首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Investigating seismic dispersion and attenuation characteristics of loosely compacted marine sandstone is essential in reconciling different geophysical measurements (surface seismic, well logging and ultrasonic) for better characterization of a shallow marine sandstone reservoir. We have experimented with a typical high-porosity and high-permeability sandstone sample, extracted from the Paleogene marine depositional setting in the Gulf of Mexico, at the low-frequency band (2–500 Hz) as well as ultrasonic point (106 Hz), to investigate the effects of varying saturation levels on a rock's elasticity. The results suggest that the Young's modulus of the measured sample with adsorbed moisture at laboratory conditions (room temperature, 60%–90% humidity) exhibits dispersive behaviours. The extensional attenuation can be as high as 0.038, and the peak frequency occurs around 60 Hz. The extensional attenuation due to moisture adsorption can be dramatically mitigated with the increase of confining pressure. For partial saturation status, extensional attenuation increases as increasing water saturation by 79% with respect to the measured frequencies. Additionally, the results show that extensional attenuation at the fully water-saturated situation is even smaller than that at adsorbed moisture conditions. The Gassmann–Wood model can overall capture the P-wave velocity-saturation trend of measured data at seismic frequencies, demonstrating that the partially saturated unconsolidated sandstone at the measured seismic frequency range is prone to be in the relaxed status. Nevertheless, the ultrasonic velocities are significantly higher than the Gassmann–Wood predictions, suggesting that the rocks are in the unrelaxed status at the ultrasonic frequency range. The poroelastic modelling results based on the patchy saturation model also indicate that the characteristic frequency of the partially saturated sample is likely beyond the measured seismic frequency range.  相似文献   

2.
The elastic moduli of four sandstone samples are measured at seismic (2?2000 Hz) and ultrasonic (1 MHz) frequencies and water- and glycerin-saturated conditions. We observe that the high-permeability samples under partially water-saturated conditions and the low-permeability samples under partially glycerin-saturated conditions show little dispersion at low frequencies (2?2000 Hz). However, the high-permeability samples under partially glycerin-saturated conditions and the low-permeability samples under partially water-saturated conditions produce strong dispersion in the same frequency range (2?2000 Hz). This suggests that fluid mobility largely controls the pore-fluid movement and pore pressure in a porous medium. High fluid mobility facilitates pore-pressure equilibration either between pores or between heterogeneous regions, resulting in a low-frequency domain where the Gassmann equations are valid. In contrast, low fluid mobility produces pressure gradients even at seismic frequencies, and thus dispersion. The latter shows a systematic shift to lower frequencies with decreasing mobility. Sandstone samples showed variations in Vp as a function of fluid saturation. We explore the applicability of the Gassmann model on sandstone rocks. Two theoretical bounds for the P-velocity are known, the Gassmann–Wood and Gassmann–Hill limits. The observations confirm the effect of wave-induced flow on the transition from the Gassmann–Wood to the Gassmann–Hill limit. With decreasing fluid mobility, the P-velocity at 2–2000 Hz moves from the Gassmann–Wood boundary to the Gassmann–Hill boundary. In addition,, we investigate the mechanisms responsible for this transition.  相似文献   

3.
We have studied 56 unfractured chalk samples of the Upper Cretaceous Tor Formation of the Dan, South Arne and Gorm Fields, Danish North Sea. The samples have porosities of between 14% and 45% and calcite content of over 95%. The ultrasonic compressional‐ and shear‐wave velocities (VP and VS) for dry and water‐saturated samples were measured at up to 75 bar confining hydrostatic pressure corresponding to effective stress in the reservoir. The porosity is the main control of the ultrasonic velocities and therefore of the elastic moduli. The elastic moduli are slightly higher for samples from the South Arne Field than from the Dan Field for identical porosities. This difference may be due to textural differences between the chalk at the two locations because we observe that large grains (i.e. filled microfossils and fossil fragments) that occur more frequently in samples from the Dan Field have a porosity‐reducing effect and that samples rich in large grains have a relatively low porosity for a given P‐wave modulus. The clay content in the samples is low and is mainly represented by either kaolinite or smectite; samples with smectite have a lower P‐wave modulus than samples with kaolinite at equal porosity. We find that ultrasonic VP and VS of dry chalk samples can be satisfactorily estimated with Gassmann's relationships from data for water‐saturated samples. A pronounced difference between the VP/VS ratios for dry and water‐saturated chalk samples indicates promising results for seismic amplitude‐versus‐offset analyses.  相似文献   

