首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
晚新生代西太平洋通过水文循环和碳循环两类关键过程,对区域乃至全球气候变化产生深刻的影响。本文从上新世以来西太暖池及其主流系演化、晚第四纪北太平洋中层水演化和白令海峡开合、第四纪中国东部陆架环境演化以及新生代亚太沉积物源-汇过程与碳埋藏等方面,综述了西太平洋古海洋环境演化过程与机制。上新世以来西太暖池与印尼贯穿流的演化过程伴随构造运动而阶段性地发生,但其在轨道时间尺度上演化的细节过程并不清晰,尚未形成系统性认识。北太平洋中层水以及白令海峡开合等关键高纬过程在冰期旋回中发生了显著变化,并与低纬过程之间存在遥相关。第四纪中国东部陆架环境演化主要受控于海平面变化以及与低纬过程相关联的热量与物质传输,在此背景下,中国东部陆架形成了富有机碳的泥质沉积体系。构造隆升和亚洲季风驱动下的亚洲大陆与邻洋的沉积物源-汇过程具有显著的碳汇效应,可能在大气CO2浓度(${p_{{\rm{C}}{{\rm{O}}_2}}} $)冰期旋回和新生代气候变冷中发挥重要作用。就西太平洋古海洋环境演化过程与机制中若干关键科学问题开展深入和系统研究,不仅可为建立气候变化的低纬驱动理论提供支撑,也可为更好认识我国陆架环境变化规律以及碳汇潜力提供科学依据。  相似文献   

2.
应用Argo资料分析西北太平洋冬、夏季水团   总被引:1,自引:0,他引:1  
应用Argo剖面浮标观测的温、盐度资料,分析了西北太平洋海域冬、夏季的温、盐度分布、水团结构及其分布。首先采用T-S点聚图法分析了该海域水团分布的基本情况,由点聚分析结果可知,该海域至少存在6种以上水团;再用模糊聚类软化法对水团作进一步划分,分别计算了该海域6至11类水团的F和△F值,结果表明,冬、夏季的△F值都以划分为8类时为最大,这与大洋水团的稳定性是一致的,因此,该海域冬、夏季水团以划分为8类最佳,它们分别是北太平洋热带表层水、北太平洋次表层水、北太平洋中层水、北太平洋副热带模态水、北太平洋深层水和赤道表层水,以及南太平洋次表层水和南太平洋中层水。  相似文献   

3.
应用Argo资料分析西北太平洋冬、夏季水团   总被引:1,自引:0,他引:1  
应用Argo剖面浮标观测的温、盐度资料,分析了西北太平洋海域冬、夏季的温、盐度分布、水团结构及其分布。首先采用T-S点聚图法分析了该海域水团分布的基本情况,由点聚分析结果可知,该海域至少存在6种以上水团;再用模糊聚类软化法对水团作进一步划分,分别计算了该海域6至11类水团的F和△F值,结果表明,冬、夏季的△F值都以划分为8类时为最大,这与大洋水团的稳定性是一致的,因此,该海域冬、夏季水团以划分为8类最佳,它们分别是北太平洋热带表层水、北太平洋次表层水、北太平洋中层水、北太平洋副热带模态水、北太平洋深层水和赤道表层水,以及南太平洋次表层水和南太平洋中层水。  相似文献   

4.
利用Argo资料和《世界海洋数据集2001版》(WOD01)温盐历史资料,通过对代表性等位势面上盐度分布的分析,探讨了次表层和中层等不同层次上印尼贯通流(ITF)的起源与路径问题.分析结果表明,ITF的次表层水源主要来自北太平洋,中层水源地既包括北太平洋、南太平洋,同时也不能排除有印度洋的可能性.在印度尼西亚海域西部,ITF的次表层和中层水源分别为北太平洋热带水(NPTW)和中层水(NPIW),经苏拉威西海、望加锡海峡到达弗洛勒斯海,层次越深特征越明显.在印度尼西亚海域东部,发现哈马黑拉-新几内亚水道附近存在次表层强盐度锋面,阻隔了南太平洋热带水(SPTW)由此进入ITF海域;中层水具有高于NPIW和来自南太平洋的南极中层水(AAIW)的盐度值,既可能是AAIW和SPTW在当地发生剧烈垂直混合而形成,也可能是来自印度洋的AAIW向北延伸进入ITF的结果.  相似文献   

