首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 475 毫秒
1.
The presented model of the Late Cenozoic geodynamic evolution of the central Andes and the complex tectonic, geological, and geophysical model of the Earth’s crust and upper mantle along the Central Andean Transect, which crosses the Andean subduction zone along 21°S, are based on the integration of voluminous and diverse data. The onset of the recent evolution of the central Andes is dated at the late Oligocene (27 Ma ago), when the local fluid-induced rheological attenuation of the continental lithosphere occurred far back of the subduction zone. Tectonic deformation started to develop in thick-skinned style above the attenuated domain in the upper mantle and then in the Earth’s crust, creating the bivergent system of the present-day Eastern Cordillera. The destruction of the continental lithosphere is correlated with ore mineralization in the Bolivian tin belt, which presumably started at 16° S and spread to the north and to the south. Approximately 19 Ma ago, the gently dipping Subandean Thrust Fault was formed beneath the Eastern Cordillera, along which the South American Platform began to thrust under the Andes with rapid thickening of the crust in the eastern Andean Orogen owing to its doubling. The style of deformation in the upper crust above the Subandean Thrust Fault changed from thick- to thin-skinned, and the deformation front migrated to the east inland, forming the Subandean system of folds and thrust faults verging largely eastward. The thickening of the crust was accompanied by flows at the lower and/or middle crustal levels, delamination, and collapse of fragments of the lower crust and lithospheric mantle beneath the Eastern Cordillera and Altiplano-Puna Plateau. As the thickness of the middle and lower crustal layers reached a critical thickness about 10 Ma ago, the viscoplastic flow in the meridional direction became more intense. Extension of the upper brittle crust was realized mainly in gliding and rotation of blocks along a rhombic fault system. Some blocks sank, creating sedimentary basins. The rate of southward migration estimated from the age of these basins is 26 km/Ma. Tectonic deformation was accompanied by diverse magmatic activity (ignimbrite complexes, basaltic flows, shoshonitic volcanism, etc.) within the tract from the Western Cordillera to the western edge of the Eastern Cordillera 27–5 Ma ago with a peak at 7 Ma; after this, it began to recede westward; by 5 Ma ago, the magmatic activity reached only the western part of the Altiplano-Puna Plateau, and it has been concentrated in the volcanic arc of the Western Cordillera during the last 2 Ma.  相似文献   

2.
Integrated studies and revisions of sedimentary basins and associated magmatism in Peru and Bolivia (8–22°S) show that this part of western Gondwana underwent rifting during the Late Permian–Middle Jurassic interval. Rifting started in central Peru in the Late Permian and propagated southwards into Bolivia until the Liassic/Dogger, along an axis that coincides with the present Eastern Cordillera. Southwest of this region, lithospheric thinning developed in the Early Jurassic and culminated in the Middle Jurassic, producing considerable subsidence in the Arequipa basin of southern Peru. This 110-Ma-long interval of lithospheric thinning ended 160 Ma with the onset of Malm–earliest Cretaceous partial rift inversion in the Eastern Cordillera area.The lithospheric heterogeneities inherited from these processes are likely to have largely influenced the distribution and features of younger compressional and/or transpressional deformations. In particular, the Altiplano plateau corresponds to a paleotectonic domain of “normal” lithospheric thickness that was bounded by two elongated areas underlain by thinned lithosphere. The high Eastern Cordillera of Peru and Bolivia results from Late Oligocene–Neogene intense inversion of the easternmost thinned area.  相似文献   

