首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Climate change is projected to result, on average, in earlier snowmelt and reduced summer flows in the Pacific Northwest, patterns not well represented in historical observations used in water planning. We evaluate the sensitivities of water supply systems in the Puget Sound basin cities of Everett, Seattle, and Tacoma to historical and projected future streamflow variability and water demands. We simulate streamflow for the 2020s, 2040s, and 2080s using the distributed hydrology–soil–vegetation model (DHSVM), driven by downscaled ensembles of climate simulations archived from the 2007 IPCC Fourth Assessment Report. We use these streamflow predictions as inputs to reservoir system models for the three water supply systems. Over the next century, under average conditions all systems are projected to experience declines and eventual disappearance of the springtime snowmelt peak. How these shifts affect management depends on physical characteristics, operating objectives, and the adaptive capacity of each system. Without adaptations, average seasonal drawdown of reservoir storage is projected to increase in all three systems throughout the 21st century. Reliability of all systems in the absence of demand increases is robust through the 2020s however, and remains above 98% for Seattle and Everett in the 2040s and 2080s. With demand increases, however, reliability of the systems in their current configurations and with current operating policies progressively declines through the century.  相似文献   

2.
Climate strongly affects energy supply and demand in the Pacific Northwest (PNW) and Washington State (WA). We evaluate potential effects of climate change on the seasonality and annual amount of PNW hydropower production, and on heating and cooling energy demand. Changes in hydropower production are estimated by linking simulated streamflow scenarios produced by a hydrology model to a simulation model of the Columbia River hydro system. Changes in energy demand are assessed using gridded estimates of heating degree days (HDD) and cooling degree days (CDD) which are then combined with population projections to create energy demand indices that respond both to climate, future population, and changes in residential air conditioning market penetration. We find that substantial changes in the amount and seasonality of energy supply and demand in the PNW are likely to occur over the next century in response to warming, precipitation changes, and population growth. By the 2040s hydropower production is projected to increase by 4.7–5.0% in winter, decrease by about 12.1–15.4% in summer, with annual reductions of 2.0–3.4%. Larger decreases of 17.1–20.8% in summer hydropower production are projected for the 2080s. Although the combined effects of population growth and warming are projected to increase heating energy demand overall (22–23% for the 2020s, 35–42% for the 2040s, and 56–74% for the 2080s), warming results in reduced per capita heating demand. Residential cooling energy demand (currently less than one percent of residential demand) increases rapidly (both overall and per capita) to 4.8–9.1% of the total demand by the 2080s due to increasing population, cooling degree days, and air conditioning penetration.  相似文献   

3.
The study evaluates statistical downscaling model (SDSM) developed by annual and monthly sub-models for downscaling maximum temperature, minimum temperature, and precipitation, and assesses future changes in climate in the Jhelum River basin, Pakistan and India. Additionally, bias correction is applied on downscaled climate variables. The mean explained variances of 66, 76, and 11 % for max temperature, min temperature, and precipitation, respectively, are obtained during calibration of SDSM with NCEP predictors, which are selected through a quantitative procedure. During validation, average R 2 values by the annual sub-model (SDSM-A)—followed by bias correction using NCEP, H3A2, and H3B2—lie between 98.4 and 99.1 % for both max and min temperature, and 77 to 85 % for precipitation. As for the monthly sub-model (SDSM-M), followed by bias correction, average R 2 values lie between 98.5 and 99.5 % for both max and min temperature and 75 to 83 % for precipitation. These results indicate a good applicability of SDSM-A and SDSM-M for downscaling max temperature, min temperature, and precipitation under H3A2 and H3B2 scenarios for future periods of the 2020s, 2050s, and 2080s in this basin. Both sub-models show a mean annual increase in max temperature, min temperature, and precipitation. Under H3A2, and according to both sub-models, changes in max temperature, min temperature, and precipitation are projected as 0.91–3.15 °C, 0.93–2.63 °C, and 6–12 %, and under H3B2, the values of change are 0.69–1.92 °C, 0.56–1.63 °C, and 8–14 % in 2020s, 2050s, and 2080s. These results show that the climate of the basin will be warmer and wetter relative to the baseline period. SDSM-A, most of the time, projects higher changes in climate than SDSM-M. It can also be concluded that although SDSM-A performed well in predicting mean annual values, it cannot be used with regard to monthly and seasonal variations, especially in the case of precipitation unless correction is applied.  相似文献   

