首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
畸形波传播速度实验和数值模拟研究   总被引:1,自引:1,他引:0  
畸形波的传播速度是其最重要的特征参数之一。研究畸形波的传播速度有助于深入和全面了解畸形波的生成机理及其演化过程,另外还可以用于畸形波的预报。针对现有关于畸形波传播速度计算方法(高阶Stokes波理论近似估算,Hilbert变换和两固定点的距离除以畸形波的波峰经过两点所用时间)的不准确性和局限性,使用32个测点描述畸形波波峰沿波浪水槽的运动轨迹,再用回归分析法估算波峰运动轨迹与时间的相关关系,从而计算出畸形波的传播速度。基于288组物理模拟畸形波和364组数值模拟畸形波传播速度的计算结果,使用回归分析方法得出了畸形波传播速度的半经验半理论计算公式,同时还分析了畸形波传播速度的强非线性特征。  相似文献   

2.
Deng  Yan-fei  Tian  Xin-liang  Li  Xin 《中国海洋工程》2019,33(5):608-617
The nonlinear wave forces on vertical cylinders induced by freak wave trains were experimentally investigated. A series of freak wave trains with different wave steepness were modeled in a wave flume. The corresponding wave forces on vertical cylinders of different diameters were measured. The experimental wave forces were also compared with the predicted results based on Morison formula. Particular attentions were paid to the effects of wave steepness on the dimensionless peak forces, asymmetry characteristics of the impact forces and high-frequency force components. Wavelet-based analysis methods were employed in revealing the local energy structures and quadratic phase coupling in the freak wave forces.  相似文献   

3.
Freak waves are extreme and unexpected surface waves with huge wave heights that may lead to severe damage to ships and offshore structures. However, few researches have been conducted to investigate the impact underneath fixed horizontal decks caused by freak waves. To study these phenomena, a 2-D numerical wave tank is built in which nonlinear freak waves based on the Peregrine breather solution are generated. As a validation, a regular-wave-induced underneath impact is simulated and compared to the existing experimental measurements. Then the nonlinear freak-wave-induced impact is investigate with different values of deck clearance above the mean free surface. In addition, a comparative simulation of a “large” regular wave based on the 2nd-order Stokes wave theory with the same crest height and wave length of the nonlinear freak wave is carried out to reveal the unique features of the nonlinear freak-wave-induced impact. By applying a fluid–structure interaction (FSI) algorithm in which the bottom deck and front side wall are simplified as Euler beams in 2-D and discretized by the finite element method (FEM), the hydroelastic effects are considered during the impact event. The vertical force acting underneath the bottom deck, the transversal force acting on the front side wall, the structural displacements of the elastic deck and wall are analyzed and discussed respectively, from which meaningful conclusions are drawn.  相似文献   

4.
The vertical acceleration threshold concept has been applied to evaluate the limiting wave height in the train of wind-induced waves propagated over a horizontal bottom. This concept yields very simple computation of the probability of breaking for stochastic sea in deep and finite water depths. The computations confirmed the available field and laboratory observations that the limiting wave steepness in the deep water is lower than the steepness predicted by Stokes. For shallow water depth, the limiting wave height is smaller than 0.55h. This conclusion is consistent with field as well as wave tank observations.  相似文献   

5.
Theoretical results for second-order wave run-up around a large diameter vertical circular cylinder are compared to results of 22 laboratory experiments conducted in regular nonlinear waves. In general, the second-order theory explains a significant portion of the nonlinear wave run-up distribution measured at all angles around the cylinder. At the front of the cylinder, for example, measured maximum run-up exceeds linear theory by 44% on average but exceeds the nonlinear theory by only 11% on average. In some cases, both measured run-up and the second-order theory exceed the linear prediction by more than 50%. Similar results are found at the rear of the cylinder where the second-order theory predicts a large increase in wave amplitude for cases where the linear diffraction theory predicts little or no increase. Overall, the nonlinear diffraction theory is found to be valid for the same relative depth and wave steepness conditions applicable to Stokes second-order plane-wave theory. In the last section of the paper, design curves are presented for estimating the maximum second-order wave run-up for a wide range of conditions in terms of the relative depth, relative cylinder size, and wave steepness.  相似文献   

6.
An efficient focusing model for generation of freak waves   总被引:1,自引:1,他引:0  
Based on the Longuet-Higgins wave model theory, the previews studies have shown that freak waves can be generated in finite space and time successfully. However, as to generating high nonlinear freak waves, the simulation results will be unrealistic. Therefore, a modified phase modulation method for simulating high nonlinear freak waves was developed. The surface elevations of some wave components at certain time and place are positive by modulating the corresponding random initial phases, then the total surface elevation at the focused point is enhanced and furthermore a freak wave event is generated. The new method can not only make the freak wave occur at certain time and place, but also make the simulated wave surface time series satisfy statistical properties of the realistic sea state and keep identical with the target wave spectrum. This numerical approach is of good precision and high efficiency by the comparisons of the simulated freak waves and the recorded freak waves.  相似文献   