5.
Settling particles play an important role in transporting organic carbon from the surface to the deep ocean. It is known that major components of settling particles are biogenic silicates (opal), biogenic carbonate (CaCO3), lithogenic clays and organic matter. Since each component aggregates and/or takes in organic carbon, all of these components have the ability to transport particulate organic carbon (POC) to the interior of the ocean. In this study, sediment trap experiments were carried out in four areas of the western North Pacific (including a marginal sea). Factors are proposed that correlate the composition of settling particles with POC flux. Annual mean organic carbon fluxes at 1 km depth in the western North Pacific Basin, Japan Sea, Hidaka Basin and northern Japan Trench were found to be 14.9, 18.1, 13.0 and 6.6 mg/m2/day, respectively. Organic carbon flux in the western North Pacific was greater than that in the Eastern North Pacific (7.4), the Equatorial Pacific (4.2), the Southern Ocean (5.8) and the Eastern North Atlantic (1.8). In the western North Pacific, it was calculated that 52% of POC was carried by opal particles. Opal is known to be a major component even in the Eastern North Pacific and the Southern Ocean, and the opal fluxes in these areas are similar to those in the western North Pacific. However, the organic carbon flux that was carried by opal particles (OCopalflux) in the western North Pacific was greater than that in the Eastern North Pacific and the Southern Ocean. These results indicate that the ability of opal particles to transport POC to the deep ocean in the western North Pacific is greater than that in the other areas.  相似文献   

6.
Two field observations were conducted around the Lembeh Strait in September 2015 and 2016, respectively.Evidences indicate that seawater around the Lembeh Strait is consisted of North Pacific Tropical Water(NPTW),North Pacific Intermediate Water(NPIW), North Pacific Tropical Intermediate Water(NPTIW) and Antarctic Intermediate Water(AAIW). Around the Lembeh Strait, there exist some north-south differences in terms of water mass properties. NPTIW is only found in the southern Lembeh Strait. Water mass with the salinity of 34.6 is only detected at 200–240 m between NPTW and NPTIW in the southern Lembeh Strait, and results from the process of mixing between the saltier water transported from the South Pacific Ocean and the lighter water from the North Pacific Ocean and Sulawesi Sea. According to the analysis on mixing layer depth, it is indicated that there exists an onshore surface current in the northern Lembeh Strait and the surface current in the Lembeh Strait is southward.These dramatic differences of water masses demonstrate that the less water exchange has been occurred between the north and south of Lembeh Strait. In 2015, the positive wind stress curl covering the northern Lembeh Strait induces the shoaling of thermocline and deepening of NPIW, which show that the north-south difference of airsea system is possible of inducing north-south differences of seawater properties.  相似文献   

7.
On the basis of Argo data and historic temperature/salinity data from the World Ocean Database 2001 ( WOD01 ), origins and spreading pathways of the subsurface and intermediate water masses in the Indonesian Throughflow (ITF) region were discussed by analyzing distributions of salinity on representative isopyenal layers. Results were shown that, subsurface water mostly comes from the North Pacific Ocean while the intermediate water originates from both the North and South Pacific Ocean, even possibly from the Indian Ocean. Spreading through the Sulawesi Sea, the Makassar Strait, and file Flores Sea, the North Pacific subsurface water and the North Pacific Intermediate water dominate the western part of the Indonesian Archipelago. Furthermore as the depth increases, the features of the North Pacific sourced water masses become more obvious. In the eastern part of the waters, high sa- linity South Pacific subsurface water is blocked by a strong salinity front between Halmahera and New Guinea. Intermediate water in the eastern interior region owns salinity higher than the North Pacific intermediate water and the antarctic intermediate water ( AAIW), possibly coming from the vertical mixing between subsurface water and the AAIW from the Pacific Ocean, and possibly coming from the northward extending of the AAIW from the Indian Ocean as well.  相似文献   

