首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
In this paper we present a review of atmospheric chemistry research in China over the period 2006-2010, focusing on tropospheric ozone, aerosol chemistry, and the interactions between trace gases and aerosols in the polluted areas of China. Over the past decade, China has suffered severe photochemical smog and haze pollution, especially in North China, the Yangtze River Delta, and the Pearl River Delta. Much scientific work on atmospheric chemistry and physics has been done to address this large-scale, complex environmental problem. Intensive field experiments, satellite data analyses, and model simulations have shown that air pollution is significantly changing the chemical and physical characters of the natural atmosphere over these parts of China. In addition to strong emissions of primary pollutants, photochemical and heterogeneous reactions play key roles in the formation of complex pollution. More in-depth research is recommended to reveal the formation mechanism of photochemical smog and haze pollution and their climatic effects at the urban, regional, and global scales.  相似文献   

2.
Climate change, ambient ozone, and health in 50 US cities   总被引:2,自引:1,他引:2  
We investigated how climate change could affect ambient ozone concentrations and the subsequent human health impacts. Hourly concentrations were estimated for 50 eastern US cities for five representative summers each in the 1990s and 2050s, reflecting current and projected future climates, respectively. Estimates of future concentrations were based on the IPCC A2 scenario using global climate, regional climate, and regional air quality models. This work does not explore the effects of future changes in anthropogenic emissions, but isolates the impact of altered climate on ozone and health. The cities’ ozone levels are estimated to increase under predicted future climatic conditions, with the largest increases in cities with present-day high pollution. On average across the 50 cities, the summertime daily 1-h maximum increased 4.8 ppb, with the largest increase at 9.6 ppb. The average number of days/summer exceeding the 8-h regulatory standard increased 68%. Elevated ozone levels correspond to approximately a 0.11% to 0.27% increase in daily total mortality. While actual future ozone concentrations depend on climate and other influences such as changes in emissions of anthropogenic precursors, the results presented here indicate that with other factors constant, climate change could detrimentally affect air quality and thereby harm human health.  相似文献   

3.
The development of the future atmospheric chemical composition is investigated with respect to NO y and O3 by means of the off‐line coupled dynamic‐chemical general circulation model ECHAM3/CHEM. Two time slice experiments have been performed for the years 1992 and 2015, which include changes in sea surface temperatures, greenhouse gas concentrations, emissions of CFCs, NO x and other species, i.e., the 2015 simulation accounts for changes in chemically relevant emissions and for a climate change and its impact on air chemistry. The 2015 simulation clearly shows a global increase in ozone except for large areas of the lower stratosphere, where no significant changes or even decreases in the ozone concentration are found. For a better understanding of the importance of (A) emissions like NO x and CFCs, (B) future changes of air temperature and water vapour concentration, and (C) other dynamical parameters, like precipitation and changes in the circulation, diabatic circulation, stratosphere‐troposphere‐exchange, the simulation of the future atmosphere has been performed stepwise. This method requires a climate‐chemistry model without interactive coupling of chemical species. Model results show that the direct effect of emissions (A) plays a major rôle for the composition of the future atmosphere, but they also clearly show that climate change (B and C) has a significant impact and strongly reduces the NO y and ozone concentration in the lower stratosphere.  相似文献   

4.
Understanding the chemical links between ozone (O3) and its two main precursors, nitrogen oxides (NOx) and volatile organic compounds (VOC), is important for designing effective photochemical smog reduction strategies. This chemical relationship will determine which precursor (NOx or VOC) emission reduction will be more effective for decreasing the ozone formation. Under certain conditions, ozone levels decrease as a result of a reduction in NOx emissions but do not respond significantly to changes in VOC emissions (NOx-sensitive condition), while under other conditions ozone concentrations decrease in response to reductions in VOCs and may even increase when NOx emissions are reduced (VOC-sensitive conditions). Indicator species can be used to assess the sensitivity of ozone to changes in the emissions of its precursors. These indicators are species or species ratios involved in ozone photochemistry which reflect the primary chemical process through which the ozone was formed. In this work we use the MM5-CAMx model system to explore the behaviour of various indicator species during two meteorological situations featuring different atmospheric conditions in a complex terrain area. The results show that indicators based on nitrogen compounds (i.e,. NOy and NOz) are suitable for defining the transition range from VOC- to NOx-sensitive chemistry, and that despite the uncertainties associated with the use of chemical indicators, the ratios O3/NOy and O3/NOz may provide a simple and useful way to summarize the response of ozone to changes in NOx and VOC emissions in Southwestern Spain.  相似文献   