3.
Backstripping analysis and forward modeling of 162 stratigraphic columns and wells of the Eastern Cordillera (EC), Llanos, and Magdalena Valley shows the Mesozoic Colombian Basin is marked by five lithosphere stretching pulses. Three stretching events are suggested during the Triassic–Jurassic, but additional biostratigraphical data are needed to identify them precisely. The spatial distribution of lithosphere stretching values suggests that small, narrow (<150 km), asymmetric graben basins were located on opposite sides of the paleo-Magdalena–La Salina fault system, which probably was active as a master transtensional or strike-slip fault system. Paleomagnetic data suggesting a significant (at least 10°) northward translation of terranes west of the Bucaramanga fault during the Early Jurassic, and the similarity between the early Mesozoic stratigraphy and tectonic setting of the Payandé terrane with the Late Permian transtensional rift of the Eastern Cordillera of Peru and Bolivia indicate that the areas were adjacent in early Mesozoic times. New geochronological, petrological, stratigraphic, and structural research is necessary to test this hypothesis, including additional paleomagnetic investigations to determine the paleolatitudinal position of the Central Cordillera and adjacent tectonic terranes during the Triassic–Jurassic. Two stretching events are suggested for the Cretaceous: Berriasian–Hauterivian (144–127 Ma) and Aptian–Albian (121–102 Ma). During the Early Cretaceous, marine facies accumulated on an extensional basin system. Shallow-marine sedimentation ended at the end of the Cretaceous due to the accretion of oceanic terranes of the Western Cordillera. In Berriasian–Hauterivian subsidence curves, isopach maps and paleomagnetic data imply a (>180 km) wide, asymmetrical, transtensional half-rift basin existed, divided by the Santander Floresta horst or high. The location of small mafic intrusions coincides with areas of thin crust (crustal stretching factors >1.4) and maximum stretching of the subcrustal lithosphere. During the Aptian–early Albian, the basin extended toward the south in the Upper Magdalena Valley. Differences between crustal and subcrustal stretching values suggest some lowermost crustal decoupling between the crust and subcrustal lithosphere or that increased thermal thinning affected the mantle lithosphere. Late Cretaceous subsidence was mainly driven by lithospheric cooling, water loading, and horizontal compressional stresses generated by collision of oceanic terranes in western Colombia. Triassic transtensional basins were narrow and increased in width during the Triassic and Jurassic. Cretaceous transtensional basins were wider than Triassic–Jurassic basins. During the Mesozoic, the strike-slip component gradually decreased at the expense of the increase of the extensional component, as suggested by paleomagnetic data and lithosphere stretching values. During the Berriasian–Hauterivian, the eastern side of the extensional basin may have developed by reactivation of an older Paleozoic rift system associated with the Guaicáramo fault system. The western side probably developed through reactivation of an earlier normal fault system developed during Triassic–Jurassic transtension. Alternatively, the eastern and western margins of the graben may have developed along older strike-slip faults, which were the boundaries of the accretion of terranes west of the Guaicáramo fault during the Late Triassic and Jurassic. The increasing width of the graben system likely was the result of progressive tensional reactivation of preexisting upper crustal weakness zones. Lateral changes in Mesozoic sediment thickness suggest the reverse or thrust faults that now define the eastern and western borders of the EC were originally normal faults with a strike-slip component that inverted during the Cenozoic Andean orogeny. Thus, the Guaicáramo, La Salina, Bitúima, Magdalena, and Boyacá originally were transtensional faults. Their oblique orientation relative to the Mesozoic magmatic arc of the Central Cordillera may be the result of oblique slip extension during the Cretaceous or inherited from the pre-Mesozoic structural grains. However, not all Mesozoic transtensional faults were inverted.  相似文献   

4.
青藏高原新生代形成演化的整合模型——来自火成岩的约束   总被引:36,自引:8,他引:28  
深部过程是青藏高原演化的主导因素,其他地质过程都可以看作是对深部过程的响应。因此,一个构造旋回(阶段)的地球动力学事件链可以概括为深部地质过程—幔源岩浆活动—壳源岩浆活动—陆壳增厚—地表隆升—表层剥蚀与沉积,其中幔源岩浆活动的研究成为追索青藏高原演化历史的关键环节。据此,青藏高原演化的关键性时间坐标为80、45、27、17、9和4Ma。青藏高原新生代火成岩具有三种展布形式:与雅鲁藏布缝合带平行的岩浆带、沿深大断裂展布的岩浆带和藏北离散性岩浆分布区,它们分别受控于大陆碰撞、大规模走滑和岩石圈拆沉构造体制,且都受控于印度—亚洲软流圈汇聚过程。据此,文中提出了一个描述青藏高原演化的整合模型:南北向地幔对流汇聚控制了岩石圈块体的相对运动,并最终导致印度—亚洲大陆的碰撞和沿碰撞带的大规模岩浆活动;碰撞之初(白垩纪末期),大陆岩石圈块体的刚性属性有利于应力的远程传递和块体旋转,沿块体边界分布的大型走滑断裂控制了岩浆活动的发生;随着挤压过程的持续进行,岩石圈块体的受热和变形,高原岩石圈的重力不稳定性增加,最终导致拆沉作用和软流圈物质的大规模上涌以及藏北高原的离散性岩浆活动。在高原演化中,岩石圈拆沉作用具有重要意义,许多地质事件的发生都与此有关。同时,软流圈的汇聚还导致软流圈物质的向东挤出,并因此造成青藏高原岩石圈的向东挤出和晚新生代的伸展构造。  相似文献   