8.
The oceanic biogeochemical fluxes in the North Pacific, especially its northwestern part, are discussed to prove their importance on a global scale. First, the air-sea exchange processes of chemical substances are considered quantitatively. The topics discussed are sea salt particles transported to land, sporadic transport of soil dust to the ocean and its role in the marine ecosystem, the larger gas transfer velocity of CO2 indicating the effect of bubbles, and DMS and greenhouse gases other than CO2. Next, chemical tracers are utilized to reveal the water circulation systems in the region, which are the Pacific Deep Water including its vertical eddy diffusivity, the North Pacific Intermediate Water and the Japan Sea Deep Water. Thirdly, the particulate transport process of chemical substances through the water column is clarified by analyzing the distribution of insoluble radionuclides and the results obtained from sediment trap experiments. Fourthly, the northern North Pacific is characterized by stating the site decomposing organic matter and Si playing a key role in the marine ecosystem. Both are induced by the upwelled Pacific Deep Water. Fifthly, the oceanic CO2 system related to global warming is presented by clarifying the distribution of anthropogenic CO2 in the western North Pacific, and roles of the upwelled Pacific Deep Water and the continental shelf zone in the absorption of atmospheric CO2. Finally, Mn and other chemical substances in sediments are discussed as recorders of the early diagenesis and indicators of low biological productivity during glacial ages in the northwestern North Pacific. It is concluded that the western North Pacific is characterized mainly by the Pacific Deep Water bringing nutrients to the northern North Pacific, located at the exit of the global deep water circulation and, therefore, the region plays a key role in the global biogeochemical fluxes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
The annual transport of anthropogenic carbon (Canth) to the North Pacific Intermediate Water (NPIW) from the Western Subarctic Gyre (WSG) has been re-estimated by using newly estimated Oyashio transport and Canth concentration, the latter calculated by the recently-established “ΔC*” method with some modifications. Estimated annual Canth transport through the nearshore Oyashio west of 146°E was 0.020 ± 0.010 GtC y−1, closely approximating the previous estimation based on a 1-D model calibrated with the CFC vertical distribution. The present study, however, found that an additional 0.025 ± 0.010 GtC y−1 of Canth was transported into NPIW in the region east of 146°E. Total Canth transport, 0.045 GtC y−1, contributes about 35% of annual Canth accumulation of the whole temperate North Pacific. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
本文系统性地总结了第四纪黑潮源区沉积物的源-汇过程、主要控制因素及其碳循环效应方面的最新研究进展。基于不同学科的综合性指标研究结果一致表明:黑潮源区的碎屑沉积物主要来源于附近的吕宋岛和大陆架及远端的亚洲东部沙漠。在轨道、千年和百年等不同时间尺度上两者对研究区的物质输入主要与海平面高度和东亚季风强度相关,并最终受控于高、低纬过程的双重驱动。而人类活动对黑潮源区的影响则出现于距今2100 a。上述陆源物质对研究区的输入过程与古海洋生物生产力、海底有机碳埋藏通量和大气二氧化碳浓度间也有着良好的协变性,表明黑潮源区的沉积物源-汇过程对全球碳循环起着重要的调节作用。上述研究工作可以为更好地预测未来气候环境的变化趋势提供关键低纬度海区的区域性资料和理论支持。  相似文献   