4.
Fluid pressure diffusion occurring on the microscopic scale is believed to be a significant source of intrinsic attenuation of mechanical waves propagating through fully saturated porous rocks. The so-called squirt flow arises from compressibility heterogeneities in the microstructure of the rocks. To study squirt flow experimentally at seismic frequencies the forced oscillation method is the most adequate, but such studies are still scarce. Here we present the results of forced hydrostatic and axial oscillation experiments on dry and glycerine-saturated Berea sandstone, from which we determine the dynamic stiffness moduli and attenuation at micro-seismic and seismic frequencies (0.004–30 Hz). We observe frequency-dependent attenuation and the associated moduli dispersion in response to the drained–undrained transition (∼0.1 Hz) and squirt flow (>3 Hz), which are in fairly good agreement with the results of the corresponding analytical solutions. The comparison with very similar experiments performed also on Berea sandstone in addition shows that squirt flow can potentially be a source of wave attenuation across a wide range of frequencies because of its sensitivity to small variations in the rock microstructure, especially in the aspect ratio of micro-cracks or grain contacts.  相似文献   

5.
含流体砂岩地震波频散实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究孔隙流体对不同渗透率岩石地震波速度的影响,在实验室利用跨频带岩石弹性参数测试系统得到了应变幅值10-6的2~2000Hz频段下的地震波速度和1 MHz频率下的超声波速度,利用差分共振声谱法得到了频率600Hz岩石干燥和完全饱水情况下岩石声学参数.实验表明,在低饱和度下,致密砂岩在地震和超声频段下没有明显的频散;在高饱和度下纵波速度的频散变得明显.从干燥到完全水饱和条件,不同频率测量的致密砂岩的体积模量随岩石孔隙度增高而降低,且体积模量的变化量受岩石微观孔隙结构的影响较大.高孔、高渗砂岩无论在低含水度下还是在高含水饱和度下频散微弱,并且在地震频段下围压对于岩石纵横波速度的影响要大于频率的影响.高孔、高渗砂岩和致密砂岩不同含水饱和度下的频散差异可应用于储层预测,油气检测等方面,同时该研究可以更好地帮助理解岩石的黏弹性行为,促进岩石物理频散理论的发展,提高地震解释的精度.  相似文献   

6.
We measured in the laboratory ultrasonic compressional and shear‐wave velocity and attenuation (0.7–1.0 MHz) and low‐frequency (2 Hz) electrical resistivity on 63 sandstone samples with a wide range of petrophysical properties to study the influence of reservoir porosity, permeability and clay content on the joint elastic‐electrical properties of reservoir sandstones. P‐ and S‐wave velocities were found to be linearly correlated with apparent electrical formation factor on a semi‐logarithmic scale for both clean and clay‐rich sandstones; P‐ and S‐wave attenuations showed a bell‐shaped correlation (partial for S‐waves) with apparent electrical formation factor. The joint elastic‐electrical properties provide a way to discriminate between sandstones with similar porosities but with different clay contents. The laboratory results can be used to estimate sandstone reservoir permeability from seismic velocity and apparent formation factor obtained from co‐located seismic and controlled source electromagnetic surveys.  相似文献   