5.
The geological record of the Western Andean Escarpment (WARP) reveals episodes of uplift, erosion, volcanism and sedimentation. The lithological sequence at 18°S comprises a thick pile of Azapa Conglomerates (25–19 Ma), an overlying series of widespread rhyodacitic Oxaya Ignimbrites (up to 900 m thick, ca. 19 Ma), which are in turn covered by a series of mafic andesite shield volcanoes. Between 19 and 12 Ma, the surface of the Oxaya Ignimbrites evolved into a large monocline on the western slope of the Andes. A giant antithetically rotated block (Oxaya Block, 80 km×20 km) formed on this slope at about 10–12 Ma and resulted in an easterly dip and a reversed drainage on the block's surface. Morphology, topography and stratigraphic observations argue for a gravitational cause of this rotation. A “secondary” gravitational collapse (50 km3), extending 25 km to the west occurred on the steep western front of the Oxaya Block. Alluvial and fluvial sediments (11–2.7 Ma) accumulated in a half graben to the east of the tilted block and were later thrust over by the rocks of the escarpment wall, indicating further shortening between 8 and 6 Ma. Flatlying Upper Miocene sediments (<5.5 Ma) and the 2.7 Ma Lauca–Peréz Ignimbrite have not been significantly shortened since 6 Ma, suggesting that recent uplift is at least partly caused by regional tilting of the Western Andean slope.  相似文献   

6.
Giacomo Corti   《Earth》2009,96(1-2):1-53
The Main Ethiopian Rift is a key sector of the East African Rift System that connects the Afar depression, at Red Sea–Gulf of Aden junction, with the Turkana depression and Kenya Rift to the South. It is a magmatic rift that records all the different stages of rift evolution from rift initiation to break-up and incipient oceanic spreading: it is thus an ideal place to analyse the evolution of continental extension, the rupture of lithospheric plates and the dynamics by which distributed continental deformation is progressively focused at oceanic spreading centres.The first tectono-magmatic event related to the Tertiary rifting was the eruption of voluminous flood basalts that apparently occurred in a rather short time interval at around 30 Ma; strong plateau uplift, which resulted in the development of the Ethiopian and Somalian plateaus now surrounding the rift valley, has been suggested to have initiated contemporaneously or shortly after the extensive flood-basalt volcanism, although its exact timing remains controversial. Voluminous volcanism and uplift started prior to the main rifting phases, suggesting a mantle plume influence on the Tertiary deformation in East Africa. Different plume hypothesis have been suggested, with recent models indicating the existence of deep superplume originating at the core-mantle boundary beneath southern Africa, rising in a north–northeastward direction toward eastern Africa, and feeding multiple plume stems in the upper mantle. However, the existence of this whole-mantle feature and its possible connection with Tertiary rifting are highly debated.The main rifting phases started diachronously along the MER in the Mio-Pliocene; rift propagation was not a smooth process but rather a process with punctuated episodes of extension and relative quiescence. Rift location was most probably controlled by the reactivation of a lithospheric-scale pre-Cambrian weakness; the orientation of this weakness (roughly NE–SW) and the Late Pliocene (post 3.2 Ma)-recent extensional stress field generated by relative motion between Nubia and Somalia plates (roughly ESE–WNW) suggest that oblique rifting conditions have controlled rift evolution. However, it is still unclear if these kinematical boundary conditions have remained steady since the initial stages of rifting or the kinematics has changed during the Late Pliocene or at the Pliocene–Pleistocene boundary.Analysis of geological–geophysical data suggests that continental rifting in the MER evolved in two different phases. An early (Mio-Pliocene) continental rifting stage was characterised by displacement along large boundary faults, subsidence of rift depression with local development of deep (up to 5 km) asymmetric basins and diffuse magmatic activity. In this initial phase, magmatism encompassed the whole rift, with volcanic activity affecting the rift depression, the major boundary faults and limited portions of the rift shoulders (off-axis volcanism). Progressive extension led to the second (Pleistocene) rifting stage, characterised by a riftward narrowing of the volcano-tectonic activity. In this phase, the main boundary faults were deactivated and extensional deformation was accommodated by dense swarms of faults (Wonji segments) in the thinned rift depression. The progressive thinning of the continental lithosphere under constant, prolonged oblique rifting conditions controlled this migration of deformation, possibly in tandem with the weakening related to magmatic processes and/or a change in rift kinematics. Owing to the oblique rifting conditions, the fault swarms obliquely cut the rift floor and were characterised by a typical right-stepping arrangement. Ascending magmas were focused by the Wonji segments, with eruption of magmas at surface preferentially occurring along the oblique faults. As soon as the volcano-tectonic activity was localised within Wonji segments, a strong feedback between deformation and magmatism developed: the thinned lithosphere was strongly modified by the extensive magma intrusion and extension was facilitated and accommodated by a combination of magmatic intrusion, dyking and faulting. In these conditions, focused melt intrusion allows the rupture of the thick continental lithosphere and the magmatic segments act as incipient slow-spreading mid-ocean spreading centres sandwiched by continental lithosphere.Overall the above-described evolution of the MER (at least in its northernmost sector) documents a transition from fault-dominated rift morphology in the early stages of extension toward magma-assisted rifting during the final stages of continental break-up. A strong increase in coupling between deformation and magmatism with extension is documented, with magma intrusion and dyking playing a larger role than faulting in strain accommodation as rifting progresses to seafloor spreading.  相似文献   