5.
The relationship between the emission of ozone precursors and the chemical production of tropospheric ozone(O3) in the Pearl River Delta Region(PRD) was studied using numerical simulation.The aim of this study was to examine the volatile organic compound(VOC)-or nitrogen oxide(NOx =NO+NO2)limited conditions at present and when surface temperature is increasing due to global warming,thus to make recommendations for future ozone abatement policies for the PRD region.The model used for this application is the U.S.Environmental Protection Agency’s(EPA’s) third-generation air-quality modeling system;it consists of the mesoscale meteorological model MM5 and the chemical transport model named Community Multi-scale Air Quality(CMAQ).A series of sensitivity tests were conducted to assess the influence of VOC and NOx variations on ozone production.Tropical cyclone was shown to be one of the important synoptic weather patterns leading to ozone pollution.The simulations were based on a tropicalcyclone-related episode that occurred during 14-16 September 2004.The results show that,in the future,the control strategy for emissions should be tightened.To reduce the current level of ozone to meet the Hong Kong Environmental Protection Department(EPD) air-quality objective(hourly average of 120 ppb),emphasis should be put on restricting the increase of NOx emissions.Furthermore,for a wide range of possible changes in precursor emissions,temperature increase will increase the ozone peak in the PRD region;the areas affected by photochemical smog are growing wider,but the locations of the ozone plume are rather invariant.  相似文献   

6.
城市低层大气臭氧生成的模拟研究   总被引:7,自引:0,他引:7  
蒋维楣  李昕等 《气象科学》2001,21(2):154-161
利用一个城市边界层臭氧模式,以南京市为对象,研究了臭氧在城市低层大气中的形成机制和规律,得出了南京市18个交通点的日臭氧浓度最大值的分布图。结果表明,南京市白天有相当长的时间是处于臭氧超标的状态,不少交通点的日最大臭氧浓度值是标准的2-3倍。文章还模拟了PAN,OH自由基和HCHO这三种重要物种的日变化规律。同时,本文选择南京市东郊的紫金山风景区,实次探讨了植物排放有机物对臭氧生成的贡献。从模式的模拟研究可得,与人为因素相比,植物排放对臭氧生成的作用也是不可忽视的,值得作深入一步的探讨。  相似文献   

7.
Climate change alone influences future levels of tropospheric ozone and their precursors through modifications of gas-phase chemistry, transport, removal, and natural emissions. The goal of this study is to determine at what extent the modes of variability of gas-phase pollutants respond to different climate change scenarios over Europe. The methodology includes the use of the regional modeling system MM5 (regional climate model version)-CHIMERE for a target domain covering Europe. Two full-transient simulations covering from 1991–2050 under the SRES A2 and B2 scenarios driven by ECHO-G global circulation model have been compared. The results indicate that the spatial patterns of variability for tropospheric ozone are similar for both scenarios, but the magnitude of the change signal significantly differs for A2 and B2. The 1991–2050 simulations share common characteristics for their chemical behavior. As observed from the NO2 and α-pinene modes of variability, our simulations suggest that the enhanced ozone chemical activity is driven by a number of parameters, such as the warming-induced increase in biogenic emissions and, to a lesser extent, by the variation in nitrogen dioxide levels. For gas-phase pollutants, the general increasing trend for ozone found under A2 and B2 forcing is due to a multiplicity of climate factors, such as increased temperature, decreased wet removal associated with an overall decrease of precipitation in southern Europe, increased photolysis of primary and secondary pollutants as a consequence of lower cloudiness and increased biogenic emissions fueled by higher temperatures.  相似文献   

8.
Effects of tropical deforestation on global and regional atmospheric chemistry   总被引:10,自引:0,他引:10  
A major portion of tropospheric photochemistry occurs in the tropics. Deforestation, colonization, and development of tropical rain forest areas could provoke significant changes in emissions of radiatively and photochemically active trace gases. A brief review of studies on trace-gas emissions in pristine and disturbed tropical habitats is followed by an effort to model regional tropospheric chemistry under undisturbed and polluted conditions. Model results suggest that changing emissions could stimulate photochemistry leading to enhanced ozone production and greater mineral acidity in rainfall in colonized agricultural regions. Model results agree with measurements made during the NASA ABLE missions. Under agricultural/pastoral development scenarios, tropical rain forest regions could export greater levels of N2O, CH4, CO, and photochemical precursors of NO y and O3 to the global atmosphere with implications for climatic warming.  相似文献   