7.
In this work, an experimental study was carried out with the aim of reconciling static and dynamic stiffness of Opalinus Clay. The static and dynamic stiffness of core plugs from a shaly and a sandy facies of Opalinus Clay were characterized at two different stress states. The measurements included undrained quasi-static loading–unloading cycles from which the static stiffness was derived, dynamic stiffness measurement at seismic frequencies (0.5–150 Hz) and ultrasonic velocity measurements (500 kHz) probing the dynamic stiffness at ultrasonic frequencies. The experiments were carried out in a special triaxial low-frequency cell. The obtained results demonstrate that the difference between static and dynamic stiffness is due to both dispersion and non-elastic effects: Both sandy and shaly facies of Opalinus Clay exhibit large dispersion, that is, a large frequency dependence of dynamic stiffness and acoustic velocities. Especially dynamic Young's moduli exhibit very high dispersion; between seismic and ultrasonic frequencies they may change by more than a factor 2. P-wave velocities perpendicular to bedding are by more than 200 m/s higher at ultrasonic frequencies than at seismic frequencies. The static undrained stiffness of both sandy and shaly facies is strongly influenced by non-elastic effects, resulting in significant softening during both loading and unloading with increasing stress amplitude. The zero-stress extrapolated static undrained stiffness, however, reflects the purely elastic response and agrees well with the dynamic stiffness at seismic frequency.  相似文献   

8.
Attenuation of seismic compression waves leads to the real existence of a fast P1 wave in rocks which are fully saturated with dropping fluid and a slow P2 wave in the rocks containing gas in their pores. This accounts for the seismic blanking zones below the gas horizons for the P1 waves. Oscillations of gaseous inclusions ensure the energy transfer to the dominant frequencies which are different for the cases of passive seismic (few Hz) and active source seismic (10–20 Hz). The intervals of dominant frequencies are determined from the negative attenuation of these low-frequency waves. According to the observations and the suggested equation, random noise amplifies the signal at these frequencies. Thus, the P2 waves at the dominant frequency of the active source seismics are applicable for elaborating on the details of the saturation of the production layer by hydrocarbons. The relation to the AVO method (Amplitude Variation with Offset) and dilatancy effect during the preparation of an earthquake is noted.  相似文献   

9.
Seismic monitoring of reservoir and overburden performance during subsurface CO2 storage plays a key role in ensuring efficiency and safety. Proper interpretation of monitoring data requires knowledge about the rock physical phenomena occurring in the subsurface formations. This work focuses on rock stiffness and elastic velocity changes of a shale overburden formation caused by both reservoir inflation induced stress changes and leakage of CO2 into the overburden. In laboratory experiments, Pierre shale I core plugs were loaded along the stress path representative for the in situ stress changes experienced by caprock during reservoir inflation. Tests were carried out in a triaxial compaction cell combining three measurement techniques and permitting for determination of (i) ultrasonic velocities, (ii) quasistatic rock deformations, and (iii) dynamic elastic stiffness at seismic frequencies within a single test, which allowed to quantify effects of seismic dispersion. In addition, fluid substitution effects connected with possible CO2 leakage into the caprock formation were modelled by the modified anisotropic Gassmann model. Results of this work indicate that (i) stress sensitivity of Pierre shale I is frequency dependent; (ii) reservoir inflation leads to the increase of the overburden Young's modulus and Poisson's ratio; (iii) in situ stress changes mostly affect the P‐wave velocities; (iv) small leakage of the CO2 into the overburden may lead to the velocity changes, which are comparable with one associated with geomechanical influence; (v) non‐elastic effects increase stress sensitivity of an acoustic waves; (iv) and both geomechanical and fluid substitution effects would create significant time shifts, which should be detectable by time‐lapse seismic.  相似文献   