4.
Future climate in the Pacific Northwest   总被引:4,自引:2,他引:2  
Climate models used in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) on the whole reproduce the observed seasonal cycle and twentieth century warming trend of 0.8°C (1.5°F) in the Pacific Northwest, and point to much greater warming for the next century. These models project increases in annual temperature of, on average, 1.1°C (2.0°F) by the 2020s, 1.8°C (3.2°F) by the 2040s, and 3.0°C (5.3°F) by the 2080s, compared with the average from 1970 to 1999, averaged across all climate models. Rates of warming range from 0.1°C to 0.6°C (0.2°F to 1.0°F) per decade. Projected changes in annual precipitation, averaged over all models, are small (+1% to +2%), but some models project an enhanced seasonal cycle with changes toward wetter autumns and winters and drier summers. Changes in nearshore sea surface temperatures, though smaller than on land, are likely to substantially exceed interannual variability, but coastal upwelling changes little. Rates of twenty-first century sea level rise will depend on poorly known factors like ice sheet instability in Greenland and Antarctica, and could be as low as twentieth century values (20 cm, 8) or as large as 1.3 m (50).  相似文献   

5.
Pacific Northwest (PNW) hydrology is particularly sensitive to changes in climate because snowmelt dominates seasonal runoff, and temperature changes impact the rain/snow balance. Based on results from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4), we updated previous studies of implications of climate change on PNW hydrology. PNW 21st century hydrology was simulated using 20 Global Climate Models (GCMs) and 2 greenhouse gas emissions scenarios over Washington and the greater Columbia River watershed, with additional focus on the Yakima River watershed and the Puget Sound which are particularly sensitive to climate change. We evaluated projected changes in snow water equivalent (SWE), soil moisture, runoff, and streamflow for A1B and B1 emissions scenarios for the 2020s, 2040s, and 2080s. April 1 SWE is projected to decrease by approximately 38–46% by the 2040s (compared with the mean over water years 1917–2006), based on composite scenarios of B1 and A1B, respectively, which represent average effects of all climate models. In three relatively warm transient watersheds west of the Cascade crest, April 1 SWE is projected to almost completely disappear by the 2080s. By the 2080s, seasonal streamflow timing will shift significantly in both snowmelt dominant and rain–snow mixed watersheds. Annual runoff across the State is projected to increase by 2–3% by the 2040s; these changes are mainly driven by projected increases in winter precipitation.  相似文献   

6.
《大气与海洋》2013,51(2):233-244
Abstract

A series of mid‐afternoon Advanced Very High Resolution Radiometer (AVHRR) thermal radiance scenes were assembled in order to develop a better understanding of the complex energy and water processes leading to variations in surface temperature. An in‐depth knowledge of the temperature variability is of interest to land surface process modelling and its application to the Mackenzie Global Energy and Water Cycle Experiment (GEWEX) Study (MAGS).

Clear‐sky land surface temperatures are estimated by applying a split window technique to remove atmospheric effects. A maximum land surface temperature map of the Mackenzie basin at 1‐km scale for summer 1994 is produced. The patterns are related to land surface features and elevation. The basin's maximum land surface temperature patterns can be subdivided into three land zones (≥ 35°C, 33–34°C and 27–32°C) and a water dominated zone (20.5°C on average). The highest maximum temperature zone (≥35°C) corresponds to a combination of minimal vegetation, drier soils and low terrain. This zone is not in the southern part of the basin as might be speculated in the absence of these data, but in a wide low elevation corridor from west of Great Bear Lake along the Mackenzie River down to 50°N, 120°W. The maximum land surface temperatures tend to decrease with increasing vegetation density and surface moisture; they also decrease with elevation at a rate of –4.5°C km–1. This is confirmed by weather station data. The AVHRR data extend this relationship to the 1200 – 2200 m altitude ranges, where there are no station data. The data suggest that elevation and land cover should be taken into account in the objective analysis (spatial interpolation) of station data.  相似文献   

7.
Predicted increases in atmospheric CO2 concentration are expected to cause increases in air temperatures in many regions around the world, and this will likely lead to increases in the surface water temperatures of aquatic ecosystems in these regions. Using daily air and littoral water temperature data collected from Lake Tahoe, a large sub-alpine lake located in the Sierra Nevada mountains (USA), we developed and tested an empirical approach for constructing models designed to estimate site-specific daily surface water temperatures from daily air temperature projections generated from a regional climate model. We used cluster analysis to identify thermally distinct groups among sampled sites within the lake and then developed and independently validated a set of linked regression models designed to estimate daily water temperatures for each spatially distinct thermal group using daily air temperature data. When daily air temperatures projections, generated for 2080–2099 by a regional climate model, were used as input to these group models, projected increases in summer surface water temperatures of as much as 3 °C were projected. This study demonstrates an empirical approach for generating models capable of using daily air temperature projections from established climate models to project site specific impacts on littoral surface waters within large limnetic ecosystems.  相似文献   

