首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1 IntroductionIn coastal areas a ubiquitous phenomenon is theformation of ripples in the seabed. It is now widelyaccepted that the flow and sediment transport overseabed are vital in relation to erosion, surface wavedissipation and pollution dispersion et…  相似文献   

2.
Regular waves were applied in a laboratory flume to investigate the evolutions of the velocity fields near above a fine sandy bed (d50=0.073 mm) during fluidized responses. Measurements of 2D velocity components and suspended sediment concentration (SSC) at 1 cm above the bed in addition to water surface displacements and sub-soil pore pressures were carried out with an acoustic Doppler velocimeter and an optical probe. The results have shown similar three typical soil responses including one unfluidized and two fluidized responses to previous report in other fine-grained soil beds. In the post- and pre-fluidized stages of a resonantly fluidized response, amplitudes of horizontal velocity component can be decreased by a maxima value of 50% while vertical components can be amplified up to 5 times larger. The developments of near-bed velocity field become less significant in consecutive non-resonantly fluidized responses. Particularly, the evolutions of the velocity field are closely dependent on the deepening of fluidized surface soil layers df and the characteristics of soil fluidization responses. The amplified vertical velocity components are clearly contradictory to the dissipated overloading waves near above a fluidized bed but are critical to much drastic sediment suspensions by interactions between overloading waves and fluidized bed soils.  相似文献   

3.
Water surface profiles and horizontal and vertical water particle velocity components have been measured to investigate the properties of intermediate depth waves generated in the laboratory. The data has been compared with linear wave theory. It was found that linear theory predicted the attenuation of velocity field with depth successfully and that it overestimates both components of velocity slightly.  相似文献   

4.
Philip A Allen 《Marine Geology》1984,60(1-4):455-473
Ancient sea conditions can be estimated from the grain size, spacing and steepness of preserved ripple-marks. The element of greatest uncertainty in such reconstructions is the relationship between near-bed orbital diameter of water particles and the ripple spacing. This relationship is simple for vortex ripples of high steepness but is problematical for the low-steepness forms known as post-vortex, rolling-grain or anorbital ripples.

The existence field for wave ripples is between the threshold velocity for sediment movement and the onset of sheet flow, most low-steepness forms occurring close to the bed planation threshold. A range of maximum period of formative waves can be obtained using combinations of orbital diameter and orbital velocity, assuming linear wave theory to be a reasonable approximation.

Probable wave heights, wave lengths and water depths can be investigated using the transformation of wave parameters in shallowing waters and the constraints on wave dimensions provided by the wave-breaking condition. Given reasonable estimates of wave height, crude estimates of wave power allow a comparison of ancient wave-influenced sequences with modern counterparts.

Wave ripple-marks preserved in the Upper Marine Molasse of western Switzerland have been investigated. Results, which are in agreement with regional geology, suggest deposition in a seaway of approximately 100 km width, where moderate period waves (T = 3–6 s) were generated. The depositional facies belts were adjusted to the prevailing waves, tides and fluvial outflows.  相似文献   


5.
In recent years, instrumentation for field flow measurements has become more and more sophisticated. In particular, local pressure and velocity are measured at frequency rates up to at least 2 Hz, which gives information on wave energy. The present work describes the methods for partially standing wave measurement in the presence of current by use of coincident measurements of both horizontal velocity and pressure, or vertical velocity. Reflection calculated from either coincident horizontal and vertical velocities or three-gauge methods are compared. They are based on existing experiments carried out in an ocean wave basin for both regular and irregular waves in the presence of current. Applications to field measurements, out of and in the breaking zones are then presented. In the nearshore, coincident horizontal and vertical velocities far from the bottom, and coincident horizontal velocity and pressure close to the bottom give relevant information concerning partially standing waves.  相似文献   