10.
Compressional-wave Q estimation from full-waveform sonic data   总被引:1,自引:0,他引:1  
There is significant evidence that the anelastic loss of seismic energy is linked to petrophysical properties such as porosity, permeability and clay content. Thus, reliable estimation of anelastic attenuation from seismic data can lead to improved methods for the prediction of petrophysical properties. This paper is concerned with methods for the estimation of attenuation at sonic frequencies (5–30 KHz) from in situ data. Two independent methods have been developed and tested for estimating compressional‐wave attenuation from full‐waveform sonic data. A well‐established technique, the logarithm spectral ratio (LSR) method, is compared with a new technique, the instantaneous frequency (IF) method. The LSR method uses the whole spectrum of the seismic pulse whilst the IF method uses a carefully estimated value of instantaneous frequency which is representative of the centre frequency of the pulse. In the former case, attenuation estimation is based on the relative variation of amplitudes at different frequencies, whilst in the latter case it is based on the shift of the centre frequency of the pulse to lower values during anelastic wave propagation. The IF method does not assume frequency independence of Q which is a necessary assumption for the LSR method, and it provides a stable frequency log, the peak instantaneous frequency (PIF) log, which may be used as an indicator for attenuation under certain limitations. The development and implementation of the two methods is aimed at minimizing the effect of secondary arrivals, such as leaky modes, and involved a series of parameter tests. Testing of the two methods using full‐waveform sonic data of variable quality, obtained from a gas‐bearing sandstone reservoir, showed that the IF method is in general more stable and suitable for full‐waveform sonic data compared with the LSR method. This was evident especially in data sets with high background noise levels and wave‐interference effects. For good quality data, the two methods gave results that showed good agreement, whilst comparison with other log types further increased confidence in the results obtained. A significant decrease (approximately 5 KHz) in the PIF values was observed in the transition from an evaporite/shale sequence to the gas‐bearing sandstone. Average Q values of 54 and 51 were obtained using good quality data from a test region within the gas‐saturated sandstone reservoir, using the LSR and IF methods, respectively.  相似文献   

11.
Quantifying the effects of pore-filling materials on elastic properties of porous rocks is of considerable interest in geophysical practice. For rocks saturated with fluids, the Gassmann equation is proved effective in estimating the exact change in seismic velocity or rock moduli upon the changes in properties of pore infill. For solid substance or viscoelastic materials, however, the Gassmann theory is not applicable as the rigidity of the pore fill (either elastic or viscoelastic) prevents pressure communication in the pore space, which is a key assumption of the Gassmann equation. In this paper, we explored the elastic properties of a sandstone sample saturated with fluid and solid substance under different confining pressures. This sandstone sample is saturated with octadecane, which is a hydrocarbon with a melting point of 28°C, making it convenient to use in the lab in both solid and fluid forms. Ultrasonically measured velocities of the dry rock exhibit strong pressure dependency, which is largely reduced for the filling of solid octadecane. Predictions by the Gassmann theory for the elastic moduli of the sandstone saturated with liquid octadecane are consistent with ultrasonic measurements, but underestimate the elastic moduli of the sandstone saturated with solid octadecane. Our analysis shows that the difference between the elastic moduli of the dry and solid-octadecane-saturated sandstone is controlled by the squirt flow between stiff, compliant, and the so-called intermediate pores (with an aspect ratio larger than that of compliant pore but much less than that of stiff pores). Therefore, we developed a triple porosity model to quantify the combined squirt flow effects of compliant and intermediate pores saturated with solid or viscoelastic infill. Full saturation of remaining stiff pores with solid or viscoelastic materials is then considered by the lower embedded bound theory. The proposed model gave a reasonable fit to the ultrasonic measurements of the elastic moduli of the sandstone saturated with liquid or solid octadecane. Comparison of the predictions by the new model to other solid substitution schemes implied that accounting for the combined effects of compliant and intermediate pores is necessary to explain the solid squirt effects.  相似文献   