9.
A simultaneous glaciochemical study of methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO4 -) has been conducted on the Antarctic plateau (South Pole, Vostok) and in more coastal regions. The objective was to investigate marine sulfur emissions in very remote areas. Firstly, our data suggest that MSA and nss-SO4 present in antarctic ice are mainly marine in origin and that DMS emissions have been significantly modulated by short term (eg. El Nino Southern Oscillation events) as well as long term climatic changes in the past. Secondly, our study of spatial variations of these two sulfur species seems to indicate that the atmosphere of coastal antarctic regions are mainly supplied by local DMS emissions whereas the atmosphere of the high plateau is also influenced by DMS emissions from more temperate marine latitudes. Thirdly, our study of the partitioning between MSA and nss-SO4 suggest that the temperature could have been an important parameter controlling the final composition of the high southern latitude atmosphere over the last climatic cycle; colder temperature favoring the formation of MSA. However, our data also support a possible role played by changes in the transport pattern of marine air to the high antarctic plateau.  相似文献   

10.
人为和生物排放量对春季东亚地面臭氧的协同贡献   总被引:2,自引:0,他引:2  
屈玉  安俊岭  周慧 《大气科学》2009,33(4):670-680
臭氧O3的生成是多因子影响的复杂非线性过程, 一个因子在其他因子起作用时的贡献可以分为纯贡献与协同贡献。本文采用因子分离方法和改进后的区域空气质量模式 (RAQM) 计算了人为氮氧化物 (NOx=NO+NO2)、人为可挥发性有机化合物(AVOCs)以及生物可挥发性有机化合物(BVOCs)对春季东亚地区地面臭氧浓度的协同贡献及总贡献(=纯贡献+协同贡献)。结果表明, AVOCs、BVOCs与NOx对O3生成量的贡献依赖于AVOCs、BVOCs排放量的相对大小。AVOCs或BVOCs排放量显著偏高的地区, 其总贡献主要来源于其与NOx的协同贡献。从区域角度 (1°×1°) 来看, BVOCs对东亚春季地面O3浓度的贡献较小, BVOCs排放量明显偏高的个别地区除外。BVOCs总贡献有很强的日变化特征, BVOCs总贡献有可能小于其协同贡献。个例研究的成果应用于O3调控对策的制定和实施很可能达不到预期的效果。我国北方 (30°N以北) 应控制人为源; 我国南方BVOCs排放量显著偏高的地区, 生物源和人为源的贡献都必须考虑。  相似文献   

11.
Economically consistent long-term scenarios for air pollutant emissions   总被引:1,自引:0,他引:1  
Pollutant emissions such as aerosols and tropospheric ozone precursors substantially influence climate. While future century-scale scenarios for these emissions have become more realistic through the inclusion of emission controls, they still potentially lack consistency between surface pollutant concentrations and regional levels of affluence. We find that the default method of scenario construction, whereby emissions factors converge to similar values in different regions, does not yield pollution concentrations consistent with historical experience. We demonstrate a methodology combining use of an integrated assessment model and a three-dimensional atmospheric chemical transport model, whereby a reference scenario is constructed by requiring consistent surface pollutant concentrations as a function of regional income over the 21st century. By adjusting air pollutant emission control parameters, we improve consistency between projected PM2.5 and economic income among world regions through time; consistency for ozone is also improved but is more difficult to achieve because of the strong influence of upwind world regions. Reference case pollutant emissions described here were used to construct the RCP4.5 Representative Concentration Pathway climate policy scenario.  相似文献   

12.
当前对流层臭氧数值模式研究中的若干问题   总被引:2,自引:0,他引:2  
对当前对流层臭氧(O3)数值模式研究中存在的若干问题以及需要重点研究的方向进行了评述,内容包括O3前体物的生态源及其模拟、对流层化学机制、大气化学研究中的气象模式以及大气化学模式与气象模式的相容性等.  相似文献   

13.
Two synoptic-statistical methods for forecasting daily maximum surface ozone concentrations are proposed based on the relations between surface ozone and meteorological variables in the Moscow region. The methods use current ozone measurements and forecasts of meteorological variables and of synoptic situation. Statistically, the methods provide better forecast results than climatic and persistence methods. Compared with the persistence forecast, the above methods reduce the variance of the forecast error from 1.5 to 2 times. The most significant predictors for forecasting daily maximum surface ozone concentration with lead times of one to three days for Moscow are the forecast time (Julian day of the year), prognostic temperature, relative humidity, indices of the meteorological pollution potential of the atmosphere (MPP), and surface ozone concentration observed on the previous day. The forecast efficiency is demonstrated using the 2006 observational data from the stations of the Institute of Atmospheric Physics of the Russian Academy of Sciences-Moscow State University and Mosecomonitoring State Nature Protection Organization.  相似文献   