6.
Unsteady two-dimensional Navier-Stokes equations and Navier-Stokes type model equations for porous flow were solved numerically to simulate the propagation of water waves over a permeable rippled bed. A boundary-fitted coordinate system was adopted to make the computational meshes consistent with the rippled bed. The accuracy of the numerical scheme was confirmed by comparing the numerical results concerning the spatial distribution of wave amplitudes over impermeable and permeable rippled beds with the analytical solutions. For periodic incident waves, the flow field over the wavy wall is discussed in terms of the steady Eulerian streaming velocity. The trajectories of the fluid particles that are initially located close to the ripples were also determined. One of the main results herein is that under the action of periodic water waves, fluid particles on an impermeable rippled bed initially moved back and forth around the ripple crest, with increasing vertical distance from the rippled wall. After one or two wave periods, they are then lifted towards the next ripple crest. All of the marked particles on a permeable rippled bed were shifted onshore with a much larger displacement than those on an impermeable bed. Finally, the flow fields and the particle motions close to impermeable and permeable beds induced by a solitary wave are elucidated.  相似文献   

7.
The present paper proposes a numerical model to determine horizontal and vertical components of the hydrodynamic forces on a slender submarine pipeline lying at the sea bed and exposed to non-linear waves plus a current. The new model is an extension of the Wake II type model, originally proposed for sinusoidal waves (Soedigdo et al., 1999) and for combined sinusoidal waves and currents (Sabag et al., 2000), to the case of periodic or random waves, even with a superimposed current. The Wake II type model takes into account the wake effects on the kinematic field and the time variation of drag and lift hydrodynamic coefficients. The proposed extension is based on an evolutional analysis carried out for each half period of the free stream horizontal velocity at the pipeline. An analytical expression of the wake velocity is developed starting from the Navier–Stokes and the boundary layer equations. The time variation of the drag and lift hydrodynamic coefficients is obtained using a Gaussian integration of the start-up function. A reduced scale laboratory investigation in a large wave flume has been conducted in order to calibrate the empirical parameters involved in the proposed model. Different wave and current conditions have been considered and measurements of free stream horizontal velocities and dynamic pressures on a bottom-mounted pipeline have been conducted. The comparison between experimental and numerical hydrodynamic forces shows the accuracy of the new model in evaluating the time variation of peaks and phase shifts of the horizontal and vertical wave and current induced forces.  相似文献   

8.
《Coastal Engineering》2001,42(2):173-197
Intra-wave sediment suspension is examined using high-resolution field measurements and numerical hydrodynamic and sediment models within 120 mm of a plane seabed under natural asymmetric waves. The detailed measurements of suspended sediment concentration (at 5 mm vertical resolution and at 4 Hz) showed two or three entrainment bursts around peak flow under the wave crest and another at flow reversal during the decelerating phase. At flow reversal, the mixing length was found to be approximately double the value attained at peak flow under the crest. To examine the cause of multiple suspension peaks and increased diffusion at flow reversal, a numerical “side-view” hydrodynamic model was developed to reproduce near-bed wave-induced orbital currents. Predicted currents at the bed and above the wave boundary layer were oppositely directed around flow reversal and this effect became more pronounced with increasing wave asymmetry. When the predicted orbital currents and an enhanced eddy diffusivity during periods of oppositely directed flows were applied in a Lagrangian numerical sediment transport model, unprecedented and extremely close predictions of the measured instantaneous concentrations were obtained. The numerical models were simplified to incorporate only the essential parameters and, by simulating at short time scales, empirical time-averaged parameterisations were not required. Key factors in the sediment model were fall velocities of the full grain size distribution, diffusion, separation of entrainment from settlement, and non-constant, but vertically uniform, eddy diffusivity. Over the plane bed, sediment convection by wave orbital vertical currents was found to have no significant influence on the results.  相似文献   

9.
《Coastal Engineering》2004,51(2):155-172
The bed load transport rate under random waves plus current has been predicted for a large range of wave–current conditions. A parameterized model valid for regular waves plus current has been used in Monte Carlo simulations, assuming the wave amplitudes to be Rayleigh distributed. The mean value, standard deviation and numerical estimates of the probability density function of the bed load transport rate are presented for a wide range of wave–current conditions. It appears that overall the effect of the current is dominating the bed load transport rate. Moreover, a significant scatter of the bed load transport rate under random waves plus current is found. Such a scatter is also found in field measurements by Amos et al. [J. Coast. Res. 15 (1999) 1]. Predicted ripple migration rates in the bed load regime have been compared with those obtained from field measurements by Amos et al. [J. Coast. Res. 15 (1999) 1], taking the bed load transport rate to be proportional to the ripple migration rate times the ripple height. Overall, the predictions capture the qualitative as well as the quantitative behaviour of the ripple migration rates in a wide range of wave–current conditions; the ripple migration rates, and thereby the bed load, are predicted within the correct order of magnitude for a wide range of wave–current conditions.  相似文献   