11.
Evidence from geochemical tracers (salinity, oxygen, silicate, nutrients, alkalinity, dissolved inorganic carbon (DIC), carbon isotopes (δ13CDIC) and radiocarbon (Δ14C)) collected during the Pacific Ocean World Ocean Circulation Experiment (WOCE) voyages (P10, P15, P17 and P19) indicate there are three main water types at intermediate depths in the Pacific Ocean; North Pacific Intermediate Water (NPIW), Antarctic Intermediate Water (AAIW) and Equatorial Pacific Intermediate Waters (EqPIW). We support previous suggestions of EqPIW as a separate equatorial intermediate depth water as it displays a distinct geochemical signature characterised by low salinity, low oxygen, high nutrients and low Δ14C (older radiocarbon). Using the geochemical properties of the different intermediate depth waters, we have mapped out their distribution in the main Pacific Basin.From the calculated pre-formed δ13Cair–sea conservative tracer, it is evident that EqPIW is a combination of AAIW parental waters, while quasi-conservative geochemical tracers, such as radiocarbon, also indicate mixing with old upwelling Pacific Deep Waters (PDW). The EqPIW also displays a latitudinal asymmetry in non-conservative geochemical tracers and can be further split into North (NEqPIW) and South (SEqPIW) separated at ~2°N. The reason for this asymmetry is caused by higher surface diatom production in the north driven by higher silicate concentrations.The δ13C signature measured in benthic foraminifera, Cibicidoides spp.13CCib), from four core tops bathed in AAIW, SEqPIW and NPIW, reflects that of the overlying intermediate depth waters. The δ13CCib from these cores show similarities and variations down-core that highlight changes in mixing over the last 30,000 yr BP. The reduced offset between the δ13CCib of AAIW and SEqPIW during the last glacial indicates that AAIW might have had an increased influence in the eastern equatorial Pacific (EEP) region at this time. Additional intermediate depth cores and other paleo-geochemical proxies such as Cd/Ca and radiocarbon are required from the broader Pacific Ocean to further understand changes in intermediate depth water formation, circulation and mixing over glacial/interglacial cycles.  相似文献   

12.
The Prydz Bay in the Antarctic is an important area in the Southern Ocean due to its unique geographic feature. It plays an important role in the carbon cycle in the Southern Ocean. To investigate the distributions of carbon dioxide in the atmosphere and surface seawater and its air-sea exchange rates in this region, the Chinese National Antarctic Research Expedition (CHINARE) had set up several sections in the Prydz Bay. Here we present the results from the CHINARE-XVI cruises were presented onboard R/V Xue/ong from November 1999 to April 2000 and the main driving forces were discussed controlling the distributions of partial pressure of carbon dioxide. According to the partial pressure of carbon dioxide distributions, the Prydz Bay can be divided into the inside and outside regions. The partial pressure of carbon dioxide was low in the inside region but higher in the outside region during the measurement period. This distribution had a good negative correlation with the concentrations of ehlorophyll-a in general, suggesting that the partial pressure of carbon dioxide was substantially affected by biological production. The results also indicate that the biological produetion is most likely the main driving force in the marginal ice zone in the Southern Ocean in summer. However, in the Antarctic divergence sector of the Prydz Bay (about 64°S), the hydrological processes become the controlling factor as the sea surface partial pressure of carbon dioxide is much higher than the atmospheric one due to the upwelling of the high DIC CDW, and this made the outside of Prydz Bay a source of carbon dioxide. On the basis of the calculations, the CO2 flux in January (austral summer) was -3.23 mmol/(m^2 · d) in the inner part of Prydz Bay, i.e. , a sink of atmospheric CO2, and was 0.62 mmol/(m^2 · d) in the outside part of the bay, a weak source of atmospheric CO2. The average air-sea flux of CO2 in the Prydz Bay was 2.50 mmol/(m^2 · d).  相似文献   

13.
根据1986年11月至1990年6月进行的中美热带西太平洋海-气相互作用(TOGA)联合考查和1995年10月至1996年6月“中日副热带联合调查”期间获得的14个航次大气和海水CO2的观测资料,给出了主要观测海区CO2的源与汇的分布特征:在赤道地区5°N~5°S,130°~165°E观测到的表面水中二氧化碳分压的值超过了大气中二氧化碳分压1.5~4.5 Pa,结果表明该海区对大气CO2而言是源,但是该值远小于在中赤道测到的+9.1 Pa和在东赤道太平洋所测的+15 Pa的值.由此表明热带太平洋CO2源的强度是向西减弱的.副热带海区在秋季对大气CO2而言是较强的源,春季是汇.对影响海水CO2变化的主要因素温度、盐度等进行了讨论,表明CO2的分布变化直接受海流、水团、黑潮和ENSO事件影响.  相似文献   