14.
Anthropogenic emissions alter biogenic secondary organic aerosol(SOA) formation from naturally emitted volatile organic compounds(BVOCs). We review the major laboratory and field findings with regard to effects of anthropogenic pollutants(NOx, anthropogenic aerosols, SO_2, NH_3) on biogenic SOA formation. NOx participate in BVOC oxidation through changing the radical chemistry and oxidation capacity, leading to a complex SOA composition and yield sensitivity towards NOx level for different or even specific hydrocarbon precursors. Anthropogenic aerosols act as an important intermedium for gas–particle partitioning and particle-phase reactions, processes of which are influenced by the particle phase state, acidity, water content and thus associated with biogenic SOA mass accumulation. SO_2 modifies biogenic SOA formation mainly through sulfuric acid formation and accompanies new particle formation and acid-catalyzed heterogeneous reactions. Some new SO_2-involved mechanisms for organosulfate formation have also been proposed.NH_3/amines, as the most prevalent base species in the atmosphere, influence biogenic SOA composition and modify the optical properties of SOA. The response of SOA formation behavior to these anthropogenic pollutants varies among different BVOCs precursors. Investigations on anthropogenic–biogenic interactions in some areas of China that are simultaneously influenced by anthropogenic and biogenic emissions are summarized. Based on this review, some recommendations are made for a more accurate assessment of controllable biogenic SOA formation and its contribution to the total SOA budget. This study also highlights the importance of controlling anthropogenic pollutant emissions with effective pollutant mitigation policies to reduce regional and global biogenic SOA formation.  相似文献   

15.
Releases of halocarbons into the atmosphere over the last 50 years are among the factors that have contributed to changes in the Earth’s climate since pre-industrial times. Their individual and collective potential to contribute directly to surface climate change is usually gauged through calculation of their radiative efficiency, radiative forcing, and/or Global Warming Potential (GWP). For those halocarbons that contain chlorine and bromine, indirect effects on temperature via ozone layer depletion represent another way in which these gases affect climate. Further, halocarbons can also affect the temperature in the stratosphere. In this paper, we use a narrow-band radiative transfer model together with a range of climate models to examine the role of these gases on atmospheric temperatures in the stratosphere and troposphere. We evaluate in detail the halocarbon contributions to temperature changes at the tropical tropopause, and find that they have contributed a significant warming of ~0.4 K over the last 50 years, dominating the effect of the other well-mixed greenhouse gases at these levels. The fact that observed tropical temperatures have not warmed strongly suggests that other mechanisms may be countering this effect. In a climate model this warming of the tropopause layer is found to lead to a 6% smaller climate sensitivity for halocarbons on a globally averaged basis, compared to that for carbon dioxide changes. Using recent observations together with scenarios we also assess their past and predicted future direct and indirect roles on the evolution of surface temperature. We find that the indirect effect of stratospheric ozone depletion could have offset up to approximately half of the predicted past increases in surface temperature that would otherwise have occurred as a result of the direct effect of halocarbons. However, as ozone will likely recover in the next few decades, a slightly faster rate of warming should be expected from the net effect of halocarbons, and we find that together halocarbons could bring forward next century’s expected warming by ~20 years if future emissions projections are realized. In both the troposphere and stratosphere CFC-12 contributes most to the past temperature changes and the emissions projection considered suggest that HFC-134a could contribute most of the warming over the coming century.  相似文献   

16.
17.
The leading mode of southern hemisphere (SH) climatic variability, the southern annular mode (SAM), has recently seen a shift towards its positive phase due to stratospheric ozone depletion and increasing greenhouse gas (GHG) concentrations. Here we examine how sensitive the SAM (defined as the leading empirical orthogonal function of SH sea level pressure anomalies) is to future GHG concentrations. We determine its likely evolution for three intergovernmental panel on climate change (IPCC) special report on emission scenarios (SRES) for austral summer and winter, using a multi-model ensemble of IPCC fourth assessment report models which resolve stratospheric ozone recovery. During the period of summer ozone recovery (2000–2050), the SAM index exhibits weakly negative, statistically insignificant trends due to stratospheric ozone recovery which offsets the positive forcing imposed by increasing GHG concentrations. Thereafter, positive SAM index trends occur with magnitudes that show sensitivity to the SRES scenario utilised, and thus future GHG emissions. Trends are determined to be strongest for SRES A2, followed by A1B and B1, respectively. The winter SAM maintains a similar dependency upon GHG as summer, but over the entire twenty-first century and to a greater extent. We also examine the influence of ozone recovery by comparing results to models that exclude stratospheric ozone recovery. Projections are shown to be statistically different from the aforementioned results, highlighting the importance of ozone recovery in governing SAM-evolution. We therefore demonstrate that the future SAM will depend both upon GHG emissions and stratospheric ozone recovery.  相似文献   