10.
Based on the 3rd-order Stokes wave theory, the speed of freak waves is formulated in terms of the period and the wave height. Finite modified wave steepness gives rise to a significant enhancement of the nonlinear contributions to the freak wave speed in comparison with the 3rd-order Stokes wave theory. For a fix modified wave steepness, the estimated amplification of the nonlinear contributions due to the deviation from the 3rd-order Stokes wave theory is 0.22~0.99. In addition, the velocity and acceleration fields are also documented in detail. In the present simulation, the horizontal velocities are smaller than the wave speed, and the freak wave exhibits a maximal horizontal velocity up to 37% of the wave speed and a maximal vertical acceleration up to about 20% of the gravitational acceleration.  相似文献   

11.
A new database of laboratory experiments involving sand transport processes over horizontal, mobile sand beds under full-scale non-breaking wave and non-breaking wave-plus-current conditions is described. The database contains details of the flow and bed conditions, information on which quantities were measured and the value of the measured net sand transport rate for 298 experiments conducted in 7 large-scale laboratory facilities. Analysis of the coverage of the experiments and the measured net sand transport rates identified the following gaps in the range of test conditions and/or the type of measurements: (i) graded sand experiments, (ii) wave-plus-current experiments and (iii) intra-wave velocity and concentration measurements in the ripple regime. Furthermore, it highlights two areas requiring further research: (i) the differences in sand transport processes and sand transport rates between real waves and tunnel flows with nominally similar near-bed oscillatory flow conditions and (ii) the effects of acceleration skewness on transport rates. The database is a useful resource for the development and validation of sand transport models for coastal applications.  相似文献   

12.
On protected mudflats and along sheltered tidal channel margins, wave- and current-generated ripples are frequently observed on surficial and subsurface mud beds, although such bedforms are generally not thought to occur in cohesive sediments. In this paper, examples of such ripple marks in the German Wadden Sea (back-barrier tidal flats of Spiekeroog island) and also along the west coast of Korea (Baeksu tidal flats) are documented and analyzed. The mud ripples are 5–8 cm in spacing and 0.3–0.8 cm in height, and are composed of slightly sandy to virtually pure mud (80–98% mud content). For the Spiekeroog study area, a comparison of in situ particle-size measurements of suspended matter and of dispersed mud collected from the ripples shows that the former consists of low-density flocs which are considerably larger than the constituent grains of the latter. To assess local wave effects, near-bed orbital velocities and orbital diameters were calculated on the basis of standard wave theory using estimated wave parameters at the time of the study (June 2004) as well as wave data recorded nearby within the back-barrier tidal basin. The relationships between grain size, morphometric ripple parameters, and the near-bed orbital diameter show the wave-generated mud ripples to be of the orbital post-vortex type. It is demonstrated that only short-period shoaling (intermediate water depth) waves with periods of 1.5–2.5 s and heights of 0.1–0.5 m are able to generate and maintain such ripples. Corresponding near-bed orbital velocities range from 8–32 cm s–1 and near-bed orbital diameters from 6.25–10 cm. It can be anticipated that increased current shear and turbulence associated with higher and longer waves prevent ripple formation due to the resuspension of settled mud, and the breakdown of suspended flocs and aggregates into smaller particles which then tend to remain in suspension. The most plausible explanation for the formation of the mud ripples is that mud flocs and aggregates deposited from suspension around high-water slack tide under moderate weather conditions initially respond as single (non-cohesive) particles which are hydraulically equivalent to ambient very fine sands. During exposure at low tide, gradual loss of water transforms the rippled mud into increasingly more cohesive mud drapes which are more resistant to erosion. Unless destroyed during high-energy events, the mud ripples may remain intact long enough to become buried and thereby preserved. Indeed, occasional but persistent observations of ripples in sub-Recent to ancient mudrocks document their preservation potential.  相似文献   