7.
华北克拉通破坏的物理、化学过程:地幔橄榄岩证据   总被引:1,自引:0,他引:1  
本文对比了华北东部不同时代、不同位置捕虏体/地质体橄榄岩的地幔属性,讨论了华北克拉通破坏的物理、化学过程。结果表明,拆沉作用不能很好地解释古老难熔、过渡型和新生饱满地幔并存的事实;单纯的熔体-橄榄岩相互作用也不易解释中、新生代岩石圈巨大减薄和新生饱满地幔Cpx中LREE亏损现象,即具复杂演化历史的克拉通地幔向演化历史简单的"大洋型"岩石圈的转换。华北东部克拉通破坏作用包括地幔伸展、熔-岩作用、侵蚀置换等复杂的物理、化学过程。岩石圈先大幅减薄、后小幅增厚实现了最终的地幔置换和岩石圈整体减薄过程。喷发时代为100 Ma的阜新玄武岩所捕获的橄榄岩主体是饱满的,说明华北东部部分地区在此之前有过地幔置换作用。  相似文献   

8.
In the Eastern Cordillera of Colombia, a new structural model constrained by field data, paleontologic determinations, and interpretations of seismic reflection profiles is proposed. The model implies 70 km of shortening, including reactivation of basement structures as inverse faults in both flanks of the chain. These faults propagated within the lower Cretaceous strata, inducing passively rooted and transported thrust sheets as the successive basement faults were reactivated. Two structural styles are identified in the western flank: (1) positive flower structures in a transpressive regime, which affected rocks older than upper Paleocene and were unconformably covered by post–late Paleocene sediments, and (2) compressive structures during the late Miocene–Recent Andean phase. Presently, WNW-ESE compression reactivates Late Paleocene structures, which locally affect Andean trends. In the western margin of the Eastern Cordillera, the Cambao thrust takes up most displacement, whereas the Bituima fault takes only a minor part. To the south, this relationship reverses, suggesting complementary behavior by the Bituima and Cambao faults, as well as a transfer zone. This suggestion explains the southward termination of the Guaduas syncline as a structure related to the Cambao fault, whereas the Bituima fault increases its displacement southward, generating the Girardot foldbelt that takes over the structural position of the Guaduas syncline.  相似文献   

9.
通过横穿青藏高原近 80 0 0km长的 4条天然地震层析剖面 ,获得 4 0 0km深度以上的地壳和地幔速度图像及地震波各向异性 ,揭示了青藏高原 4 0 0km深度范围内的地壳和地幔结构特征。地幔速度图像显示 ,青藏高原腹地的深地幔中存在以大型低速异常体为特征的地幔羽 ,其可能通过热通道与大面积分布的可可西里新生代高钾碱性火山作用有成因联系 ;阿尔金、康西瓦、金沙江、嘉黎及雅鲁藏布江等走滑断裂可下延至 30 0~ 4 0 0km深度 ,显示了低速高热物质组成的垂向低速异常带特征及大型超岩石圈或地幔剪切带的产出 ;发现康西瓦、东昆仑—金沙江、班公湖—怒江和雅鲁藏布缝合带下部存在不连续的高速异常带 ,可以解释为青藏高原地体拼合及碰撞过程中可能保留的加里东、古特提斯和中特提斯大洋岩石圈“化石”残片 ,是“拆沉”的地球物理证据。印度大陆岩石圈的巨厚俯冲板片以 15~ 2 0°倾角向北插入唐古拉山下 30 0km深处 ,并被高热物质组成的地幔剪切带分开。结合新的横穿喜马拉雅及青藏高原的地幔层析资料 ,提出青藏高原碰撞动力学新模式 :青藏高原南部印度岩石圈板片的翻卷式陆内超深俯冲 ,北缘克拉通向南的陆内俯冲 ,腹地深部的地幔羽上涌 ,以及地幔范围内的高原“右旋隆升”及物质向东及北东方向运动及挤出。  相似文献   