14.
In order to examine latitudinal distribution and seasonal change of the surface oceanic fCO2, we analyzed the data obtained in the North Pacific along 175°E during the NOPACCS cruises in spring and summer of 1992–1996. Except for around the equator where the fCO2 was significantly affected by the upwelling of deep water, the latitudinal distribution of fCO2 showed distinctive seasonal variation. In the spring, the fCO2 decreased and then increased going southward with the minimum value of about 300 µatm around 35°N, while in the summer, the fCO2 displayed high variability, showing minimum and maximum values at latitudes of around 44° and 35°N, respectively. It was also found that the fCO2 was well correlated with the SST, but the relationship between the two was different for different hydrographic regions. In the subpolar gyre, the frontal regions between the Water-Mass Front and the Kuroshio bifurcation front, and between the Kuroshio bifurcation front and the Kuroshio Extension current, SST, DIC and TA influenced the seasonal fCO2 change through seasonally-dependent biological activities and vertical mixing and stratification of seawater. In the central subtropical gyre and the North Equatorial current, the seasonal fCO2 change was found to be produced basically by changes in SST and DIC. The summertime oceanic fCO2 generally increased with time over the period covered by this study, but the increased rate was clearly higher than those expected from other measurements in the western North Pacific.  相似文献   

15.
The hydrographic structure and variability in the Kuroshio-Oyashio Transition Area of the northwestern Pacific are briefly reviewed, focusing on the circulation, frontal structure and water-mass formation from surface to intermediate depths. This area is a key to understanding climate and ecosystem variations because signals can be detected earlier than major climate regime shifts and also because species replacement among small pelagic fishes could be related to environmental changes in this area. We need further studies of the effect of North Pacific Intermediate Water on surface currents and frontal structures and also studies on the formation and variability of water-masses in surface mixed layer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Seawater samples were collected in the North Pacific along 175°E during a cruise of the Northwest Pacific Carbon Cycle Study (NOPACCS) program in 1994. Many properties related to the carbonate system were analyzed. By using well-known ratios to correct for chemical changes in seawater, the CO2 concentration at a given depth was back calculated to its initial concentration at the time when the water left the surface in winter. We estimated sea-surface CO2 and titration alkalinity (TA) in present-day winter, from which we evaluated the degree of air-sea CO2 disequilibrium in winter was. Using a correction factor for air-sea CO2 disequilibrium in winter, we reconstructed sea-surface CO2 in pre-industrial times. The difference between the back-calculated initial CO2 and sea-surface CO2 in pre-industrial times should correspond to anthropgenic CO2 input. Although the mixing of different water masses may cause systematic error in the calculation, we found that the nonlinear effect induced by the mixing of different water masses was negligible in the upper layer of the North Pacific subtropical gyre along 175°E. The results of our improved method of assessing the distribution of anthropogenic CO2 in that region show marked differences from those obtained using the previous back-calculation method.  相似文献   

17.
张艳慧  王凡  臧楠 《海洋学报》2008,30(6):17-23
利用20世纪80年代和90年代WOD01(World Ocean Database2001)中的CTD温盐剖面资料和2000年以后Argo资料,对比分析了热带西太平洋次表层和中层水团分布的年代变化特征。分析结果表明,在这两个时期,起源于南北太平洋中高纬度海域的各次表层水和中层水,在热带西太平洋分布特征和交织在一起的总体态势基本一致,水团性质的年代变化不大。这与上述两个时段全球海洋-大气耦合系统趋于正常状态相吻合。通过辨识和跟踪表征次表层水性质的盐度极大值,发现南太平洋热带水沿西边界向北扩散程度有所加大,由前一时期的5°N,进一步扩散到6°~7°N;北太平洋热带水在西边界附近的向南扩散程度有所削弱,在2002-2005年间只向南扩散到4°N,而前一个时期则可向南扩散到2°N。通过辨识表征中层水性质的盐度极小值,南极中层水在西边界附近向北扩散程度有所加大,在2002-2005年到达13°N附近,而前一个时期只到达11°N;同期,北太平洋中层水在西边界附近的向南扩散程度有所削弱。上述年代变化与全球水循环强度的变化之间有何关系有待进一步研究。  相似文献   