18.
A one-dimensional coupled climate and chemistry model has been developed to estimate past and possible future changes in atmospheric temperatures and chemical composition due to human activities. The model takes into account heat flux into the oceans and uses a new tropospheric temperature lapse rate formulation. As found in other studies, we estimate that the combined greenhouse effect of CH4, O3, CF2Cl2, CFCl3 and N2O in the future will be about as large as that of CO2. Our model calculates an increase in average global surface temperatures by about 0.6°C since the start of the industrial era and predicts for A.D. 2050 a twice as large additional rise. Substantial depletions of ozone in the upper stratosphere by between 25% and 55% are calculated, depending on scenario. Accompanying temperature changes are between 15°C and 25°C. Bromine compounds are found to be important, if no rigid international regulations on CFC emissions are effective. Our model may, however, concivably underestimate possible effects of CFCl3, CF2Cl2, C2F3Cl3 and other CFC and organic bromine emissions on lower stratospheric ozone, because it can not simulate the rapid breakdown of ozone which is now being observed worldwide. An uncertainty study regarding the photochemistry of stratospheric ozone, especially in the region below about 25 km, is included. We propose a reaction, involving excited molecular oxygen formation from ozone photolysis, as a possible solution to the problem of ozone concentrations calculated to be too low above 45 km. We also estimate that tropospheric ozone concentrations have grown strongly in the northern hemisphere since pre-industrial times and that further large increases may take place, especially if global emissions of NOx from fossil fuel and biomass burning were to continue to increase. Growing NOx emissions from aircraft may play an important role in ozone concentrations in the upper troposphere and low stratosphere.  相似文献   

19.
During the summer (8 June through 3 September) of 2008, 9 ozone profiles are examined from Dakar, Senegal (14.75°N, 17.49°W) to investigate ozone (O3) variability in the lower/middle troposphere during the pre-monsoon and monsoon periods. Results during June 2008 (pre-monsoon period) show a reduction in O3 concentrations, especially in the 850–700 hPa layer with Saharan Air Layer (SAL) events. However, O3 concentrations are increased in the 950–900 hPa layer where the peak of the inversion is found and presumably the highest dust concentrations. We also use the WRF-CHEM model to gain greater insights for observations of reduced O3 concentrations during the monsoon periods. In the transition period between 26 June and 2 July in the lower troposphere (925–600 hPa), a significant increase in O3 concentrations (10–20 ppb) occur which we suggest is caused by enhanced biogenic NOX emissions from Sahelian soils following rain events on 28 June and 1 July. The results suggest that during the pre-monsoon period ozone concentrations in the lower troposphere are controlled by the SAL, reducing ozone concentrations through heterogeneous chemical processes. At the base of the SAL we also find elevated levels of ozone, which we attribute to biogenic sources of NOX from Saharan dust that are released in the presence of moist conditions. Once the monsoon period commences, lower ozone concentrations are observed and modeled which we attribute to the dry deposition of ozone and episodes of ozone poor air that is horizontally transported into the Sahel from low latitudes by African Easterly Waves (AEWs).  相似文献   

20.
China has been experiencing widespread air pollution due to rapid industrialization and urbanization in recent decades.The two major concerns of ambient air quality in China are particulate matter(PM) and tropospheric ozone(O_3). With the implementation of air pollution prevention and control actions in the last five years, the PM pollution in China has been substantially reduced. In contrast, under the conditions of the urban air pollution complex, the elevated O_3 levels in city clusters of eastern China, especially in warm seasons, have drawn increasing attention. Emissions of air pollutants and their precursors not only contribute to regional air quality, but also alter climate. Climate change in turn can change chemical processes, long-range transport, and local meteorology that influence air pollution. Compared to PM, less is known about O_3 pollution and its climate effects over China. Here, we present a review of the main findings from the literature over the period 2011–18 with regard to the characteristics of O_3 concentrations in China and the mechanisms that drive its interannual to decadal variations, aiming to identify robust conclusions that may guide decision-making for emissions control and to highlight critical knowledge gaps. We also review regional and global modeling studies that have investigated the impacts of tropospheric O_3 on climate, as well as the projections of future tropospheric O_3 owing to climate and/or emission changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号