8.
In this study, the applicability of the statistical downscaling model (SDSM) in modeling five extreme precipitation indices including R10 (no. of days with precipitation ≥10?mm?day?1), SDI (simple daily intensity), CDD (maximum number of consecutive dry days), R1d (maximum 1-day precipitation total) and R5d (maximum 5-day precipitation total) in the Yangtze River basin, China was investigated. The investigation mainly includes the calibration and validation of SDSM model on downscaling daily precipitation, the validation of modeling extreme precipitation indices using independent period of the NCEP reanalysis data, and the projection of future regional scenarios of extreme precipitation indices. The results showed that: (1) there existed good relationship between the observed and simulated extreme precipitation indices during validation period of 1991–2000, the amount and the change pattern of extreme precipitation indices could be reasonably simulated by SDSM. (2) Under both scenarios A2 and B2, during the projection period of 2010–2099, the changes of annual mean extreme precipitation indices in the Yangtze River basin would be not obvious in 2020s; while slightly increase in the 2050s; and significant increase in the 2080s as compared to the mean values of the base period. The summer might be the more distinct season with more projected increase of each extreme precipitation indices than in other seasons. And (3) there would be distinctive spatial distribution differences for the change of annual mean extreme precipitation indices in the river basin, but the most of Yangtze River basin would be dominated by the increasing trend.  相似文献   

9.
Freshwater ecosystems are warming globally from the direct effects of climate change on air temperature and hydrology and the indirect effects on near-stream vegetation. In fire-prone landscapes, vegetative change may be especially rapid and cause significant local stream temperature increases but the importance of these increases relative to broader changes associated with air temperature and hydrology are not well understood. We linked a spatially explicit landscape fire and vegetation model (FireBGCv2) to an empirical regression equation that predicted daily stream temperatures to explore how climate change and its impacts on fire might affect stream thermal conditions across a partially forested, mountainous landscape in the western U.S. We used the model to understand the roles that wildfire and management actions such as fuel reduction and fire suppression could play in mitigating stream thermal responses to climate change. Results indicate that air temperature increases associated with future climates could account for a much larger proportion of stream temperature increases (as much as 90 % at a basin scale) than wildfire. Similarly, land management scenarios that limited wildfire prevalence had negligible effects on future stream temperature increases. These patterns emerged at broader spatial scales because wildfires typically affected only a subset of a stream’s network. However, at finer spatial and temporal scales stream temperatures were sensitive to wildfire. Although wildfires will continue to cause local, short-term effects on stream temperatures, managers of aquatic systems may need to find other solutions to cope with the larger impact from climate change on future stream warming that involves adapting to the increases while developing broad strategies for riparian vegetation restoration.  相似文献   

10.
Forecasting future fire activity as a function of climate change is a step towards understanding the future state of the western mixedwood boreal ecosystem. We developed five annual weather indices based on the Daily Severity Rating (DSR) of the Canadian Forest Fire Weather Index System and estimated their relationship with annual, empirical counts of lightning fire initiation for 588 landscapes in the mixedwood boreal forest in central-eastern Alberta, Canada from data collected between 1983 and 2001 using zero-inflated negative binomial regression models. Two indices contributed to a parsimonious model of initiation; these were Seasonal Severity Rating (SSR), and DSR-sequence count. We used parameter estimates from this model to predict lightning fire initiation under weather conditions predicted in 1 × CO2 (1975–1985), 2 × CO2 (2040–2049) and 3 × CO2 (2080–2089) conditions simulated by the Canadian Regional Climate Model (CRCM). We combined predicted initiation rates for these conditions with existing empirical estimates of the number of fire initiations that grow to be large fires (fire escapes) and the fire size distribution for the region, to predict the annual area burned by lightning-caused fires in each of the three climate conditions. We illustrated a 1.5-fold and 1.8-fold increase of lightning fire initiation by 2040–2049 and 2080–2089 relative to 1975–1985 conditions due to changes in fire weather predicted by the CRCM; these increases were calculated independent of changes in lightning activity. Our simulations suggested that weather-mediated increases in initiation frequency could correspond to a substantial increase in future area burned with 1.9-fold and 2.6-fold increases in area burned in 2040–2049 and 2080–2089 relative to 1975–1985 conditions, respectively. We did not include any biotic effects in these estimates, though future patterns of initiation and fire growth will be regulated not only by weather, but also by vegetation and fire management.  相似文献   