12.
Ultrasonic compressional‐ and shear‐wave velocities have been measured on 34 samples of sandstones from hydrocarbon reservoirs. The sandstones are all of low clay content, high porosity, and cover a wide range of permeabilities. They were measured dry and brine‐saturated under hydrostatic effective stresses of 10, 20 and 40 MPa. For eight of the sandstones, ultrasonic velocity measurements were made at different partial water saturations in the range from dry to fully saturated. The Gassmann–Biot theory is found to account for most of the changes in velocities at high effective stress levels when the dry sandstones are fully saturated with brine, provided the lower velocities resulting when the dry sandstone initially adsorbs small amounts of moisture are used to determine the elastic properties of the ‘dry’ sandstone. At lower effective stress levels, local flow phenomena due to the presence of open microcracks are assumed to be responsible for measured velocities higher than those predicted by the theory. The partial saturation results are modelled fairly closely by the Gassmann–Biot theory, assuming heterogeneous saturation for P‐waves.  相似文献   

13.
The laboratory ultrasonic pulse‐echo method was used to collect accurate P‐ and S‐wave velocity (±0.3%) and attenuation (±10%) data at differential pressures of 5–50 MPa on water‐saturated core samples of sandstone, limestone and siltstone that were cut parallel and perpendicular to the vertical borehole axis. The results, when expressed in terms of the P‐ and S‐wave velocity and attenuation anisotropy parameters for weakly transversely isotropic media (ɛ, γ, ɛQ, γQ) show complex variations with pressure and lithology. In general, attenuation anisotropy is stronger and more sensitive to pressure changes than velocity anisotropy, regardless of lithology. Anisotropy is greatest (over 20% for velocity, over 70% for attenuation) in rocks with visible clay/organic matter laminations in hand specimens. Pressure sensitivities are attributed to the opening of microcracks with decreasing pressure. Changes in magnitude of velocity and attenuation anisotropy with effective pressure show similar trends, although they can show different signs (positive or negative values of ɛ, ɛQ, γ, γQ). We conclude that attenuation anisotropy in particular could prove useful to seismic monitoring of reservoir pressure changes if frequency‐dependent effects can be quantified and modelled.  相似文献   

14.
It is evident from the laboratory experiments that shear moduli of different porous isotropic rocks may show softening behaviour upon saturation. The shear softening means that the shear modulus of dry samples is higher than of saturated samples. Shear softening was observed both at low (seismic) frequencies and high (ultrasonic) frequencies. Shear softening is stronger at seismic frequencies than at ultrasonic frequencies, where the softening is compensated by hardening due to unrelaxed squirt flow. It contradicts to Gassmann's theory suggesting that the relaxed shear modulus of isotropic rock should not depend upon fluid saturation, provided that no chemical reaction between the solid frame and the pore fluid. Several researchers demonstrated that the shear softening effect is reversible during re-saturation of rock samples, suggesting no permanent chemical reaction between the solid frame and the pore fluid. Therefore, it is extremely difficult to explain this fluid–rock interaction mechanism theoretically, because it does not contradict to the assumptions of Gassmann's theory, but contradicts to its conclusions. We argue that the observed shear softening of partially saturated rocks by different pore fluids is related to pore-scale interfacial phenomena effects, typically neglected by the rock physics models. These interface phenomena effects are dependent on surface tension between immiscible fluids, rock wettability, aperture distribution of microcracks, compressibility of microcracks, porosity of microcracks, elastic properties of rock mineral, fluid saturation, effective stress and wave amplitude. Derived equations allow to estimate effects of pore fluids and saturation on the shear modulus and mechanical strength of rocks.  相似文献   

