “undertow”, represents a mass conservation response, returning water seaward that was initially transported onshore in the upper water column, primarily above the trough of the incident waves. The measurements demonstrated that the bed return flow velocity increases with the incident wave height. In addition, the crossshore distribution of the bed return flow is characterised by a mid-surf zone maximum, which exhibits a strong decrease in velocity towards the shoreline and a more gradual decay in the offshore direction. Several bed return flow models based on mass continuity were formulated to predict the cross-shore distribution of the bed return flow under an irregular wave field and were compared with the field data. Best agreement was obtained using shallow water linear wave theory, after including the mass transport associated with unbroken waves. The contribution of the unbroken waves enables net offshore-directed bottom currents to persist outside the region of breaking waves, providing a mechanism, other than rip currents, to transport sediment offshore beyond the surf zone.  相似文献   

15.
This paper describes a simple method for determining the wavelength of small amplitude waves under laboratory conditions where reflected wave components are present both with and without a mean current flow superimposed. It assumes a locally horizontal bed but requires no a priori assumption concerning the form of the dispersion relation with a coexisting current. Synchronous measurements of the water surface recorded along any straight line are analysed to yield Fourier coefficients at each location. It is then shown that for all practical conditions excluding a perfect standing wave, the average rate of change of wave phase in the chosen direction can be related directly to the component of incident wave number in that direction, irrespective of reflection coefficient or relative current strength. The technique has been applied to regular and bichromatic waves in a flume with an absorbing wave generator, and can also be applied in 3-D wave basins where waves and currents intersect at arbitrary angles. In combined wave–current experiments, by assuming the linear dispersion relation, it is also possible to estimate the effective current velocity.  相似文献   

16.
Measurement and modeling of bed shear stress under solitary waves   总被引:1,自引:0,他引:1  
Direct measurements of bed shear stresses (using a shear cell apparatus) generated by non-breaking solitary waves are presented. The measurements were carried out over a smooth bed in laminar and transitional flow regimes (~ 104 < Re < ~ 105). Measurements were carried out where the wave height to water depth (h/d) ratio varied between 0.12 and 0.68; maximum near bed velocity varied between 0.16 m/s and 0.51 m/s and the maximum total shear stress (sum of skin shear stress and Froude–Krylov force) varied between 0.386 Pa and 2.06 Pa. The total stress is important in determining the stability of submarine sediment and in sheet flow regimes. Analytical modeling was carried out to predict total and skin shear stresses using convolution integration methods forced with the free stream velocity and incorporating a range of eddy viscosity models. Wave friction factors were estimated from skin shear stress at different instances over the wave (viz., time of maximum positive total shear stress, maximum skin shear stress and at the time of maximum velocity) using both the maximum velocity and the instantaneous velocity at that phase of the wave cycle. Similarly, force coefficients obtained from total stress were estimated at time of maximum positive and negative total stress and at maximum velocity. Maximum positive total shear stress was approximately 1.5 times larger than minimum negative total stress. Modeled and measured positive bed shear stresses are well correlated using the best convolution model, but the model underestimates the data by about 4%. Friction factors are dependent on the choice of normalizing using the maximum velocity, as is conventional, or the instantaneous velocity. These differ because the stress is not in phase with the velocity in general. Friction factors are consistent with previous data for monochromatic waves, and vary inversely with the square-root of the Reynolds number. The total shear stress leads the free stream fluid velocity by approximately 50°, whereas the skin friction shear stress leads by about 30°, which is similar to that reported by earlier researchers.  相似文献   

17.
Measurements are presented of the water particle kinematics of focused wave groups generated in the U.K. Coastal Research Facility. Single and repeated wave groups are considered at normal and 20° incidence to a 1:20 plane beach. The single focused wave groups model extreme transient events without the complication of reflections during the data acquisition process. A symmetry-based separation of harmonics method is used to interpret the water particle kinematics at the point of focus. Although the largest component is linear, there are also considerable second order kinematics terms (both low frequency and high frequency). Away from the free surface, the 2nd order difference contribution to the kinematics is a return current opposed to the direction of wave advance. For repeated wave groups, the measured kinematics confirms the presence of a low frequency free wave, followed by higher frequency waves of the main group and trailing higher order harmonic waves. In the breaker and surf zones, there is also evidence of the saw-tooth behaviour of broken waves, followed by scatter due to breaker-induced turbulence. Pulsatile wave breaking of repeated wave groups at oblique incidence is found to drive a longshore current.  相似文献   

18.
Deep-circulation flow at mid-latitude in the western North Pacific   总被引:1,自引:1,他引:1  
Direct current measurements with five moorings at 27–35°N, 165°E from 1991 to 1993 and with one mooring at 27°N, 167°E from 1989 to 1991 revealed temporal variations of deep flow at mid-latitude in the western North Pacific. The deep-circulation flow carrying the Lower Circumpolar Deep Water from the Southern Ocean passed 33°N, 165°E northwestward with a high mean velocity of 7.8 cm s−1 near the bottom and was stable enough to continue for 4–6 months between interruptions of 1- or 2-months duration. The deep-circulation flow expanded or shifted intermittently to the mooring at 31°N, 165°E but did not reach 35°N, 165°E although it shifted northward. The deep-circulation flow was not detected at the other four moorings, whereas meso-scale eddy variations were prominent at all the moorings, particularly at 35°N and 29°N, 165°E. The characteristics of current velocity and dissolved oxygen distributions led us to conclude that the deep-circulation flow takes a cyclonic pathway after passing through Wake Island Passage, passing 24°N, 169.5–173°E and 30°N, 168–169°E northward, proceeds northwestward around 33°N, 165°E, and goes westward through the south of the Shatsky Rise. We did not find that the deep-circulation flow proceeded westward along the northern side of the Mid-Pacific Seamounts and eastward between the Hess Rise and the Hawaiian Ridge toward the Northeast Pacific Basin.  相似文献   

19.
The present study extends the investigations of the hydrodynamic forces on a cylinder, laid on, or partly buried in the bed. They were determined by measuring the pressure distribution on the cylinder surface in the case of steady current, waves and coexisting flow. The pressure distribution around the cylinder was measured by using pressure transducers, which were replaced in the cylinder. Force coefficients were obtained for the ranges of Re=0.8×104–1.5×104, for steady current, low KC numbers (KC<5) for wave alone case and, for current-to-wave velocity RATIO=0, 3, 6 and infinity (current) for coexisting flow. The forces were also determined for the various burial-depth-to-diameter ratios between 0 and 0.7 values of the cylinder.  相似文献   

20.
The aromatic fraction from crude oil has a substantial solubility in water and as a result makes up the major hydrocarbon components of processed ballast water.1,2 The purpose of this study was to investigate the metabolism of several of the major components of this processed water by Chinook salmon, Oncorynchus tschawytscha, liver microsomes. The metabolic products of toluene and ethylbenzene in this microsomal system, as determined by gas chromatography-mass spectrometry, were benzyl alcohol and 1-phenylethanol, respectively. The conditions for the microsomal incubations were 20°C, pH 7·5, and an ionic strength of 0·126. A linear rate of benzyl alcohol and 1-phenylethanol formation is observed during the first 30 to 60 min followed by a decrease in the rate between 60 and 90 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号