11.
Lin Ye  Nancy B. Grimm 《Climatic change》2013,120(1-2):419-431
The impacts of climate change on water and nitrogen cycles in arid central Arizona (USA) were investigated by integrating the Second Generation Coupled Global Climate Model (CGCM2) and a widely used, physical process-based model, Soil and Water Assessment Tool (SWAT). With statistically downscaled daily climate data from the CGCM2 as model input, SWAT predicted increased potential evapotranspiration and decreased surface runoff, lateral flow, soil water, and groundwater recharge, which suggests serious consequences for the water cycle in this desert catchment in the future. Specifically, stream discharge is projected to decrease by 31 % in the 2020s, 47 % in the 2050s, and 56 % in the 2080s compared to the mean discharge for the base period (0.73 m3/s). A flow-duration analysis reveals that the projected reduction of stream discharge in the future is attributable to significant decreases in mid-range and low-flow conditions; however, flood peaks would show a slight increase in the future. The drier and hotter future also will decrease the rate of nitrogen mineralization in the catchment and ultimately, nitrate export from the stream. Since mean mineralization rate would decrease by 15 % in the 2020s, 28 % in the 2050s, and 35 % in the 2080s compared to the based period (9.3 g N ha?1 d?1), the combined impact of reduced catchment mineralization and reduced streamflow would predict declining nitrate export: from today’s mean value of 30 kg N/d, to 20, 15 and 12 kg N/d by the 2020s, 2050s, and 2080s, respectively.  相似文献   

12.
The Yakima River Reservoir system supplies water to ~180,000 irrigated hectares through the operation of five reservoirs with cumulative storage of ~30% mean annual river flow. Runoff is derived mostly from winter precipitation in the Cascade Mountains, much of which is stored as snowpack. Climate change is expected to result in earlier snowmelt runoff and reduced summer flows. Effects of these changes on irrigated agriculture were simulated using a reservoir system model coupled to a hydrological model driven by downscaled scenarios from 20 climate models archived by the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. We find earlier snowmelt results in increased water delivery curtailments. Historically, the basin experienced substantial water shortages in 14% of years. Without adaptations, for IPCC A1B global emission scenarios, water shortages increase to 27% (13% to 49% range) in the 2020s, to 33% in the 2040s, and 68% in the 2080s. For IPCC B1 emissions scenarios, shortages occur in 24% (7% to 54%) of years in the 2020s, 31% in the 2040s and 43% in the 2080s. Historically unprecedented conditions where senior water rights holders suffer shortfalls occur with increasing frequency in both A1B and B1 scenarios. Economic losses include expected annual production declines of 5%–16%, with greater probabilities of operating losses for junior water rights holders.  相似文献   

13.
The Yangtze River Delta Economic Belt is one of the most active and developed areas in China and has experienced quick urbanization with fast economic development. The weather research and forecasting model (WRF), with a single-layer urban canopy parameterization scheme, is used to simulate the influence of urbanization on climate at local and regional scales in this area. The months January and July, over a 5-year period (2003–2007), were selected to represent the winter and summer climate. Two simulation scenarios were designed to investigate the impacts of urbanization: (1) no urban areas and (2) urban land cover determined by MODIS satellite observations in 2005. Simulated near-surface temperature, wind speed and specific humidity agree well with the corresponding measurements. By comparing the simulations of the two scenarios, differences in near-surface temperature, wind speed and precipitation were quantified. The conversion of rural land (mostly irrigation cropland) to urban land cover results in significant changes to near-surface temperature, humidity, wind speed and precipitation. The mean near-surface temperature in urbanized areas increases on average by 0.45?±?0.43°C in winter and 1.9?±?0.55°C in summer; the diurnal temperature range in urbanized areas decreases on average by 0.13?±?0.73°C in winter and 0.55?±?0.84°C in summer. Precipitation increases about 15% over urban or leeward areas in summer and changes slightly in winter. The urbanization impact in summer is stronger and covers a larger area than that in winter due to the regional east-Asian monsoon climate characterized by warm, wet summers and cool, dry winters.  相似文献   