7.
An experimental and numerical study of the freak wave speed   总被引:2,自引:2,他引:0  
The propagation speed is one of the most important characteristics for describing freak waves. The research of freak wave speed is not only helpful for understanding the generation mechanism and evolution process of freak waves, but also applicable to the prediction. A stable and accurate method is proposed for the calculation of the freak wave speed, in which physical model tests are carried out to measure the motion of the largest wave crest along the wave tank. The linear regression relationship between the spatial position of the largest wave crest and instantaneous moment is established to calculate the speed of totally 248 cases of experimental freak waves and 312 supplementary cases of numerical freak waves. Based on the calculate results, a semitheoretical and semiempirical formula is proposed by using a regression analysis method to predict the speed of the freak wave, and the nonlinear characteristic of the freak wave speed is also investigated.  相似文献   

8.
Nonlinear Dispersion Relation in Wave Transformation   总被引:13,自引:1,他引:13  
1 .Introduction1ThisworkwasfinanciallysupportedbytheNaturalScienceFoundationofChina (GrantNo .4 0 0 760 2 6and 4 0 0 760 2 8) Correspondingauthor.E mail:rjli@hhu .edu .cn  Itisaveryusefulandeffectivewaytoadjustthewavedispersionrelationforthestudyofthenon linearityofwavepro…  相似文献   

9.
Owing to the Benjamin-Feir instability,the Stokes wave train experiences a modulation-demodulation process,and presents a recurrence characteristics.Stiassnie and Shemer researched the unstable evolution process and provided a theoretical formulation for the recurrence period in 1985 on the basis of the nonlinear cubic Schr dinger equation(NLS).However,NLS has limitations on the narrow band and the weak nonlinearity.The recurrence period is re-investigated in this paper by using a highly efficient High Order Spectral(HOS) method,which can be applied for the direct phaseresolved simulation of the nonlinear wave train evolution.It is found that the Stiassnie and Shemer’s formula should be modified in the cases with most unstable initial conditions,which is important for such topics as the generation mechanisms of freak waves.A new recurrence period formula is presented and some new evolution characteristics of the Stokes wave train are also discussed in details.  相似文献   

10.
The present research aims at clarifying the effects of freak wave on the motion and dynamic responses of a semisubmersible. To reveal the effects of mooring stiffness, two mooring systems were employed in the model tests and time-domain simulations. The 6-DOF motion responses and mooring tensions have been measured and the 3-DOF motions of fairleads were calculated as well. From the time series, trajectories and statistics information, the interactions between the freak wave and the semisubmersible have been demonstrated and the effects of mooring stiffness have been identified. The shortage of numerical simulations based on 3D potential flow theory is presented. Results show that the freak wave is likely to cause large horizontal motions for soft mooring system and to result in extremely large mooring tensions for tight mooring system. Therefore, the freak wave is a real threat for the marine structure, which needs to be carefully considered at design stage.  相似文献   

11.
Kinematics of extreme waves in deep water   总被引:2,自引:0,他引:2  
The velocity profiles under crest of a total of 62 different steep wave events in deep water are measured in laboratory using particle image velocimetry. The waves take place in the leading unsteady part of a wave train, focusing wave fields and random wave series. Complementary fully nonlinear theoretical/numerical wave computations are performed. The experimental velocities have been put on a nondimensional form in the following way: from the wave record (at a fixed point) the (local) trough-to-trough period, TTT and the maximal elevation above mean water level, ηm of an individual steep wave event are identified. The local wavenumber, k and an estimate of the wave slope, ε are evaluated from ω2/(gk)=1+ε2, where ω=2π/TTT and g denotes the acceleration of gravity. A reference fluid velocity, is then defined. Deep water waves with a fluid velocity up to 75% of the estimated wave speed are measured. The corresponding kηm is 0.62. A strong collapse of the nondimensional experimental velocity profiles is found. This is also true with the fully nonlinear computations of transient waves. There is excellent agreement between the present measurements and previously published Laser Doppler Anemometry data. A surprising result, obtained by comparison, is that the nondimensional experimental velocities fit with the exponential profile, i.e. eky, y the vertical coordinate, with y=0 in the mean water level.  相似文献   

12.
驱动非线性浅水波的行波特征研究   总被引:2,自引:1,他引:1  
采用带有外界强迫效应的浅水动力学模式研究非线性波动、获得了依赖于外界输入形式的驱动水波的行波解。研究结果表明,驱动水波仍具有非线性波动的一般性质,而当外界强迫波速与水波固有速度一致时,水波出现共振效应,并且外界强迫孤立子将导致驱动水波孤立子产生。  相似文献   