13.
基于二阶斯托克斯波理论推导了辐射应力的垂向分布表达式,通过算例讨论了辐射应力在深水和有限水深条件下的垂向分布规律,并与基于微幅波理论的辐射应力进行了比较.结果表明,在波浪非线性不强时,基于二阶斯托克斯波理论的辐射应力与基于微幅波理论的辐射应力表达式计算结果接近;而当水深较浅波浪非线性较强时,基于二阶斯托克斯波理论的辐射应力在近表面处明显大于基于微幅波理论的辐射应力.采用二阶斯托克斯波理论推导的波浪辐射应力更为合理地反映了波浪非线性效应.  相似文献   

14.
Tide-driven bed load transport is an important portion of the net annual sediment transport rate in many shoreface and shelf environments. However, bed load transport under waves cannot be measured in the field and bed load transport by currents without waves is barely measurable, even in spring tidal conditions. There is, consequently, a strong lack of field data and validated models. The present field site was on the shoreface and inner shelf at 2 to 8.5 km offshore the central Dutch coast (far outside the surfzone), where tidal currents flow parallel to the coast. Bed load transports were carefully measured with a calibrated sampler in spring tidal conditions without waves at a water depth of 13–18 m with fine and medium sands. The near-bed flow was measured over nearly a year and used for integration to annual transport rates. An empirical bed load model was derived, which predicts bed load transports that are a factor of > 5 smaller than predicted by existing models. However, they agree with laboratory data of sand and gravel transport in currents near incipient motion. The damped transport rates may have been caused by cohesion of sediment or turbulence damping due to mud or biological activity. The annual bed load transport rate was calculated using a probability density function (pdf) derived from the near-bed current and orbital velocity data which represented the current and wave climate well when compared to 30 years of data from a nearby wave station. The effect of wave stirring was included in the transport calculations. The net bed load transport rate is a few m2/year. This is much less than predicted in an earlier model study, which is partly due to different bed load models but also due to the difference in velocity pdf. The annual transport rate is very sensitive to the probability of the largest current velocities.  相似文献   

15.
Based on a wave bottom boundary layer model and a sediment advection-diffusion model, seven turbulence schemes are compared regarding their performances in prediction of near-bed sediment suspension beneath waves above a plane bed. These turbulence algorithms include six empirical eddy viscosity schemes and one standard two-equation k-ε model. In particular, different combinations of typical empirical formulas for the eddy viscosity profile and for the wave friction factor are examined. Numerical results are compared with four laboratory data sets, consisting of one wave boundary layer hydrodynamics experiment and three sediment suspension experiments under linear waves and the Stokes second-order waves. It is shown that predictions of near-bed sediment suspension are very sensitive to the choices of the empirical formulas in turbulence schemes. Simple empirical turbulence schemes are possible to perform equally well as the two-equation k-ε model. Among the empirical schemes, the turbulence scheme, combining the exponential formula for eddy viscosity and Swart formula for wave friction factor, is the most accurate. It maintains the simplicity and yields identically good predictions as the k-ε model does in terms of the wave-averaged sediment concentration.  相似文献   

16.
《Coastal Engineering》2006,53(5-6):441-462
The structure of large-scale turbulence under a broken solitary wave on a 1 in 50 plane slope was studied. Three-component velocity measurements were taken at different heights above a smooth bed in the middle surf zone using an acoustic Doppler velocimeter. The measured data showed that turbulent velocity components were well correlated in the middle part of the water column. The velocity correlations could be produced by an oblique vortex similar to the obliquely descending eddy observed previously by other investigators. The vertical distributions of the relative values of the components of the Reynolds stress tensor showed that the structure of turbulence evolved continuously between the free surface and the bottom. The evolution was related to transition from two-dimensional to three-dimensional flow structures and the effect of the solid bottom on flow structures. Time histories of measured turbulent kinetic energy and turbulence stresses showed episodic turbulent events near the free surface but more sporadic turbulence in the lower layer. Large or intense turbulent events were found to have short duration and time lag relative to the wave crest point. These events also maintained good correlations between the turbulence velocity components close to the bottom.Instantaneous turbulent velocity fields were measured near the bottom at the same cross-shore location by using a stereoscopic particle image velocimetry system. These measurements showed that the near-bed flow field was characterized by large-scale, coherent flow structures that were the sources of most of the turbulent kinetic energy and turbulence stresses. The types of organized flow structures observed included vortices and downbursts of turbulence descending directly from above, lateral spreading of turbulent fluid along the bed, and formation of vortices in shear layers between fluid streams. A common feature of the organized flow structures near the bed was the large turbulence velocities in the longitudinal and transverse directions, which reflected the influence of a solid bottom on the breaking-wave-generated turbulence arriving at the bed.  相似文献   