14.
Stakeholders within the Yakima River Basin expressed concern over impacts of climate change on mid-Columbia River steelhead (Oncorhynchus mykiss), listed under the Endangered Species Act. We used a bioenergetics model to assess the impacts of changing stream temperatures—resulting from different climate change scenarios—on growth of juvenile steelhead in the Yakima River Basin. We used diet and fish size data from fieldwork in a bioenergetics model and integrated baseline and projected stream temperatures from down-scaled air temperature climate modeling into our analysis. The stream temperature models predicted that daily mean temperatures of salmonid-rearing streams in the basin could increase by 1–2 °C and our bioenergetics simulations indicated that such increases could enhance the growth of steelhead in the spring, but reduce it during the summer. However, differences in growth rates of fish living under different climate change scenarios were minor, ranging from about 1–5 %. Because our analysis focused mostly on the growth responses of steelhead to changes in stream temperatures, further work is needed to fully understand the potential impacts of climate change. Studies should include evaluating changing stream flows on fish activity and energy budgets, responses of aquatic insects to climate change, and integration of bioenergetics, population dynamics, and habitat responses to climate change.  相似文献   

15.
Inclusion of the effects of vegetation feedback in a global climate change simulation suggests that the vegetation–climate feedback works to alleviate partially the summer surface warming and the associated heat waves over Europe induced by the increase in atmospheric CO2 concentrations. The projected warming of 4°C over most of Europe with static vegetation has been reduced by 1°C as the dynamic vegetation feedback effects are included.. Examination of the simulated surface energy fluxes suggests that additional greening in the presence of vegetation feedback effects enhances evapotranspiration and precipitation, thereby limiting the warming, particularly in the daily maximum temperature. The greening also tends to reduce the frequency and duration of heat waves. Results in this study strongly suggest that the inclusion of vegetation feedback within climate models is a crucial factor for improving the projection of warm season temperatures and heat waves over Europe.  相似文献   

16.
2020年,长江三峡地区年平均气温17.2℃,接近常年;年平均降水量1530.8毫米,偏多29%,为1961年以来第二多,仅次于1998年.6月,7月降水量及年平均暴雨日数均为1961年以来第二多.平均风速较常年偏大;相对湿度略偏高;各月均无酸雨出现,近十余年酸雨强度呈现明显减弱趋势.2020年,三峡地区夏季暴雨洪涝灾...  相似文献   

17.
Abstract

The impacts of climate change on surface air temperature (SAT) and winds in the Gulf of St. Lawrence (GSL) are investigated by performing simulations from 1970 to 2099 with the Canadian Regional Climate Model (CRCM), driven by a five-member ensemble. Three members are from Canadian Global Climate Model (CGCM3) simulations following scenario A1B from the Intergovernmental Panel on Climate Change (IPCC); one member is from the Community Climate System Model, version 3 (CCSM3) simulation, also following the A1B scenario; and one member is from the CCSM4 (version 4) simulation following the Representative Concentration Pathway (RCP8.5) scenario. Compared with North America Regional Reanalysis (NARR) data, it is shown that CRCM can reproduce the observed SAT spatial patterns; for example, both CRCM simulations and NARR data show a warm SAT tongue along the eastern Gulf; CRCM simulations also capture the dominant northwesterly winds in January and the southwesterly winds in July. In terms of future climate scenarios, the spatial patterns of SAT show plausible seasonal variations. In January, the warming is 3°–3.5°C in the northern Gulf and 2.5°–3°C near Cabot Strait during 2040–2069, whereas the warming is more uniform during 2070–2099, with SAT increases of 4°–5°C. In summer, the warming gradually decreases from the western side of the GSL to the eastern side because of the different heat capacities between land and water. Moreover, the January winds increase by 0.2–0.4?m?s?1 during 2040–2069, related to weakening stability in the atmospheric planetary boundary layer. However, during 2070–2099, the winds decrease by 0.2–0.4?m?s?1 over the western Gulf, reflecting the northeastward shift in northwest Atlantic storm tracks. In July, enhanced baroclinicity along the east coast of North America dominates the wind changes, with increases of 0.2–0.4?m?s?1. On average, the variance for the SAT changes is about 10% of the SAT increase, and the variance for projected wind changes is the same magnitude as the projected changes, suggesting uncertainty in the latter.  相似文献   