10.
The Carpathian–Pannonian Region contains Neogene to Quaternary magmatic rocks of highly diverse composition (calc-alkaline, shoshonitic and mafic alkalic) that were generated in response to complex microplate tectonics including subduction followed by roll-back, collision, subducted slab break-off, rotations and extension. Major element, trace element and isotopic geochemical data of representative parental lavas and mantle xenoliths suggests that subduction components were preserved in the mantle following the cessation of subduction, and were reactivated by asthenosphere uprise via subduction roll-back, slab detachment, slab-break-off or slab-tearing. Changes in the composition of the mantle through time are evident in the geochemistry, supporting established geodynamic models.Magmatism occurred in a back-arc setting in the Western Carpathians and Pannonian Basin (Western Segment), producing felsic volcaniclastic rocks between 21 to 18 Ma ago, followed by younger felsic and intermediate calc-alkaline lavas (18–8 Ma) and finished with alkalic-mafic basaltic volcanism (10–0.1 Ma). Volcanic rocks become younger in this segment towards the north. Geochemical data for the felsic and calc-alkaline rocks suggest a decrease in the subduction component through time and a change in source from a crustal one, through a mixed crustal/mantle source to a mantle source. Block rotation, subducted roll-back and continental collision triggered partial melting by either delamination and/or asthenosphere upwelling that also generated the younger alkalic-mafic magmatism.In the westernmost East Carpathians (Central Segment) calc-alkaline volcanism was simultaneously spread across ca. 100 km in several lineaments, parallel or perpendicular to the plane of continental collision, from 15 to 9 Ma. Geochemical studies indicate a heterogeneous mantle toward the back-arc with a larger degree of fluid-induced metasomatism, source enrichment and assimilation on moving north-eastward toward the presumed trench. Subduction-related roll-back may have triggered melting, although there may have been a role for back-arc extension and asthenosphere uprise related to slab break-off.Calc-alkaline and adakite-like magmas were erupted in the Apuseni Mountains volcanic area (Interior Segment) from15–9 Ma, without any apparent relationship with the coeval roll-back processes in the front of the orogen. Magmatic activity ended with OIB-like alkali basaltic (2.5 Ma) and shoshonitic magmatism (1.6 Ma). Lithosphere breakup may have been an important process during extreme block rotations (60°) between 14 and 12 Ma, leading to decompressional melting of the lithospheric and asthenospheric sources. Eruption of alkali basalts suggests decompressional melting of an OIB-source asthenosphere. Mixing of asthenospheric melts with melts from the metasomatized lithosphere along an east–west reactivated fault-system could be responsible for the generation of shoshonitic magmas during transtension and attenuation of the lithosphere.Voluminous calc-alkaline magmatism occurred in the Cãlimani-Gurghiu-Harghita volcanic area (South-eastern Segment) between 10 and 3.5 Ma. Activity continued south-eastwards into the South Harghita area, in which activity started (ca. 3.0–0.03 Ma, with contemporaneous eruption of calc-alkaline (some with adakite-like characteristics), shoshonitic and alkali basaltic magmas from 2 to 0.3 Ma. Along arc magma generation was related to progressive break-off of the subducted slab and asthenosphere uprise. For South Harghita, decompressional melting of an OIB-like asthenospheric mantle (producing alkali basalt magmas) coupled with fluid-dominated melting close to the subducted slab (generating adakite-like magmas) and mixing between slab-derived melts and asthenospheric melts (generating shoshonites) is suggested. Break-off and tearing of the subducted slab at shallow levels required explaining this situation.  相似文献   