17.
Field measurements of cross-shore currents 0.25 m from the bed were made on two natural beaches under a range of incident wave conditions. The results indicated the presence of a relatively strong, offshore-directed mean current, both within and seaward of the surf zone. Typical velocities within the surf zone were of the order of 0.2–0.3 m/s. This bed return flow, or “undertow”, represents a mass conservation response, returning water seaward that was initially transported onshore in the upper water column, primarily above the trough of the incident waves. The measurements demonstrated that the bed return flow velocity increases with the incident wave height. In addition, the crossshore distribution of the bed return flow is characterised by a mid-surf zone maximum, which exhibits a strong decrease in velocity towards the shoreline and a more gradual decay in the offshore direction. Several bed return flow models based on mass continuity were formulated to predict the cross-shore distribution of the bed return flow under an irregular wave field and were compared with the field data. Best agreement was obtained using shallow water linear wave theory, after including the mass transport associated with unbroken waves. The contribution of the unbroken waves enables net offshore-directed bottom currents to persist outside the region of breaking waves, providing a mechanism, other than rip currents, to transport sediment offshore beyond the surf zone.  相似文献   

18.
The three-dimensional numerical model with σ-coordinate transformation in the vertical direction is applied to the simulation of surface water waves and wave-induced laminar boundary layers. Unlike most of the previous investigations that solved the simplified one-dimensional boundary layer equation of motion and neglected the interaction between boundary layer and outside flow, the present model solves the full Navier–Stokes equations (NSE) in the entire domain from bottom to free surface. A non-uniform mesh system is used in the vertical direction to resolve the thin boundary layer. Linear wave, Stokes wave, cnoidal wave and solitary wave are considered. The numerical results are compared to analytical solutions and available experimental data. The numerical results agree favorably to all of the experimental data. It is found that the analytical solutions are accurate for both linear wave and Stokes wave but inadequate for cnoidal wave or solitary wave. The possible reason is that the existing analytical solutions for cnoidal and solitary waves adopt the first-order approximation for free stream velocity and thus overestimate the near bottom velocity. Besides velocity, the present model also provides accurate results for wave-induced bed shear stress.  相似文献   

19.
S.Y. Boo   《Ocean Engineering》2006,33(2):219-233
Wave forces on a vertical truncated circular cylinder in Stokes waves with the wave slopes ranging from 0.06 to 0.24, are measured in a wave tank. The higher harmonic wave forces are compared with the available values from theories of the FNV (Faltisen–Newman–Vinje) model and Varyani solution. The first harmonic horizontal forces measured are much larger than the theoretical values from the FNV model, while the first harmonic vertical forces are well predicted by the Varyani theory. It was also found that the FNV model significantly overpredicts the second harmonic horizontal forces in high frequency waves, but under predicts the third harmonic forces. The differences between the actual measurement and the theory, in the second and third harmonic horizontal forces, become smaller at low wave frequencies as the wave slope increases. In addition, the transverse instabilities in the incoming waves with high wave slope were observed, which is due to the nonlinear modulation. Measurements were, thus, carried out before the instability occurred.  相似文献   

20.
Free internal waves are considered in a Boussinesq approximation in the situation when horizontal eddy viscosity and diffusion in a vertically inhomogeneous flow are taken into account. The dispersion relation and wave damping factor are found in a linear approximation. The Stokes drift velocity is determined in the second order of smallness based on the wave amplitude. It has been indicated that the Stokes drift velocity, transverse with respect to the wave propagation direction, differs from zero if the flow-rate transverse component depends on the vertical coordinate. Vertical momentum fluxes differ from zero and can be comparable with or exceed the corresponding turbulent fluxes if eddy viscosity and diffusion are taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号