18.
风生近惯性内波破碎引起的跨等密度面混合在海洋内部混合中起重要作用。然而其参数化对海洋模式的模拟影响仍有待进一步认识。本文给出的是在模块化海洋模式(MOM)中海洋表面边界层以下引入一个考虑风驱动近惯性内波破碎引起的跨等密度面混合参数化方案的研究工作。模拟结果显示,该方案有效改善MOM4模拟的上层1 000 m以上的温盐偏差,特别是在北太平洋和北大西洋的通风地区。数值试验表明,风生近惯性内波破碎有可能是维持海洋通风过程的重要机制之一,它使得海洋通风区的位温变冷,盐度变淡,整层等位密面加深。维持的通风过程使得北太平洋副极地大涡的影响延伸到副热带大涡。从而模拟的北太平洋中层水源头及其副热带大涡东侧的温盐更接近观测实际。同时,模拟的北大西洋经圈翻转环流强度也更为合理。  相似文献   

19.
A global ocean inverse model that includes the 3D ocean circulation as well as the production, sinking and remineralization of biogenic particulate matter is used to estimate the carbon export flux in the Pacific, north of 10°S. The model exploits the existing large datasets for hydrographic parameters, dissolved oxygen, nutrients and carbon, and determines optimal export production rates by fitting the model to the observed water column distributions by means of the “adjoint method”. In the model, the observations can be explained satisfactorily with an integrated carbon export production of about 3 Gt C yr−1 (equivalent to 3⋅1015 gC yr−1) for the considered zone of the Pacific Ocean. This amounts to about a third of the global ocean carbon export of 9.6 Gt C yr−1 in the model. The highest export fluxes occur in the coastal upwelling region off northwestern America and in the tropical eastern Pacific. Due to the large surface area, the open-ocean, oligotrophic region in the central North Pacific also contributes significantly to the total North Pacific export flux (0.45 Gt C yr−1), despite the rather small average flux densities in this region (13 gC m−2yr−1). Model e-ratios (calculated here as ratios of model export production to primary production, as inferred from satellite observations) range from as high a value as 0.4 in the tropical Pacific to 0.17 in the oligotrophic central north Pacific. Model e-ratios in the northeastern Pacific upwelling regions amount to about 0.3 and are lower than previous estimates. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Recent in situ observations of chromophoric dissolved organic material (CDOM) in the Pacific Ocean reveal the biogeochemical controls on CDOM and indicate predictive potential for open-ocean CDOM in diagnosing particulate organic matter (POM) remineralization rates within ocean basins. Relationships between CDOM and concentrations of dissolved oxygen, nutrients and inorganic carbon in the subthermocline waters of the Pacific reflect the relative influences of water mass ventilation and water-column oxidative remineralization. Apparent in situ oxygen utilization (AOU) accounts for 86% and 61% of variance in CDOM abundance, respectively, in Antarctic Intermediate Water and North Pacific Intermediate Water. In the deep waters of the Pacific below the zone of remineralization, AOU explains 26% of CDOM variability. The AOU–CDOM relationship results from competing biogeochemical and advective processes within the ocean interior. Dissolved organic carbon (DOC) is not statistically linked to the CDOM or AOU distributions, indicating that the majority of CDOM production occurs during the remineralization of sinking POM and thus potentially provides key information about carbon export. Once formed in the ocean interior, CDOM is relatively stable until it reaches the surface ocean where it is destroyed by solar bleaching. Susceptibility to bleaching confers an additional tracer-like quality for CDOM in water masses with active convection, such as mode waters that appear as subsurface CDOM minima. In the surface ocean, atypically low CDOM abundance highlights a region of unusually extreme oligotrophy: the subtropical South Pacific gyre. For these hyper-oligotrophic waters, the present CDOM observations are consistent with analysis of in situ radiometric observations of light attenuation and reflectance, demonstrating the accuracy of the CDOM spectrophotometric observations. Overall, we illustrate how CDOM abundance in the ocean interior can potentially diagnose rates of thermohaline overturning as they affect regional biogeochemistry and export. We further show how relative surface ocean CDOM abundances are driven in large part by processes occurring in the deep layers of the ocean. This is particularly significant for the interpretation of the global surface distribution of CDOM using satellite remote sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号