15.
We measured the extensional‐mode attenuation and Young's modulus in a porous sample made of sintered borosilicate glass at microseismic to seismic frequencies (0.05–50 Hz) using the forced oscillation method. Partial saturation was achieved by water imbibition, varying the water saturation from an initial dry state up to ~99%, and by gas exsolution from an initially fully water‐saturated state down to ~99%. During forced oscillations of the sample effective stresses up to 10 MPa were applied. We observe frequency‐dependent attenuation, with a peak at 1–5 Hz, for ~99% water saturation achieved both by imbibition and by gas exsolution. The magnitude of this attenuation peak is consistently reduced with increasing fluid pressure and is largely insensitive to changes in effective stress. Similar observations have recently been attributed to wave‐induced gas exsolution–dissolution. At full water saturation, the left‐hand side of an attenuation curve, with a peak beyond the highest measured frequency, is observed at 3 MPa effective stress, while at 10 MPa effective stress the measured attenuation is negligible. This observation is consistent with wave‐induced fluid flow associated with mesoscopic compressibility contrasts in the sample's frame. These variations in compressibility could be due to fractures and/or compaction bands that formed between separate sets of forced‐oscillation experiments in response to the applied stresses. The agreement of the measured frequency‐dependent attenuation and Young's modulus with the Kramers–Kronig relations and additional data analyses indicate the good quality of the measurements. Our observations point to the complex interplay between structural and fluid heterogeneities on the measured seismic attenuation and they illustrate how these heterogeneities can facilitate the dominance of one attenuation mechanism over another.  相似文献   

16.
Conventional seismic data are band limited and therefore, provide limited geological information. Every method that can push the limits is desirable for seismic data analysis. Recently, time‐frequency decomposition methods are being used to quickly extract geological information from seismic data and, especially, for revealing frequency‐dependent amplitude anomalies. Higher frequency resolution at lower frequencies and higher temporal resolution at higher frequencies are the objectives for different time‐frequency decomposition methods. Continuous wavelet transform techniques, which are the same as narrow‐band spectral analysis methods, provide frequency spectra with high temporal resolution without the windowing process associated with other techniques. Therefore, this technique can be used for analysing geological information associated with low and high frequencies that normally cannot be observed in conventional seismic data. In particular, the continuous wavelet transform is being used to detect thin sand bodies and also as a direct hydrocarbon indicator. This paper presents an application of the continuous wavelet transform method for the mapping of potential channel deposits, as well as remnant natural gas detection by mapping low‐frequency anomalies associated with the gas. The study was carried out at the experimental CO2 storage site at Ketzin, Germany (CO2SINK). Given that reservoir heterogeneity and faulting will have significant impact on the movement and storage of the injected CO2, our results are encouraging for monitoring the migration of CO2 at the site. Our study confirms the efficiency of the continuous wavelet transform decomposition method for the detection of frequency‐dependent anomalies that may be due to gas migration during and after the injection phase and in this way, it can be used for real‐time monitoring of the injected CO2 from both surface and borehole seismics.  相似文献   

17.
Laboratory estimates of normal and shear fracture compliance   总被引:2,自引:0,他引:2  
Laboratory estimates of the normal (Bn) and shear (Bt) compliance of artificial fractures in samples of Jurassic and Carboniferous limestone under wet and dry conditions are presented. The experiments were performed over a range of confining pressures (from 5 MPa up to 60 MPa), at ultrasonic frequencies in a Triaxial Hoek cell, using the pulse‐echo reflection technique. The results of this study confirm that the Bn/Bt ratio of a fracture is dependent on the fluid fill. A value of Bn/ Bt of less than 0.05 was obtained for our wet (honey saturated) sample which is consistent with the prediction that this ratio should be close to zero for fluid saturated fractures. Values of Bn/Bt for the dry sample are significantly higher and increase with confining pressure from 0.2 to 0.5. It is suggested that a Bn/Bt ratio of 0.5 is probably a more representative value to use in modelling studies of gas filled fractures than the common assumption that Bn ≈ Bt.  相似文献   