18.
We investigated changes to precipitation and temperature of Alberta for historical and future periods. First, the Mann-Kendall test and Sen’s slope were used to test for historical trends and trend magnitudes from the climate data of Alberta, respectively. Second, the Special Report on Emissions Scenarios (SRES) (A1B, A2, and B1) of CMIP3 (Phase 3 of Coupled Model Intercomparison Project), projected by seven general circulation models (GCM) of the Intergovernmental Panel on Climate Change (IPCC) for three 30 years periods (2020s, 2050s, and 2080s), were used to evaluate the potential impact of climate change on precipitation and temperature of Alberta. Third, trends of projected precipitation and temperature were investigated, and differences between historical versus projected trends were estimated. Using the 50-km resolution dataset from CANGRD (Canadian Grid Climate Data), we found that Alberta had become warmer and somewhat drier for the past 112 years (1900–2011), especially in central and southern Alberta. For observed precipitation, upward trends mainly occurred in northern Alberta and at the leeward side of Canadian Rocky Mountains. However, only about 13 to 22 % of observed precipitation showed statistically significant increasing trends at 5 % significant level. Most observed temperature showed significant increasing trends, up to 0.05 °C/year in DJF (December, January, and February) in northern Alberta. GCMs’ SRES projections indicated that seasonal precipitation of Alberta could change from ?25 to 36 %, while the temperature would increase from 2020s to 2080s, with the largest increase (6.8 °C) in DJF. In all 21 GCM-SRES cases considered, precipitation in both DJF and MAM (March, April, and May) is projected to increase, while temperature is consistently projected to increase in all seasons, which generally agree with the trends of historical precipitation and temperature. The SRES A1B scenario of CCSM3 might project more realistic future climate for Alberta, where its water resources can become more critical in the future as its streamflow is projected to decrease continually in the future.  相似文献   

19.
The Chinook salmon (Oncorhynchus tshawytscha) spawns and rears in the cold, freshwater rivers and tributaries of California’s Central Valley, with four separate seasonal runs including fall and late-fall runs, a winter run, and a spring run. Dams and reservoirs have blocked access to most of the Chinook’s ancestral spawning areas in the upper reaches and tributaries. Consequently, the fish rely on the mainstem of the Sacramento River for spawning habitat. Future climatic warming could lead to alterations of the river’s temperature regime, which could further reduce the already fragmented Chinook habitat. Specifically, increased water temperatures could result in spawning and rearing temperature exceedences, thereby jeopardizing productivity, particularly in drought years. Paradoxically, water management plays a key role in potential adaptation options by maintaining spawning and rearing habitat now and in the future, as reservoirs such as Shasta provide a cold water supply that will be increasingly needed to counter the effects of climate change. Results suggest that the available cold pool behind Shasta could be maintained throughout the summer assuming median projections of mid-21st century warming of 2°C, but the maintenance of the cold pool with warming on the order of 4°C could be very challenging. The winter and spring runs are shown to be most at risk because of the timing of their reproduction.  相似文献   

20.
Summary The present study is an analysis of the observed extreme temperature and precipitation trends over Yangtze from 1960 to 2002 on the basis of the daily data from 108 meteorological stations. The intention is to identify whether or not the frequency or intensity of extreme events has increased with climate warming over Yangtze River basin in the last 40 years. Both the Mann-Kendall (MK) trend test and simple linear regression were utilized to detect monotonic trends in annual and seasonal extremes. Trend tests reveal that the annual and seasonal mean maximum and minimum temperature trend is characterized by a positive trend and that the strongest trend is found in the winter mean minimum in the Yangtze. However, the observed significant trend on the upper Yangtze reaches is less than that found on the middle and lower Yangtze reaches and for the mean maximum is much less than that of the mean minimum. From the basin-wide point of view, significant increasing trends are observed in 1-day extreme temperature in summer and winter minimum, but there is no significant trend for 1-day maximum temperature. Moreover, the number of cold days ≤0 °C and ≤10 °C shows significant decrease, while the number of hot days (daily value ≥35 °C) shows only a minor decrease. The upward trends found in the winter minimum temperature in both the mean and the extreme value provide evidence of the warming-up of winter and of the weakening of temperature extremes in the Yangtze in last few decades. The monsoon climate implies that precipitation amount peaks in summer as does the occurrence of heavy rainfall events. While the trend test has revealed a significant trend in summer rainfall, no statistically significant change was observed in heavy rain intensity. The 1-day, 3-day and 7-day extremes show only a minor increase from a basin-wide point of view. However, a significant positive trend was found for the number of rainstorm days (daily rainfall ≥50 mm). The increase of rainstorm frequency, rather than intensity, on the middle and lower reaches contributes most to the positive trend in summer precipitation in the Yangtze.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号