11.
Speculations on the nature and cause of mantle heterogeneity   总被引:8,自引:0,他引:8  
Hotspots and hotspot tracks are on, or start on, preexisting lithospheric features such as fracture zones, transform faults, continental sutures, ridges and former plate boundaries. Volcanism is often associated with these features and with regions of lithospheric extension, thinning, and preexisting thin spots. The lithosphere clearly controls the location of volcanism. The nature of the volcanism and the presence of ‘melting anomalies’ or ‘hotspots’, however, reflect the intrinsic chemical and lithologic heterogeneity of the upper mantle. Melting anomalies—shallow regions of ridges, volcanic chains, flood basalts, radial dike swarms—and continental breakup are frequently attributed to the impingement of deep mantle thermal plumes on the base of the lithosphere. The heat required for volcanism in the plume hypothesis is from the core. Alternatively, mantle fertility and melting point, ponding and focusing, and edge effects, i.e., plate tectonic and near-surface phenomena, may control the volumes and rates of magmatism. The heat required is from the mantle, mainly from internal heating and conduction into recycled fragments. The magnitude of magmatism appears to reflect the fertility, not the absolute temperature, of the asthenosphere. I attribute the chemical heterogeneity of the upper mantle to subduction of young plates, aseismic ridges and seamount chains, and to delamination of the lower continental crust. These heterogeneities eventually warm up past the melting point of eclogite and become buoyant low-velocity diapirs that undergo further adiabatic decompression melting as they encounter thin or spreading regions of the lithosphere. The heat required for the melting of cold subducted and delaminated material is extracted from the essentially infinite heat reservoir of the mantle, not the core. Melting in the upper mantle does not requires the instability of a deep thermal boundary layer or high absolute temperatures. Melts from recycled oceanic crust, and seamounts—and possibly even plateaus—pond beneath the lithosphere, particularly beneath basins and suture zones, with locally thin, weak or young lithosphere. The characteristic scale lengths—150 to 600 km—of variations in bathymetry and magma chemistry, and the variable productivity of volcanic chains, may reflect compositional heterogeneity of the asthenosphere, not the scales of mantle convection or the spacing of hot plumes. High-frequency seismic waves, scattering, coda studies and deep reflection profiles are needed to detect the kind of chemical heterogeneity and small-scale layering predicted from the recycling hypothesis.  相似文献   

12.
The Turkish-Iranian Plateau (Fig. 1) is a high region with an average elevation of about 1.5 km. During the late Miocene the last piece of oceanic lithosphere between the Eurasian and Arabian continents was eliminated at the Bitlis/Zagros suture zone. Continued convergence across the collision site resulted in the shortening of the plateau across strike by thickening and by sideways motion of parts of it. Predominantly calcalkaline volcanism is present on the highest portions of the area, despite the absence of a descending slab of lithosphere. Surface geology and volcanism of the Turkish-Iranian Plateau resemble greatly those of the Tibetan Plateau, and both are underlain by a zone of seismic attenuation. From a comparison of these features and their tectonic setting we argue that the two plateaux are homologous structures, albeit at different stages of their evolution. Both areas appear to be tectonically alive and actively shortening. Available evidence lends little support to the hypothesis of large-scale underthrusting of continental lithosphere and of plastic-rigid indentation where such high plateaux, located directly in front of the “rigid indenter”, are considered to be tectonically “dead”. Their peculiar features are best explained in terms of shortening and thickening the continental crust whereby its lower levels are partially melted to give rise to calc-alkaline surface volcanism. Minor associated alkaline volcanism may be due to local longitudinal cracking of the crust to provide access to mantle.  相似文献   

13.
The Llanos foothills are located in the frontal thrust zone of the Eastern Cordillera in Colombia in a complex environment that BP has been exploring actively since 1988. This exploration has resulted in the discovery of several fields with a variety of hydrocarbon fluids (gas condensate and volatile oil) in very tight quartz-arenites. The structural style and complexity of this fold-and-thrust belt changes along the trend from single frontal structures to an imbricate of up to five thrust sheets in a triangle zone. In highly complex environments, the seismic image quality is poor, and interpretation becomes very challenging. The structural models of the area have evolved as more data have been acquired. The initial structural model required inversion of the basin at the end of the Andean orogeny. The structural style changed to an in-sequence imbricate thrust stack with very long, trailing back limbs that return to regional elevation and finalize in a tighter structures with short back limbs. The concept of early deformation and multiple phases has been introduced. Three main phases have been distinguished: (1) an early event during the deposition of the Lower Carbonera (39–29 Ma), with incipient structures formed to create syntectonic deposition; (2) a phase of steady subsidence that increased notably at the end of the period (29–7 Ma); and (3) the latest phase (7–0 Ma), when most deformation and uplifting occurred. The migration of hydrocarbons happened simultaneously with the deformation, and its final distribution, amount, and variation in composition is related to the structural evolution of the area.  相似文献   