18.
Petrophysical properties of carbonate reservoirs are less predictable than that of siliciclastic reservoirs. One of the main reasons for this is the physical and chemical interactions of carbonate rocks with pore fluids. Such interactions can significantly change the elastic properties of the rock matrix and grains, making the applicability of Gassmann's fluid substitution procedure debatable. This study is an attempt to understand the mechanisms of fluid‐rock interactions and the influence of these interactions on elastic parameters of carbonates. We performed precise indentation tests on Savonnières limestone at a microscale level under dry, distilled water, and n‐Decane saturated conditions. Our experiments display softening of the rock matrix after water saturation. We have found that mainly the ooid cortices, peloid nuclei and prismatic intergranular cement are affected by water flooding. We also observed a shear modulus reduction in Savonnières limestone in an experiment performed at ultrasonic frequencies. One of the most important results obtained in our experimental study is that the Gassmann fluid substitution theory might not always be applicable to predict the elastic moduli of fluid‐saturated limestones.  相似文献   

19.
Quantitative detection of fluid distribution using time-lapse seismic   总被引:1,自引:0,他引:1  
Although previous seismic monitoring studies have revealed several relationships between seismic responses and changes in reservoir rock properties, the quantitative evaluation of time‐lapse seismic data remains a challenge. In most cases of time‐lapse seismic analysis, fluid and/or pressure changes are detected qualitatively by changes in amplitude strength, traveltime and/or Poisson's ratio. We present the steps for time‐lapse seismic analysis, considering the pressure effect and the saturation scale of fluids. We then demonstrate a deterministic workflow for computing the fluid saturation in a reservoir in order to evaluate time‐lapse seismic data. In this approach, we derive the physical properties of the water‐saturated sandstone reservoir, based on the following inputs: VP, VS, ρ and the shale volume from seismic analysis, the average properties of sand grains, and formation‐water properties. Next, by comparing the in‐situ fluid‐saturated properties with the 100% formation‐water‐saturated reservoir properties, we determine the bulk modulus and density of the in‐situ fluid. Solving three simultaneous equations (relating the saturations of water, oil and gas in terms of the bulk modulus, density and the total saturation), we compute the saturation of each fluid. We use a real time‐lapse seismic data set from an oilfield in the North Sea for a case study.  相似文献   

20.
Velocities of compressional and shear waves in limestones   总被引:2,自引:1,他引:2  
Carbonate rocks are important hydrocarbon reservoir rocks with complex textures and petrophysical properties (porosity and permeability) mainly resulting from various diagenetic processes (compaction, dissolution, precipitation, cementation, etc.). These complexities make prediction of reservoir characteristics (e.g. porosity and permeability) from their seismic properties very difficult. To explore the relationship between the seismic, petrophysical and geological properties, ultrasonic compressional‐ and shear‐wave velocity measurements were made under a simulated in situ condition of pressure (50 MPa hydrostatic effective pressure) at frequencies of approximately 0.85 MHz and 0.7 MHz, respectively, using a pulse‐echo method. The measurements were made both in vacuum‐dry and fully saturated conditions in oolitic limestones of the Great Oolite Formation of southern England. Some of the rocks were fully saturated with oil. The acoustic measurements were supplemented by porosity and permeability measurements, petrological and pore geometry studies of resin‐impregnated polished thin sections, X‐ray diffraction analyses and scanning electron microscope studies to investigate submicroscopic textures and micropores. It is shown that the compressional‐ and shear‐wave velocities (Vp and Vs, respectively) decrease with increasing porosity and that Vp decreases approximately twice as fast as Vs. The systematic differences in pore structures (e.g. the aspect ratio) of the limestones produce large residuals in the velocity versus porosity relationship. It is demonstrated that the velocity versus porosity relationship can be improved by removing the pore‐structure‐dependent variations from the residuals. The introduction of water into the pore space decreases the shear moduli of the rocks by about 2 GPa, suggesting that there exists a fluid/matrix interaction at grain contacts, which reduces the rigidity. The predicted Biot–Gassmann velocity values are greater than the measured velocity values due to the rock–fluid interaction. This is not accounted for in the Biot–Gassmann velocity models and velocity dispersion due to a local flow mechanism. The velocities predicted by the Raymer and time‐average relationships overestimated the measured velocities even more than the Biot model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号