13.
Efficient Simulation of Freak Waves in Random Oceanic Sea States   总被引:1,自引:0,他引:1  
Numerical simulations of freak wave generation are studied in random oceanic sea states described by JONSWAP spectrum.The evolution of initial random wave trains is numerically carried out within the framework of the modified fourorder nonlinear Schruedinger equation (mNLSE),and some involved influence factors are also discussed.Results show that if the sideband instability is satisfied,a random wave train may evolve into a freak wave train,and simultaneously the setting of the Phillips parameter and enhancement coefficient of JONSWAP spectrum and initial random phases is very important for the formation of freak waves.The way to increase the generation efficiency of freak waves thsough changing the involved parameters is also presented.  相似文献   

14.
针对舵减摇系统的 H∞混合灵敏度问题,研究了控制系统设计中的限制因素,指出舵减摇控制系统的性能(灵敏度特性)要受到Bode积分定理的约束,因此在船舶横摇自然频率附近的频段内性能不能做到太低.考虑这些限制条件,并从基本的性能要求出发,详细说明了舵减摇系统 H∞设计中权函数的确定.经过多次重新设计和对比,给出了一组最为合理的设计结果.仿真结果表明,所设计的 H∞控制系统满足性能要求,而且取得了很高地减摇效果.  相似文献   

15.
Numerical simulation and mechanism analysis of freak waves   总被引:1,自引:1,他引:1  
A numerical wave model based on the modified fourth-order nonlinear Schroe dinger equation(mNLSE) in deep water was developed to simulate the formation of freak waves and a standard split-step,pseudo-spectral method was used to solve the equation.The validation of the model is firstly verified,then the simulation of freak waves was performed by changing sideband conditions,and the variation of wave energy was also analyzed in the evolution.The results indicate that Benjamin-Feir instability(sideband instability) is an important mechanism for freak wave formation.  相似文献   

16.
Generation and Properties of Freak Waves in A Numerical Wave Tank   总被引:3,自引:3,他引:3  
Freak waves are generated based on the mechanism of wave focusing in a 2D numerical wave tank. To set up the nonlinear numerical wave tank, the Boundary Element Method is used to solve potential flow equations incorporated with fully nonlinear free surface boundary conditions. The nonlinear properties of freak waves, such as high frequency components and wave profile asymmetry, are discussed. The kinematic data, which can be useful for the evaluation of the wave forces exerted on structures to avoid underestimation of linear predictions, are obtained, and discussed, from the simulated results of freak waves.  相似文献   

17.
Nobuhito Mori   《Ocean Engineering》2004,31(2):165-175
The Edgeworth’s form of a cumulative expansion of the probability density function (PDF) of surface elevation expands the maximum wave height distribution to predict the occurrence probability of freak waves. This study investigated the enhancement of the occurrence probability of freak waves due to the fourth order moment of surface elevation, kurtosis, change and found that the nonlinear effects on the occurrence probability of a freak wave linearly depends on kurtosis for a small number of waves N=250. The statistical theory was compared with field data, and freak waves sometimes appear when not expected by the Rayleigh theory, but they were predicted by the proposed theory.  相似文献   

18.
With the potential danger posed by freak waves, impact loads due to wave slamming on horizontal slabs has become crucial in the context of design of offshore platform decks. A laboratory model study has been carried out to investigate the slamming effect on horizontal slabs using regular waves at different frequencies with the measurement of vertical forces. A modified slamming coefficient independent of frequency has been suggested to be used conveniently for design purposes. A new technique for the generation of freak waves in the laboratory has been successfully achieved without close loop iterations. Finally the impact phenomenon due to freak waves on slabs has been discussed, which includes the study of both vertical and horizontal forces.  相似文献   

19.
An extremely large (“freak”) wave is a typical though rare phenomenon observed in the sea. Special theories (for example, the modulation instability theory) were developed to explain mechanics and appearance of freak waves as a result of nonlinear wave-wave interactions. In this paper, it is demonstrated that the freak wave appearance can be also explained by superposition of linear modes with the realistic spectrum. The integral probability of trough-to-crest waves is calculated by two methods: the first one is based on the results of the numerical simulation of a wave field evolution performed with one-dimensional and two-dimensional nonlinear models. The second method is based on calculation of the same probability over the ensembles of wave fields constructed as a superposition of linear waves with random phases and the spectrum similar to that used in the nonlinear simulations. It is shown that the integral probabilities for nonlinear and linear cases are of the same order of values  相似文献   

20.
为了拓宽建立深水非线性海浪频谱模型的研究途径,基于三阶斯托克斯波理论,提出了以改进的三阶斯托克斯波为组成波,以修正的自回归模型(AR)谱估计方法得到的估计谱(简称新谱)为靶谱的非线性海浪模型。通过基于模拟频谱和相位谱反演海浪波面高度时间序列(以下简称海浪时历反演方法)的谱比较方法验证了新谱的优越性,为从根本上解决精确评估海浪谱提供了技术支撑,对于增强未来掌控海战场具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号