14.
The relatively low elevation and thick crust in the Altiplano, in comparison to the higher elevation, but thinner crust in the Puna plateau, together with geophysical data, suggests that isostatic equillibrium is achieved by cooler and denser lithospheric mantle in the Altiplano. Excess density in the Altiplano mantle could create differential horizontal stress in the order of 25 MPa between both lithospheric columns. Numerical models accounting for pressure and temperature-dependent rheology show that such stress can induce horizontal ductile flow in the lower crust, from the Puna towards the Altiplano. With a minimum viscosity of 1019 Pa s, this flow reaches 1 cm/year, displacing more than 50 km of material within 5 Ma. If the lower crust viscosity is smaller, the amount of orogeny-parallel lower crustal flow can be even greater. Such a mechanism of channel flow may explain that different amounts of crustal material have been accommodated by shortening in the Altiplano and in the Puna. Because of the strength of the elastic-brittle upper crust, this channel flow does not necessitate large amounts of surface deformation (except vertical uplift), making it difficult to detect from the geology.  相似文献   

15.
The three-dimensional (3D) lithospheric density structure of the Eastern Alps was investigated by integrating results from reflection seismics, receiver function analyses and tomography. The modelling was carried out with respect to the Bouguer gravity and the geoid undulations and emphasis were laid on the investigations of the importance of deep lithospheric features. Although the influence of inhomogeneities at the lithosphere–asthenosphere boundary on the potential field is not neglectable, they are overprinted by the response of the density contrast at the crust–mantle boundary and intra-crustal density anomalies. The uncertainties in the interpretations are in the same order of magnitude as the gravity field generated by the deep lithosphere.After including the deep lithospheric geometry from the tomographic model it is shown that full isostatic equilibrium is not achieved below the Eastern Alps. However, calculation of the isostatic lithospheric thickness shows two areas of lithospheric thickening along the central axis of the Eastern Alps with a transition zone below the area of the TRANSALP profile. This is in agreement with the tomographic model, which features a change in lithospheric subduction direction.  相似文献   

16.
Basedontheconsiderationswhetherornottherearedif-ferencesincompositionsofthemantlematerial,betweenPale-ozoicandCenozoic,andthedifferencesinrocksamp1esfrommantleliewithinandoutsideoftheTancheng-Lujiang(Tanlu)faultzoneinCenozoic,themineralinclusionsindia-mQndandxenolithsfromMengyinandFuxiankimberliteswerechosenforconstrainingthenatureofPaleozoicSCLM,andthexenolithsfromtheShanwangandQixiabasaltswererepresentativelychosenforconstrainingthenatureofCeno-zoicSCLMinsideandoutsideoftheTanlufault…  相似文献   

17.
Deep lithospheric processes associated with the formation of major orogens, including the removal of lower crust and underlying mantle through delamination associated with orogen building are poorly constrained. With a view to evaluate the potential link between deep geodynamic processes and magmatic events, we performed in situ zircon Hf-O-Li isotopic analyses of granitoids from the Eastern and Western Junggar, Altai and Beishan orogens, within the Central Asian Orogenic Belt (CAOB). The εHf(t) and δ18O values of magmatic zircons crystallized during 443 Ma and 252 Ma indicate diverse and heterogeneous magma sources. The corresponding δ7Li peaks at ~440 Ma and ~250 Ma, suggesting two distinct high-temperature magmatic events. Based on a comparison with global data, we argue that large-scale delamination formed through Gondwana and Pangaea supercontinent assembly, may have occurred at Ordovician to Silurian boundary (OSB) and Permian to Triassic boundary (PTB), which we term as super-delamination. The subsequent widespread magmatism and volcanism might have made significant impact on the Earth surface ecosystems, ultimately leading to the OSB and PTB mass extinction events. We propose super-delamination as a potential mechanism to explain the link between Earth's internal and external processes, thus providing novel insights into the trigger for mass extinction events.  相似文献   

18.
Abundant gold deposits are distributed along the margins of the North China Craton (NCC). Occurring throughout the Precambrian basement and located in or proximal to Mesozoic granitoids, these deposits show a consistent spatial–temporal association with Late Jurassic–Early Cretaceous magmatism and are characterized by quartz lode or disseminated styles of mineralization with extensive alteration of wall rock. Their ages are mainly Early Cretaceous (130–110 Ma) and constrain a very short period of metallogenesis. Sr–Nd–Pb isotopic tracers of ores, minerals and associated rocks indicate that gold and associated metals mainly were derived from multi-sources, i.e., the wall rocks (Precambrian basement and Mesozoic granites) and associated mafic rocks.Previous studies, including high surface heat flow, uplift and later basin development, slow seismic wave speeds in the upper mantle, and a change in the character of mantle xenoliths sampled by Paleozoic to Cenozoic magmas, have been used to suggest that ancient, cratonic mantle lithosphere was removed from the base of the NCC some time after the Ordovician, and replaced by younger, less refractory lithospheric mantle. The geochemistry and isotopic compositions of the mafic rocks associated with gold mineralization (130–110 Ma) indicate that they were derived from an ancient enriched lithospheric mantle source; whereas, the mafic dikes and volcanic rocks younger than 110 Ma were derived from a relatively depleted mantle source, i.e., asthenospheric mantle. According to their age and sources, relation to magmatism and geodynamic framework, the gold deposits were formed during lithospheric thinning. The removal of lithospheric mantle and the upwelling of new asthenospheric mantle induced partial melting and dehydration of the lithospheric mantle and lower crust due to an increase of temperature. The fluids derived from the lower crust were mixed with magmatic and meteoric waters, and resulted in the deposition of gold and associated metals.  相似文献   

19.
Mafic alkalic volcanism was widespread in the Carpathian–Pannonian region (CPR) between 11 and 0.2 Ma. It followed the Miocene continental collision of the Alcapa and Tisia blocks with the European plate, as subduction-related calc-alkaline magmatism was waning. Several groups of mafic alkalic rocks from different regions within the CPR have been distinguished on the basis of ages and/or trace-element compositions. Their trace element and Sr–Nd–Pb isotope systematics are consistent with derivation from complex mantle-source regions, which included both depleted asthenosphere and metasomatized lithosphere. The mixing of DMM-HIMU-EMII mantle components within asthenosphere-derived magmas indicates variable contamination of the shallow asthenosphere and/or thermal boundary layer of the lithosphere by a HIMU-like component prior to and following the introduction of subduction components.Various mantle sources have been identified: Lower lithospheric mantle modified by several ancient asthenospheric enrichments (source A); Young asthenospheric plumes with OIB-like trace element signatures that are either isotopically enriched (source B) or variably depleted (source C); Old upper asthenosphere heterogeneously contaminated by DM-HIMU-EMII-EMI components and slightly influenced by Miocene subduction-related enrichment (source D); Old upper asthenosphere heterogeneously contaminated by DM-HIMU-EMII components and significantly influenced by Miocene subduction-related enrichment (source E). Melt generation was initiated either by: (i) finger-like young asthenospheric plumes rising to and heating up the base of the lithosphere (below the Alcapa block), or (ii) decompressional melting of old asthenosphere upwelling to replace any lower lithosphere or heating and melting former subducted slabs (the Tisia block).  相似文献   

20.
K. Vijaya Kumar  K. Rathna 《Lithos》2008,104(1-4):306-326
Mesoproterozoic rift-zone magmatism in the Prakasam Alkaline Province of Eastern Ghats Belt, India is represented by three geochemically distinct primary mafic magmas and their plutonic differentiates. The three mafic magmas correspond to the alkali basaltic dykes, gabbroic dykes and lamprophyric dykes. The dyke activity is synchronous with the host plutons and belongs to the 1350–1250 Ma period Mesoproterozoic magmatism. Geochemical signatures suggest that the alkali basaltic dykes have a source in the thermal boundary layer, which has a history of prior melt extraction followed by enrichment. Both the gabbroic and lamprophyric dykes are derived from lithospheric sources and their geochemical variation can be explained by “vein-plus-wall-rock melting model”. Vein/wall-rock ratio is low for the sources of gabbroic dykes, whereas it is high for the lamprophyric dykes. Geochemistry of the gabbro dykes further indicates preservation of previous arc-signals by the lithosphere beneath the Prakasam Alkaline Province during the Mesoproterozoic. Geochemical signatures of lamproite, which could be a cratonic expression of the rift-triggered magmatism in the Prakasam Province, suggest a general increase in the metasomatic imprint with increasing lithosphere thickness from cratonic margin towards interior. It is found that geochemistry of continental rift-zone magmatism of the Prakasam rift is remarkably similar to that of the Gardar rift of South Greenland. It appears that the geodynamic conditions under which melting occurred in the Prakasam Alkaline Province are similar to that of a propagating rift with variable contributions from the convective mantle and subcontinental lithosphere mantle to the rift-zone magmas. The present study illustrates how fertility and chemical heterogeneity of the lithosphere play significant roles in the creation of enormous geochemical diversity characteristic of continental rift-zone magmatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号